Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.21
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.21 2005/02/12 03:27:33 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.21 2005/02/12 03:27:33 oster Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83 
     84 /*****************************************************************************
     85  * main (only) configuration routine for this module
     86  ****************************************************************************/
     87 int
     88 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     89 {
     90 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     91 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101 	return (0);
    102 }
    103 
    104 
    105 
    106 /*****************************************************************************
    107  * the execution function associated with a terminate node
    108  ****************************************************************************/
    109 int
    110 rf_TerminateFunc(RF_DagNode_t *node)
    111 {
    112 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    113 	node->status = rf_good;
    114 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    115 }
    116 
    117 int
    118 rf_TerminateUndoFunc(RF_DagNode_t *node)
    119 {
    120 	return (0);
    121 }
    122 
    123 
    124 /*****************************************************************************
    125  * execution functions associated with a mirror node
    126  *
    127  * parameters:
    128  *
    129  * 0 - physical disk addres of data
    130  * 1 - buffer for holding read data
    131  * 2 - parity stripe ID
    132  * 3 - flags
    133  * 4 - physical disk address of mirror (parity)
    134  *
    135  ****************************************************************************/
    136 
    137 int
    138 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    139 {
    140 	/* select the mirror copy with the shortest queue and fill in node
    141 	 * parameters with physical disk address */
    142 
    143 	rf_SelectMirrorDiskIdle(node);
    144 	return (rf_DiskReadFunc(node));
    145 }
    146 
    147 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    148 int
    149 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    150 {
    151 	/* select the mirror copy with the shortest queue and fill in node
    152 	 * parameters with physical disk address */
    153 
    154 	rf_SelectMirrorDiskPartition(node);
    155 	return (rf_DiskReadFunc(node));
    156 }
    157 #endif
    158 
    159 int
    160 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    161 {
    162 	return (0);
    163 }
    164 
    165 
    166 
    167 #if RF_INCLUDE_PARITYLOGGING > 0
    168 /*****************************************************************************
    169  * the execution function associated with a parity log update node
    170  ****************************************************************************/
    171 int
    172 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    173 {
    174 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    175 	caddr_t buf = (caddr_t) node->params[1].p;
    176 	RF_ParityLogData_t *logData;
    177 #if RF_ACC_TRACE > 0
    178 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    179 	RF_Etimer_t timer;
    180 #endif
    181 
    182 	if (node->dagHdr->status == rf_enable) {
    183 #if RF_ACC_TRACE > 0
    184 		RF_ETIMER_START(timer);
    185 #endif
    186 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    187 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    188 		    node->wakeFunc, (void *) node,
    189 		    node->dagHdr->tracerec, timer);
    190 		if (logData)
    191 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    192 		else {
    193 #if RF_ACC_TRACE > 0
    194 			RF_ETIMER_STOP(timer);
    195 			RF_ETIMER_EVAL(timer);
    196 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    197 #endif
    198 			(node->wakeFunc) (node, ENOMEM);
    199 		}
    200 	}
    201 	return (0);
    202 }
    203 
    204 
    205 /*****************************************************************************
    206  * the execution function associated with a parity log overwrite node
    207  ****************************************************************************/
    208 int
    209 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    210 {
    211 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    212 	caddr_t buf = (caddr_t) node->params[1].p;
    213 	RF_ParityLogData_t *logData;
    214 #if RF_ACC_TRACE > 0
    215 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    216 	RF_Etimer_t timer;
    217 #endif
    218 
    219 	if (node->dagHdr->status == rf_enable) {
    220 #if RF_ACC_TRACE > 0
    221 		RF_ETIMER_START(timer);
    222 #endif
    223 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
    224 (RF_Raid_t *) (node->dagHdr->raidPtr),
    225 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    226 		if (logData)
    227 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    228 		else {
    229 #if RF_ACC_TRACE > 0
    230 			RF_ETIMER_STOP(timer);
    231 			RF_ETIMER_EVAL(timer);
    232 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    233 #endif
    234 			(node->wakeFunc) (node, ENOMEM);
    235 		}
    236 	}
    237 	return (0);
    238 }
    239 
    240 int
    241 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    242 {
    243 	return (0);
    244 }
    245 
    246 int
    247 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    248 {
    249 	return (0);
    250 }
    251 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    252 
    253 /*****************************************************************************
    254  * the execution function associated with a NOP node
    255  ****************************************************************************/
    256 int
    257 rf_NullNodeFunc(RF_DagNode_t *node)
    258 {
    259 	node->status = rf_good;
    260 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    261 }
    262 
    263 int
    264 rf_NullNodeUndoFunc(RF_DagNode_t *node)
    265 {
    266 	node->status = rf_undone;
    267 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    268 }
    269 
    270 
    271 /*****************************************************************************
    272  * the execution function associated with a disk-read node
    273  ****************************************************************************/
    274 int
    275 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    276 {
    277 	RF_DiskQueueData_t *req;
    278 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    279 	caddr_t buf = (caddr_t) node->params[1].p;
    280 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    281 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    282 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    283 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    284 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    285 	void   *b_proc = NULL;
    286 
    287 	if (node->dagHdr->bp)
    288 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    289 
    290 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    291 	    buf, parityStripeID, which_ru,
    292 	    (int (*) (void *, int)) node->wakeFunc,
    293 	    node, NULL,
    294 #if RF_ACC_TRACE > 0
    295 	     node->dagHdr->tracerec,
    296 #else
    297              NULL,
    298 #endif
    299 	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
    300 	if (!req) {
    301 		(node->wakeFunc) (node, ENOMEM);
    302 	} else {
    303 		node->dagFuncData = (void *) req;
    304 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    305 	}
    306 	return (0);
    307 }
    308 
    309 
    310 /*****************************************************************************
    311  * the execution function associated with a disk-write node
    312  ****************************************************************************/
    313 int
    314 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    315 {
    316 	RF_DiskQueueData_t *req;
    317 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    318 	caddr_t buf = (caddr_t) node->params[1].p;
    319 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    320 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    321 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    322 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    323 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    324 	void   *b_proc = NULL;
    325 
    326 	if (node->dagHdr->bp)
    327 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    328 
    329 	/* normal processing (rollaway or forward recovery) begins here */
    330 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    331 	    buf, parityStripeID, which_ru,
    332 	    (int (*) (void *, int)) node->wakeFunc,
    333 	    (void *) node, NULL,
    334 #if RF_ACC_TRACE > 0
    335 	    node->dagHdr->tracerec,
    336 #else
    337 	    NULL,
    338 #endif
    339 	    (void *) (node->dagHdr->raidPtr),
    340 	    0, b_proc, PR_NOWAIT);
    341 
    342 	if (!req) {
    343 		(node->wakeFunc) (node, ENOMEM);
    344 	} else {
    345 		node->dagFuncData = (void *) req;
    346 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    347 	}
    348 
    349 	return (0);
    350 }
    351 /*****************************************************************************
    352  * the undo function for disk nodes
    353  * Note:  this is not a proper undo of a write node, only locks are released.
    354  *        old data is not restored to disk!
    355  ****************************************************************************/
    356 int
    357 rf_DiskUndoFunc(RF_DagNode_t *node)
    358 {
    359 	RF_DiskQueueData_t *req;
    360 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    361 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    362 
    363 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    364 	    0L, 0, NULL, 0L, 0,
    365 	    (int (*) (void *, int)) node->wakeFunc,
    366 	    (void *) node,
    367 	    NULL,
    368 #if RF_ACC_TRACE > 0
    369 	     node->dagHdr->tracerec,
    370 #else
    371 	     NULL,
    372 #endif
    373 	    (void *) (node->dagHdr->raidPtr),
    374 	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
    375 	if (!req)
    376 		(node->wakeFunc) (node, ENOMEM);
    377 	else {
    378 		node->dagFuncData = (void *) req;
    379 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    380 	}
    381 
    382 	return (0);
    383 }
    384 /*****************************************************************************
    385  * the execution function associated with an "unlock disk queue" node
    386  ****************************************************************************/
    387 int
    388 rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
    389 {
    390 	RF_DiskQueueData_t *req;
    391 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    392 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    393 
    394 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    395 	    0L, 0, NULL, 0L, 0,
    396 	    (int (*) (void *, int)) node->wakeFunc,
    397 	    (void *) node,
    398 	    NULL,
    399 #if RF_ACC_TRACE > 0
    400 	    node->dagHdr->tracerec,
    401 #else
    402 	    NULL,
    403 #endif
    404 	    (void *) (node->dagHdr->raidPtr),
    405 	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
    406 	if (!req)
    407 		(node->wakeFunc) (node, ENOMEM);
    408 	else {
    409 		node->dagFuncData = (void *) req;
    410 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    411 	}
    412 
    413 	return (0);
    414 }
    415 /*****************************************************************************
    416  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    417  * op completes, the routine is called to set the node status and
    418  * inform the execution engine that the node has fired.
    419  ****************************************************************************/
    420 int
    421 rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    422 {
    423 
    424 	switch (node->status) {
    425 	case rf_fired:
    426 		if (status)
    427 			node->status = rf_bad;
    428 		else
    429 			node->status = rf_good;
    430 		break;
    431 	case rf_recover:
    432 		/* probably should never reach this case */
    433 		if (status)
    434 			node->status = rf_panic;
    435 		else
    436 			node->status = rf_undone;
    437 		break;
    438 	default:
    439 		printf("rf_GenericWakeupFunc:");
    440 		printf("node->status is %d,", node->status);
    441 		printf("status is %d \n", status);
    442 		RF_PANIC();
    443 		break;
    444 	}
    445 	if (node->dagFuncData)
    446 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    447 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    448 }
    449 
    450 
    451 /*****************************************************************************
    452  * there are three distinct types of xor nodes:
    453 
    454  * A "regular xor" is used in the fault-free case where the access
    455  * spans a complete stripe unit.  It assumes that the result buffer is
    456  * one full stripe unit in size, and uses the stripe-unit-offset
    457  * values that it computes from the PDAs to determine where within the
    458  * stripe unit to XOR each argument buffer.
    459  *
    460  * A "simple xor" is used in the fault-free case where the access
    461  * touches only a portion of one (or two, in some cases) stripe
    462  * unit(s).  It assumes that all the argument buffers are of the same
    463  * size and have the same stripe unit offset.
    464  *
    465  * A "recovery xor" is used in the degraded-mode case.  It's similar
    466  * to the regular xor function except that it takes the failed PDA as
    467  * an additional parameter, and uses it to determine what portions of
    468  * the argument buffers need to be xor'd into the result buffer, and
    469  * where in the result buffer they should go.
    470  ****************************************************************************/
    471 
    472 /* xor the params together and store the result in the result field.
    473  * assume the result field points to a buffer that is the size of one
    474  * SU, and use the pda params to determine where within the buffer to
    475  * XOR the input buffers.  */
    476 int
    477 rf_RegularXorFunc(RF_DagNode_t *node)
    478 {
    479 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    480 #if RF_ACC_TRACE > 0
    481 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    482 	RF_Etimer_t timer;
    483 #endif
    484 	int     i, retcode;
    485 
    486 	retcode = 0;
    487 	if (node->dagHdr->status == rf_enable) {
    488 		/* don't do the XOR if the input is the same as the output */
    489 #if RF_ACC_TRACE > 0
    490 		RF_ETIMER_START(timer);
    491 #endif
    492 		for (i = 0; i < node->numParams - 1; i += 2)
    493 			if (node->params[i + 1].p != node->results[0]) {
    494 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    495 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    496 			}
    497 #if RF_ACC_TRACE > 0
    498 		RF_ETIMER_STOP(timer);
    499 		RF_ETIMER_EVAL(timer);
    500 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    501 #endif
    502 	}
    503 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    504 							 * explicitly since no
    505 							 * I/O in this node */
    506 }
    507 /* xor the inputs into the result buffer, ignoring placement issues */
    508 int
    509 rf_SimpleXorFunc(RF_DagNode_t *node)
    510 {
    511 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    512 	int     i, retcode = 0;
    513 #if RF_ACC_TRACE > 0
    514 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    515 	RF_Etimer_t timer;
    516 #endif
    517 
    518 	if (node->dagHdr->status == rf_enable) {
    519 #if RF_ACC_TRACE > 0
    520 		RF_ETIMER_START(timer);
    521 #endif
    522 		/* don't do the XOR if the input is the same as the output */
    523 		for (i = 0; i < node->numParams - 1; i += 2)
    524 			if (node->params[i + 1].p != node->results[0]) {
    525 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    526 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    527 			}
    528 #if RF_ACC_TRACE > 0
    529 		RF_ETIMER_STOP(timer);
    530 		RF_ETIMER_EVAL(timer);
    531 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    532 #endif
    533 	}
    534 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    535 							 * explicitly since no
    536 							 * I/O in this node */
    537 }
    538 /* this xor is used by the degraded-mode dag functions to recover lost
    539  * data.  the second-to-last parameter is the PDA for the failed
    540  * portion of the access.  the code here looks at this PDA and assumes
    541  * that the xor target buffer is equal in size to the number of
    542  * sectors in the failed PDA.  It then uses the other PDAs in the
    543  * parameter list to determine where within the target buffer the
    544  * corresponding data should be xored.  */
    545 int
    546 rf_RecoveryXorFunc(RF_DagNode_t *node)
    547 {
    548 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    549 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    550 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    551 	int     i, retcode = 0;
    552 	RF_PhysDiskAddr_t *pda;
    553 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    554 	char   *srcbuf, *destbuf;
    555 #if RF_ACC_TRACE > 0
    556 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    557 	RF_Etimer_t timer;
    558 #endif
    559 
    560 	if (node->dagHdr->status == rf_enable) {
    561 #if RF_ACC_TRACE > 0
    562 		RF_ETIMER_START(timer);
    563 #endif
    564 		for (i = 0; i < node->numParams - 2; i += 2)
    565 			if (node->params[i + 1].p != node->results[0]) {
    566 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    567 				srcbuf = (char *) node->params[i + 1].p;
    568 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    569 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    570 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    571 			}
    572 #if RF_ACC_TRACE > 0
    573 		RF_ETIMER_STOP(timer);
    574 		RF_ETIMER_EVAL(timer);
    575 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    576 #endif
    577 	}
    578 	return (rf_GenericWakeupFunc(node, retcode));
    579 }
    580 /*****************************************************************************
    581  * The next three functions are utilities used by the above
    582  * xor-execution functions.
    583  ****************************************************************************/
    584 
    585 
    586 /*
    587  * this is just a glorified buffer xor.  targbuf points to a buffer
    588  * that is one full stripe unit in size.  srcbuf points to a buffer
    589  * that may be less than 1 SU, but never more.  When the access
    590  * described by pda is one SU in size (which by implication means it's
    591  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    592  * When the access is less than one SU in size the XOR occurs on only
    593  * the portion of targbuf identified in the pda.  */
    594 
    595 int
    596 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    597 		 char *srcbuf, char *targbuf)
    598 {
    599 	char   *targptr;
    600 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    601 	int     SUOffset = pda->startSector % sectPerSU;
    602 	int     length, retcode = 0;
    603 
    604 	RF_ASSERT(pda->numSector <= sectPerSU);
    605 
    606 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    607 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    608 	retcode = rf_bxor(srcbuf, targptr, length);
    609 	return (retcode);
    610 }
    611 /* it really should be the case that the buffer pointers (returned by
    612  * malloc) are aligned to the natural word size of the machine, so
    613  * this is the only case we optimize for.  The length should always be
    614  * a multiple of the sector size, so there should be no problem with
    615  * leftover bytes at the end.  */
    616 int
    617 rf_bxor(char *src, char *dest, int len)
    618 {
    619 	unsigned mask = sizeof(long) - 1, retcode = 0;
    620 
    621 	if (!(((unsigned long) src) & mask) &&
    622 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    623 		retcode = rf_longword_bxor((unsigned long *) src,
    624 					   (unsigned long *) dest,
    625 					   len >> RF_LONGSHIFT);
    626 	} else {
    627 		RF_ASSERT(0);
    628 	}
    629 	return (retcode);
    630 }
    631 
    632 /* When XORing in kernel mode, we need to map each user page to kernel
    633  * space before we can access it.  We don't want to assume anything
    634  * about which input buffers are in kernel/user space, nor about their
    635  * alignment, so in each loop we compute the maximum number of bytes
    636  * that we can xor without crossing any page boundaries, and do only
    637  * this many bytes before the next remap.
    638  *
    639  * len - is in longwords
    640  */
    641 int
    642 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    643 {
    644 	unsigned long *end = src + len;
    645 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    646 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    647 	int     longs_this_time;/* # longwords to xor in the current iteration */
    648 
    649 	pg_src = src;
    650 	pg_dest = dest;
    651 	if (!pg_src || !pg_dest)
    652 		return (EFAULT);
    653 
    654 	while (len >= 4) {
    655 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    656 		src += longs_this_time;
    657 		dest += longs_this_time;
    658 		len -= longs_this_time;
    659 		while (longs_this_time >= 4) {
    660 			d0 = pg_dest[0];
    661 			d1 = pg_dest[1];
    662 			d2 = pg_dest[2];
    663 			d3 = pg_dest[3];
    664 			s0 = pg_src[0];
    665 			s1 = pg_src[1];
    666 			s2 = pg_src[2];
    667 			s3 = pg_src[3];
    668 			pg_dest[0] = d0 ^ s0;
    669 			pg_dest[1] = d1 ^ s1;
    670 			pg_dest[2] = d2 ^ s2;
    671 			pg_dest[3] = d3 ^ s3;
    672 			pg_src += 4;
    673 			pg_dest += 4;
    674 			longs_this_time -= 4;
    675 		}
    676 		while (longs_this_time > 0) {	/* cannot cross any page
    677 						 * boundaries here */
    678 			*pg_dest++ ^= *pg_src++;
    679 			longs_this_time--;
    680 		}
    681 
    682 		/* either we're done, or we've reached a page boundary on one
    683 		 * (or possibly both) of the pointers */
    684 		if (len) {
    685 			if (RF_PAGE_ALIGNED(src))
    686 				pg_src = src;
    687 			if (RF_PAGE_ALIGNED(dest))
    688 				pg_dest = dest;
    689 			if (!pg_src || !pg_dest)
    690 				return (EFAULT);
    691 		}
    692 	}
    693 	while (src < end) {
    694 		*pg_dest++ ^= *pg_src++;
    695 		src++;
    696 		dest++;
    697 		len--;
    698 		if (RF_PAGE_ALIGNED(src))
    699 			pg_src = src;
    700 		if (RF_PAGE_ALIGNED(dest))
    701 			pg_dest = dest;
    702 	}
    703 	RF_ASSERT(len == 0);
    704 	return (0);
    705 }
    706 
    707 #if 0
    708 /*
    709    dst = a ^ b ^ c;
    710    a may equal dst
    711    see comment above longword_bxor
    712    len is length in longwords
    713 */
    714 int
    715 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    716 		  unsigned long *c, int len, void *bp)
    717 {
    718 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    719 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    720 								 * pointers */
    721 	int     longs_this_time;/* # longs to xor in the current iteration */
    722 	char    dst_is_a = 0;
    723 
    724 	pg_a = a;
    725 	pg_b = b;
    726 	pg_c = c;
    727 	if (a == dst) {
    728 		pg_dst = pg_a;
    729 		dst_is_a = 1;
    730 	} else {
    731 		pg_dst = dst;
    732 	}
    733 
    734 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    735 	while ((((unsigned long) pg_dst) & 0x1f)) {
    736 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    737 		dst++;
    738 		a++;
    739 		b++;
    740 		c++;
    741 		if (RF_PAGE_ALIGNED(a)) {
    742 			pg_a = a;
    743 			if (!pg_a)
    744 				return (EFAULT);
    745 		}
    746 		if (RF_PAGE_ALIGNED(b)) {
    747 			pg_b = a;
    748 			if (!pg_b)
    749 				return (EFAULT);
    750 		}
    751 		if (RF_PAGE_ALIGNED(c)) {
    752 			pg_c = a;
    753 			if (!pg_c)
    754 				return (EFAULT);
    755 		}
    756 		len--;
    757 	}
    758 
    759 	while (len > 4) {
    760 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    761 		a += longs_this_time;
    762 		b += longs_this_time;
    763 		c += longs_this_time;
    764 		dst += longs_this_time;
    765 		len -= longs_this_time;
    766 		while (longs_this_time >= 4) {
    767 			a0 = pg_a[0];
    768 			longs_this_time -= 4;
    769 
    770 			a1 = pg_a[1];
    771 			a2 = pg_a[2];
    772 
    773 			a3 = pg_a[3];
    774 			pg_a += 4;
    775 
    776 			b0 = pg_b[0];
    777 			b1 = pg_b[1];
    778 
    779 			b2 = pg_b[2];
    780 			b3 = pg_b[3];
    781 			/* start dual issue */
    782 			a0 ^= b0;
    783 			b0 = pg_c[0];
    784 
    785 			pg_b += 4;
    786 			a1 ^= b1;
    787 
    788 			a2 ^= b2;
    789 			a3 ^= b3;
    790 
    791 			b1 = pg_c[1];
    792 			a0 ^= b0;
    793 
    794 			b2 = pg_c[2];
    795 			a1 ^= b1;
    796 
    797 			b3 = pg_c[3];
    798 			a2 ^= b2;
    799 
    800 			pg_dst[0] = a0;
    801 			a3 ^= b3;
    802 			pg_dst[1] = a1;
    803 			pg_c += 4;
    804 			pg_dst[2] = a2;
    805 			pg_dst[3] = a3;
    806 			pg_dst += 4;
    807 		}
    808 		while (longs_this_time > 0) {	/* cannot cross any page
    809 						 * boundaries here */
    810 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    811 			longs_this_time--;
    812 		}
    813 
    814 		if (len) {
    815 			if (RF_PAGE_ALIGNED(a)) {
    816 				pg_a = a;
    817 				if (!pg_a)
    818 					return (EFAULT);
    819 				if (dst_is_a)
    820 					pg_dst = pg_a;
    821 			}
    822 			if (RF_PAGE_ALIGNED(b)) {
    823 				pg_b = b;
    824 				if (!pg_b)
    825 					return (EFAULT);
    826 			}
    827 			if (RF_PAGE_ALIGNED(c)) {
    828 				pg_c = c;
    829 				if (!pg_c)
    830 					return (EFAULT);
    831 			}
    832 			if (!dst_is_a)
    833 				if (RF_PAGE_ALIGNED(dst)) {
    834 					pg_dst = dst;
    835 					if (!pg_dst)
    836 						return (EFAULT);
    837 				}
    838 		}
    839 	}
    840 	while (len) {
    841 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    842 		dst++;
    843 		a++;
    844 		b++;
    845 		c++;
    846 		if (RF_PAGE_ALIGNED(a)) {
    847 			pg_a = a;
    848 			if (!pg_a)
    849 				return (EFAULT);
    850 			if (dst_is_a)
    851 				pg_dst = pg_a;
    852 		}
    853 		if (RF_PAGE_ALIGNED(b)) {
    854 			pg_b = b;
    855 			if (!pg_b)
    856 				return (EFAULT);
    857 		}
    858 		if (RF_PAGE_ALIGNED(c)) {
    859 			pg_c = c;
    860 			if (!pg_c)
    861 				return (EFAULT);
    862 		}
    863 		if (!dst_is_a)
    864 			if (RF_PAGE_ALIGNED(dst)) {
    865 				pg_dst = dst;
    866 				if (!pg_dst)
    867 					return (EFAULT);
    868 			}
    869 		len--;
    870 	}
    871 	return (0);
    872 }
    873 
    874 int
    875 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    876 	 unsigned char *c, unsigned long len, void *bp)
    877 {
    878 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    879 
    880 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    881 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    882 }
    883 #endif
    884