Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.29
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.29 2007/03/04 06:02:36 christos Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.29 2007/03/04 06:02:36 christos Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     79 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     80 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     81 
     82 /*****************************************************************************
     83  * main (only) configuration routine for this module
     84  ****************************************************************************/
     85 int
     86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     87 {
     88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     89 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     90 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     91 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     92 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     93 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     94 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97 	return (0);
     98 }
     99 
    100 
    101 
    102 /*****************************************************************************
    103  * the execution function associated with a terminate node
    104  ****************************************************************************/
    105 int
    106 rf_TerminateFunc(RF_DagNode_t *node)
    107 {
    108 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109 	node->status = rf_good;
    110 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    111 }
    112 
    113 int
    114 rf_TerminateUndoFunc(RF_DagNode_t *node)
    115 {
    116 	return (0);
    117 }
    118 
    119 
    120 /*****************************************************************************
    121  * execution functions associated with a mirror node
    122  *
    123  * parameters:
    124  *
    125  * 0 - physical disk addres of data
    126  * 1 - buffer for holding read data
    127  * 2 - parity stripe ID
    128  * 3 - flags
    129  * 4 - physical disk address of mirror (parity)
    130  *
    131  ****************************************************************************/
    132 
    133 int
    134 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    135 {
    136 	/* select the mirror copy with the shortest queue and fill in node
    137 	 * parameters with physical disk address */
    138 
    139 	rf_SelectMirrorDiskIdle(node);
    140 	return (rf_DiskReadFunc(node));
    141 }
    142 
    143 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    144 int
    145 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    146 {
    147 	/* select the mirror copy with the shortest queue and fill in node
    148 	 * parameters with physical disk address */
    149 
    150 	rf_SelectMirrorDiskPartition(node);
    151 	return (rf_DiskReadFunc(node));
    152 }
    153 #endif
    154 
    155 int
    156 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    157 {
    158 	return (0);
    159 }
    160 
    161 
    162 
    163 #if RF_INCLUDE_PARITYLOGGING > 0
    164 /*****************************************************************************
    165  * the execution function associated with a parity log update node
    166  ****************************************************************************/
    167 int
    168 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    169 {
    170 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    171 	void *bf = (void *) node->params[1].p;
    172 	RF_ParityLogData_t *logData;
    173 #if RF_ACC_TRACE > 0
    174 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    175 	RF_Etimer_t timer;
    176 #endif
    177 
    178 	if (node->dagHdr->status == rf_enable) {
    179 #if RF_ACC_TRACE > 0
    180 		RF_ETIMER_START(timer);
    181 #endif
    182 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
    183 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    184 		    node->wakeFunc, (void *) node,
    185 		    node->dagHdr->tracerec, timer);
    186 		if (logData)
    187 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    188 		else {
    189 #if RF_ACC_TRACE > 0
    190 			RF_ETIMER_STOP(timer);
    191 			RF_ETIMER_EVAL(timer);
    192 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    193 #endif
    194 			(node->wakeFunc) (node, ENOMEM);
    195 		}
    196 	}
    197 	return (0);
    198 }
    199 
    200 
    201 /*****************************************************************************
    202  * the execution function associated with a parity log overwrite node
    203  ****************************************************************************/
    204 int
    205 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    206 {
    207 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    208 	void *bf = (void *) node->params[1].p;
    209 	RF_ParityLogData_t *logData;
    210 #if RF_ACC_TRACE > 0
    211 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    212 	RF_Etimer_t timer;
    213 #endif
    214 
    215 	if (node->dagHdr->status == rf_enable) {
    216 #if RF_ACC_TRACE > 0
    217 		RF_ETIMER_START(timer);
    218 #endif
    219 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
    220 (RF_Raid_t *) (node->dagHdr->raidPtr),
    221 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    222 		if (logData)
    223 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    224 		else {
    225 #if RF_ACC_TRACE > 0
    226 			RF_ETIMER_STOP(timer);
    227 			RF_ETIMER_EVAL(timer);
    228 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    229 #endif
    230 			(node->wakeFunc) (node, ENOMEM);
    231 		}
    232 	}
    233 	return (0);
    234 }
    235 
    236 int
    237 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    238 {
    239 	return (0);
    240 }
    241 
    242 int
    243 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    244 {
    245 	return (0);
    246 }
    247 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    248 
    249 /*****************************************************************************
    250  * the execution function associated with a NOP node
    251  ****************************************************************************/
    252 int
    253 rf_NullNodeFunc(RF_DagNode_t *node)
    254 {
    255 	node->status = rf_good;
    256 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    257 }
    258 
    259 int
    260 rf_NullNodeUndoFunc(RF_DagNode_t *node)
    261 {
    262 	node->status = rf_undone;
    263 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    264 }
    265 
    266 
    267 /*****************************************************************************
    268  * the execution function associated with a disk-read node
    269  ****************************************************************************/
    270 int
    271 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    272 {
    273 	RF_DiskQueueData_t *req;
    274 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    275 	void *bf = (void *) node->params[1].p;
    276 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    277 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    278 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    279 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    280 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    281 	void   *b_proc = NULL;
    282 
    283 	if (node->dagHdr->bp)
    284 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    285 
    286 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    287 	    bf, parityStripeID, which_ru,
    288 	    (int (*) (void *, int)) node->wakeFunc,
    289 	    node,
    290 #if RF_ACC_TRACE > 0
    291 	     node->dagHdr->tracerec,
    292 #else
    293              NULL,
    294 #endif
    295 	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
    296 	if (!req) {
    297 		(node->wakeFunc) (node, ENOMEM);
    298 	} else {
    299 		node->dagFuncData = (void *) req;
    300 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    301 	}
    302 	return (0);
    303 }
    304 
    305 
    306 /*****************************************************************************
    307  * the execution function associated with a disk-write node
    308  ****************************************************************************/
    309 int
    310 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    311 {
    312 	RF_DiskQueueData_t *req;
    313 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    314 	void *bf = (void *) node->params[1].p;
    315 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    316 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    317 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    318 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    319 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    320 	void   *b_proc = NULL;
    321 
    322 	if (node->dagHdr->bp)
    323 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    324 
    325 	/* normal processing (rollaway or forward recovery) begins here */
    326 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    327 	    bf, parityStripeID, which_ru,
    328 	    (int (*) (void *, int)) node->wakeFunc,
    329 	    (void *) node,
    330 #if RF_ACC_TRACE > 0
    331 	    node->dagHdr->tracerec,
    332 #else
    333 	    NULL,
    334 #endif
    335 	    (void *) (node->dagHdr->raidPtr),
    336 	    0, b_proc, PR_NOWAIT);
    337 
    338 	if (!req) {
    339 		(node->wakeFunc) (node, ENOMEM);
    340 	} else {
    341 		node->dagFuncData = (void *) req;
    342 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    343 	}
    344 
    345 	return (0);
    346 }
    347 /*****************************************************************************
    348  * the undo function for disk nodes
    349  * Note:  this is not a proper undo of a write node, only locks are released.
    350  *        old data is not restored to disk!
    351  ****************************************************************************/
    352 int
    353 rf_DiskUndoFunc(RF_DagNode_t *node)
    354 {
    355 	RF_DiskQueueData_t *req;
    356 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    357 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    358 
    359 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    360 	    0L, 0, NULL, 0L, 0,
    361 	    (int (*) (void *, int)) node->wakeFunc,
    362 	    (void *) node,
    363 #if RF_ACC_TRACE > 0
    364 	     node->dagHdr->tracerec,
    365 #else
    366 	     NULL,
    367 #endif
    368 	    (void *) (node->dagHdr->raidPtr),
    369 	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
    370 	if (!req)
    371 		(node->wakeFunc) (node, ENOMEM);
    372 	else {
    373 		node->dagFuncData = (void *) req;
    374 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    375 	}
    376 
    377 	return (0);
    378 }
    379 
    380 /*****************************************************************************
    381  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    382  * op completes, the routine is called to set the node status and
    383  * inform the execution engine that the node has fired.
    384  ****************************************************************************/
    385 int
    386 rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    387 {
    388 
    389 	switch (node->status) {
    390 	case rf_fired:
    391 		if (status)
    392 			node->status = rf_bad;
    393 		else
    394 			node->status = rf_good;
    395 		break;
    396 	case rf_recover:
    397 		/* probably should never reach this case */
    398 		if (status)
    399 			node->status = rf_panic;
    400 		else
    401 			node->status = rf_undone;
    402 		break;
    403 	default:
    404 		printf("rf_GenericWakeupFunc:");
    405 		printf("node->status is %d,", node->status);
    406 		printf("status is %d \n", status);
    407 		RF_PANIC();
    408 		break;
    409 	}
    410 	if (node->dagFuncData)
    411 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    412 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    413 }
    414 
    415 
    416 /*****************************************************************************
    417  * there are three distinct types of xor nodes:
    418 
    419  * A "regular xor" is used in the fault-free case where the access
    420  * spans a complete stripe unit.  It assumes that the result buffer is
    421  * one full stripe unit in size, and uses the stripe-unit-offset
    422  * values that it computes from the PDAs to determine where within the
    423  * stripe unit to XOR each argument buffer.
    424  *
    425  * A "simple xor" is used in the fault-free case where the access
    426  * touches only a portion of one (or two, in some cases) stripe
    427  * unit(s).  It assumes that all the argument buffers are of the same
    428  * size and have the same stripe unit offset.
    429  *
    430  * A "recovery xor" is used in the degraded-mode case.  It's similar
    431  * to the regular xor function except that it takes the failed PDA as
    432  * an additional parameter, and uses it to determine what portions of
    433  * the argument buffers need to be xor'd into the result buffer, and
    434  * where in the result buffer they should go.
    435  ****************************************************************************/
    436 
    437 /* xor the params together and store the result in the result field.
    438  * assume the result field points to a buffer that is the size of one
    439  * SU, and use the pda params to determine where within the buffer to
    440  * XOR the input buffers.  */
    441 int
    442 rf_RegularXorFunc(RF_DagNode_t *node)
    443 {
    444 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    445 #if RF_ACC_TRACE > 0
    446 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    447 	RF_Etimer_t timer;
    448 #endif
    449 	int     i, retcode;
    450 
    451 	retcode = 0;
    452 	if (node->dagHdr->status == rf_enable) {
    453 		/* don't do the XOR if the input is the same as the output */
    454 #if RF_ACC_TRACE > 0
    455 		RF_ETIMER_START(timer);
    456 #endif
    457 		for (i = 0; i < node->numParams - 1; i += 2)
    458 			if (node->params[i + 1].p != node->results[0]) {
    459 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    460 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    461 			}
    462 #if RF_ACC_TRACE > 0
    463 		RF_ETIMER_STOP(timer);
    464 		RF_ETIMER_EVAL(timer);
    465 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    466 #endif
    467 	}
    468 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    469 							 * explicitly since no
    470 							 * I/O in this node */
    471 }
    472 /* xor the inputs into the result buffer, ignoring placement issues */
    473 int
    474 rf_SimpleXorFunc(RF_DagNode_t *node)
    475 {
    476 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    477 	int     i, retcode = 0;
    478 #if RF_ACC_TRACE > 0
    479 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    480 	RF_Etimer_t timer;
    481 #endif
    482 
    483 	if (node->dagHdr->status == rf_enable) {
    484 #if RF_ACC_TRACE > 0
    485 		RF_ETIMER_START(timer);
    486 #endif
    487 		/* don't do the XOR if the input is the same as the output */
    488 		for (i = 0; i < node->numParams - 1; i += 2)
    489 			if (node->params[i + 1].p != node->results[0]) {
    490 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    491 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    492 			}
    493 #if RF_ACC_TRACE > 0
    494 		RF_ETIMER_STOP(timer);
    495 		RF_ETIMER_EVAL(timer);
    496 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    497 #endif
    498 	}
    499 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    500 							 * explicitly since no
    501 							 * I/O in this node */
    502 }
    503 /* this xor is used by the degraded-mode dag functions to recover lost
    504  * data.  the second-to-last parameter is the PDA for the failed
    505  * portion of the access.  the code here looks at this PDA and assumes
    506  * that the xor target buffer is equal in size to the number of
    507  * sectors in the failed PDA.  It then uses the other PDAs in the
    508  * parameter list to determine where within the target buffer the
    509  * corresponding data should be xored.  */
    510 int
    511 rf_RecoveryXorFunc(RF_DagNode_t *node)
    512 {
    513 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    514 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    515 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    516 	int     i, retcode = 0;
    517 	RF_PhysDiskAddr_t *pda;
    518 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    519 	char   *srcbuf, *destbuf;
    520 #if RF_ACC_TRACE > 0
    521 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    522 	RF_Etimer_t timer;
    523 #endif
    524 
    525 	if (node->dagHdr->status == rf_enable) {
    526 #if RF_ACC_TRACE > 0
    527 		RF_ETIMER_START(timer);
    528 #endif
    529 		for (i = 0; i < node->numParams - 2; i += 2)
    530 			if (node->params[i + 1].p != node->results[0]) {
    531 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    532 				srcbuf = (char *) node->params[i + 1].p;
    533 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    534 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    535 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    536 			}
    537 #if RF_ACC_TRACE > 0
    538 		RF_ETIMER_STOP(timer);
    539 		RF_ETIMER_EVAL(timer);
    540 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    541 #endif
    542 	}
    543 	return (rf_GenericWakeupFunc(node, retcode));
    544 }
    545 /*****************************************************************************
    546  * The next three functions are utilities used by the above
    547  * xor-execution functions.
    548  ****************************************************************************/
    549 
    550 
    551 /*
    552  * this is just a glorified buffer xor.  targbuf points to a buffer
    553  * that is one full stripe unit in size.  srcbuf points to a buffer
    554  * that may be less than 1 SU, but never more.  When the access
    555  * described by pda is one SU in size (which by implication means it's
    556  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    557  * When the access is less than one SU in size the XOR occurs on only
    558  * the portion of targbuf identified in the pda.  */
    559 
    560 int
    561 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    562 		 char *srcbuf, char *targbuf)
    563 {
    564 	char   *targptr;
    565 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    566 	int     SUOffset = pda->startSector % sectPerSU;
    567 	int     length, retcode = 0;
    568 
    569 	RF_ASSERT(pda->numSector <= sectPerSU);
    570 
    571 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    572 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    573 	retcode = rf_bxor(srcbuf, targptr, length);
    574 	return (retcode);
    575 }
    576 /* it really should be the case that the buffer pointers (returned by
    577  * malloc) are aligned to the natural word size of the machine, so
    578  * this is the only case we optimize for.  The length should always be
    579  * a multiple of the sector size, so there should be no problem with
    580  * leftover bytes at the end.  */
    581 int
    582 rf_bxor(char *src, char *dest, int len)
    583 {
    584 	unsigned mask = sizeof(long) - 1, retcode = 0;
    585 
    586 	if (!(((unsigned long) src) & mask) &&
    587 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    588 		retcode = rf_longword_bxor((unsigned long *) src,
    589 					   (unsigned long *) dest,
    590 					   len >> RF_LONGSHIFT);
    591 	} else {
    592 		RF_ASSERT(0);
    593 	}
    594 	return (retcode);
    595 }
    596 
    597 /* When XORing in kernel mode, we need to map each user page to kernel
    598  * space before we can access it.  We don't want to assume anything
    599  * about which input buffers are in kernel/user space, nor about their
    600  * alignment, so in each loop we compute the maximum number of bytes
    601  * that we can xor without crossing any page boundaries, and do only
    602  * this many bytes before the next remap.
    603  *
    604  * len - is in longwords
    605  */
    606 int
    607 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    608 {
    609 	unsigned long *end = src + len;
    610 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    611 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    612 	int     longs_this_time;/* # longwords to xor in the current iteration */
    613 
    614 	pg_src = src;
    615 	pg_dest = dest;
    616 	if (!pg_src || !pg_dest)
    617 		return (EFAULT);
    618 
    619 	while (len >= 4) {
    620 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    621 		src += longs_this_time;
    622 		dest += longs_this_time;
    623 		len -= longs_this_time;
    624 		while (longs_this_time >= 4) {
    625 			d0 = pg_dest[0];
    626 			d1 = pg_dest[1];
    627 			d2 = pg_dest[2];
    628 			d3 = pg_dest[3];
    629 			s0 = pg_src[0];
    630 			s1 = pg_src[1];
    631 			s2 = pg_src[2];
    632 			s3 = pg_src[3];
    633 			pg_dest[0] = d0 ^ s0;
    634 			pg_dest[1] = d1 ^ s1;
    635 			pg_dest[2] = d2 ^ s2;
    636 			pg_dest[3] = d3 ^ s3;
    637 			pg_src += 4;
    638 			pg_dest += 4;
    639 			longs_this_time -= 4;
    640 		}
    641 		while (longs_this_time > 0) {	/* cannot cross any page
    642 						 * boundaries here */
    643 			*pg_dest++ ^= *pg_src++;
    644 			longs_this_time--;
    645 		}
    646 
    647 		/* either we're done, or we've reached a page boundary on one
    648 		 * (or possibly both) of the pointers */
    649 		if (len) {
    650 			if (RF_PAGE_ALIGNED(src))
    651 				pg_src = src;
    652 			if (RF_PAGE_ALIGNED(dest))
    653 				pg_dest = dest;
    654 			if (!pg_src || !pg_dest)
    655 				return (EFAULT);
    656 		}
    657 	}
    658 	while (src < end) {
    659 		*pg_dest++ ^= *pg_src++;
    660 		src++;
    661 		dest++;
    662 		len--;
    663 		if (RF_PAGE_ALIGNED(src))
    664 			pg_src = src;
    665 		if (RF_PAGE_ALIGNED(dest))
    666 			pg_dest = dest;
    667 	}
    668 	RF_ASSERT(len == 0);
    669 	return (0);
    670 }
    671 
    672 #if 0
    673 /*
    674    dst = a ^ b ^ c;
    675    a may equal dst
    676    see comment above longword_bxor
    677    len is length in longwords
    678 */
    679 int
    680 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    681 		  unsigned long *c, int len, void *bp)
    682 {
    683 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    684 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    685 								 * pointers */
    686 	int     longs_this_time;/* # longs to xor in the current iteration */
    687 	char    dst_is_a = 0;
    688 
    689 	pg_a = a;
    690 	pg_b = b;
    691 	pg_c = c;
    692 	if (a == dst) {
    693 		pg_dst = pg_a;
    694 		dst_is_a = 1;
    695 	} else {
    696 		pg_dst = dst;
    697 	}
    698 
    699 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    700 	while ((((unsigned long) pg_dst) & 0x1f)) {
    701 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    702 		dst++;
    703 		a++;
    704 		b++;
    705 		c++;
    706 		if (RF_PAGE_ALIGNED(a)) {
    707 			pg_a = a;
    708 			if (!pg_a)
    709 				return (EFAULT);
    710 		}
    711 		if (RF_PAGE_ALIGNED(b)) {
    712 			pg_b = a;
    713 			if (!pg_b)
    714 				return (EFAULT);
    715 		}
    716 		if (RF_PAGE_ALIGNED(c)) {
    717 			pg_c = a;
    718 			if (!pg_c)
    719 				return (EFAULT);
    720 		}
    721 		len--;
    722 	}
    723 
    724 	while (len > 4) {
    725 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    726 		a += longs_this_time;
    727 		b += longs_this_time;
    728 		c += longs_this_time;
    729 		dst += longs_this_time;
    730 		len -= longs_this_time;
    731 		while (longs_this_time >= 4) {
    732 			a0 = pg_a[0];
    733 			longs_this_time -= 4;
    734 
    735 			a1 = pg_a[1];
    736 			a2 = pg_a[2];
    737 
    738 			a3 = pg_a[3];
    739 			pg_a += 4;
    740 
    741 			b0 = pg_b[0];
    742 			b1 = pg_b[1];
    743 
    744 			b2 = pg_b[2];
    745 			b3 = pg_b[3];
    746 			/* start dual issue */
    747 			a0 ^= b0;
    748 			b0 = pg_c[0];
    749 
    750 			pg_b += 4;
    751 			a1 ^= b1;
    752 
    753 			a2 ^= b2;
    754 			a3 ^= b3;
    755 
    756 			b1 = pg_c[1];
    757 			a0 ^= b0;
    758 
    759 			b2 = pg_c[2];
    760 			a1 ^= b1;
    761 
    762 			b3 = pg_c[3];
    763 			a2 ^= b2;
    764 
    765 			pg_dst[0] = a0;
    766 			a3 ^= b3;
    767 			pg_dst[1] = a1;
    768 			pg_c += 4;
    769 			pg_dst[2] = a2;
    770 			pg_dst[3] = a3;
    771 			pg_dst += 4;
    772 		}
    773 		while (longs_this_time > 0) {	/* cannot cross any page
    774 						 * boundaries here */
    775 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    776 			longs_this_time--;
    777 		}
    778 
    779 		if (len) {
    780 			if (RF_PAGE_ALIGNED(a)) {
    781 				pg_a = a;
    782 				if (!pg_a)
    783 					return (EFAULT);
    784 				if (dst_is_a)
    785 					pg_dst = pg_a;
    786 			}
    787 			if (RF_PAGE_ALIGNED(b)) {
    788 				pg_b = b;
    789 				if (!pg_b)
    790 					return (EFAULT);
    791 			}
    792 			if (RF_PAGE_ALIGNED(c)) {
    793 				pg_c = c;
    794 				if (!pg_c)
    795 					return (EFAULT);
    796 			}
    797 			if (!dst_is_a)
    798 				if (RF_PAGE_ALIGNED(dst)) {
    799 					pg_dst = dst;
    800 					if (!pg_dst)
    801 						return (EFAULT);
    802 				}
    803 		}
    804 	}
    805 	while (len) {
    806 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    807 		dst++;
    808 		a++;
    809 		b++;
    810 		c++;
    811 		if (RF_PAGE_ALIGNED(a)) {
    812 			pg_a = a;
    813 			if (!pg_a)
    814 				return (EFAULT);
    815 			if (dst_is_a)
    816 				pg_dst = pg_a;
    817 		}
    818 		if (RF_PAGE_ALIGNED(b)) {
    819 			pg_b = b;
    820 			if (!pg_b)
    821 				return (EFAULT);
    822 		}
    823 		if (RF_PAGE_ALIGNED(c)) {
    824 			pg_c = c;
    825 			if (!pg_c)
    826 				return (EFAULT);
    827 		}
    828 		if (!dst_is_a)
    829 			if (RF_PAGE_ALIGNED(dst)) {
    830 				pg_dst = dst;
    831 				if (!pg_dst)
    832 					return (EFAULT);
    833 			}
    834 		len--;
    835 	}
    836 	return (0);
    837 }
    838 
    839 int
    840 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    841 	 unsigned char *c, unsigned long len, void *bp)
    842 {
    843 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    844 
    845 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    846 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    847 }
    848 #endif
    849