rf_dagfuncs.c revision 1.3 1 /* $NetBSD: rf_dagfuncs.c,v 1.3 1999/02/05 00:06:08 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 * get set to "good" or "bad", and "FinishNode" to be called. In the
35 * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 * the node execution function can do these two things directly. In
37 * the case of nodes that have to wait for some event (a disk read to
38 * complete, a lock to be released, etc) to occur before they can
39 * complete, this is typically achieved by having whatever module
40 * is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 * and NOP out their operations if the status is not "enable". However,
43 * execution functions that release resources must be sure to release
44 * them even when they NOP out the function that would use them.
45 * Functions that acquire resources should go ahead and acquire them
46 * even when they NOP, so that a downstream release node will not have
47 * to check to find out whether or not the acquire was suppressed.
48 */
49
50 #include <sys/ioctl.h>
51 #include <sys/param.h>
52
53 #include "rf_archs.h"
54 #include "rf_raid.h"
55 #include "rf_dag.h"
56 #include "rf_layout.h"
57 #include "rf_etimer.h"
58 #include "rf_acctrace.h"
59 #include "rf_diskqueue.h"
60 #include "rf_dagfuncs.h"
61 #include "rf_general.h"
62 #include "rf_engine.h"
63 #include "rf_dagutils.h"
64
65 #include "rf_kintf.h"
66
67 #if RF_INCLUDE_PARITYLOGGING > 0
68 #include "rf_paritylog.h"
69 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
70
71 int (*rf_DiskReadFunc) (RF_DagNode_t *);
72 int (*rf_DiskWriteFunc) (RF_DagNode_t *);
73 int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
74 int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
75 int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
76 int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
77 int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
78 int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
79 int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
80
81 /*****************************************************************************************
82 * main (only) configuration routine for this module
83 ****************************************************************************************/
84 int
85 rf_ConfigureDAGFuncs(listp)
86 RF_ShutdownList_t **listp;
87 {
88 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
89 rf_DiskReadFunc = rf_DiskReadFuncForThreads;
90 rf_DiskReadUndoFunc = rf_DiskUndoFunc;
91 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
92 rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
93 rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
94 rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
95 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
96 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
97 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
98 return (0);
99 }
100
101
102
103 /*****************************************************************************************
104 * the execution function associated with a terminate node
105 ****************************************************************************************/
106 int
107 rf_TerminateFunc(node)
108 RF_DagNode_t *node;
109 {
110 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
111 node->status = rf_good;
112 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
113 }
114
115 int
116 rf_TerminateUndoFunc(node)
117 RF_DagNode_t *node;
118 {
119 return (0);
120 }
121
122
123 /*****************************************************************************************
124 * execution functions associated with a mirror node
125 *
126 * parameters:
127 *
128 * 0 - physical disk addres of data
129 * 1 - buffer for holding read data
130 * 2 - parity stripe ID
131 * 3 - flags
132 * 4 - physical disk address of mirror (parity)
133 *
134 ****************************************************************************************/
135
136 int
137 rf_DiskReadMirrorIdleFunc(node)
138 RF_DagNode_t *node;
139 {
140 /* select the mirror copy with the shortest queue and fill in node
141 * parameters with physical disk address */
142
143 rf_SelectMirrorDiskIdle(node);
144 return (rf_DiskReadFunc(node));
145 }
146
147 int
148 rf_DiskReadMirrorPartitionFunc(node)
149 RF_DagNode_t *node;
150 {
151 /* select the mirror copy with the shortest queue and fill in node
152 * parameters with physical disk address */
153
154 rf_SelectMirrorDiskPartition(node);
155 return (rf_DiskReadFunc(node));
156 }
157
158 int
159 rf_DiskReadMirrorUndoFunc(node)
160 RF_DagNode_t *node;
161 {
162 return (0);
163 }
164
165
166
167 #if RF_INCLUDE_PARITYLOGGING > 0
168 /*****************************************************************************************
169 * the execution function associated with a parity log update node
170 ****************************************************************************************/
171 int
172 rf_ParityLogUpdateFunc(node)
173 RF_DagNode_t *node;
174 {
175 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
176 caddr_t buf = (caddr_t) node->params[1].p;
177 RF_ParityLogData_t *logData;
178 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
179 RF_Etimer_t timer;
180
181 if (node->dagHdr->status == rf_enable) {
182 RF_ETIMER_START(timer);
183 logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
184 (RF_Raid_t *) (node->dagHdr->raidPtr),
185 node->wakeFunc, (void *) node,
186 node->dagHdr->tracerec, timer);
187 if (logData)
188 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
189 else {
190 RF_ETIMER_STOP(timer);
191 RF_ETIMER_EVAL(timer);
192 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
193 (node->wakeFunc) (node, ENOMEM);
194 }
195 }
196 return (0);
197 }
198
199
200 /*****************************************************************************************
201 * the execution function associated with a parity log overwrite node
202 ****************************************************************************************/
203 int
204 rf_ParityLogOverwriteFunc(node)
205 RF_DagNode_t *node;
206 {
207 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
208 caddr_t buf = (caddr_t) node->params[1].p;
209 RF_ParityLogData_t *logData;
210 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
211 RF_Etimer_t timer;
212
213 if (node->dagHdr->status == rf_enable) {
214 RF_ETIMER_START(timer);
215 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
216 node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
217 if (logData)
218 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
219 else {
220 RF_ETIMER_STOP(timer);
221 RF_ETIMER_EVAL(timer);
222 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
223 (node->wakeFunc) (node, ENOMEM);
224 }
225 }
226 return (0);
227 }
228 #else /* RF_INCLUDE_PARITYLOGGING > 0 */
229
230 int
231 rf_ParityLogUpdateFunc(node)
232 RF_DagNode_t *node;
233 {
234 return (0);
235 }
236 int
237 rf_ParityLogOverwriteFunc(node)
238 RF_DagNode_t *node;
239 {
240 return (0);
241 }
242 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
243
244 int
245 rf_ParityLogUpdateUndoFunc(node)
246 RF_DagNode_t *node;
247 {
248 return (0);
249 }
250
251 int
252 rf_ParityLogOverwriteUndoFunc(node)
253 RF_DagNode_t *node;
254 {
255 return (0);
256 }
257 /*****************************************************************************************
258 * the execution function associated with a NOP node
259 ****************************************************************************************/
260 int
261 rf_NullNodeFunc(node)
262 RF_DagNode_t *node;
263 {
264 node->status = rf_good;
265 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
266 }
267
268 int
269 rf_NullNodeUndoFunc(node)
270 RF_DagNode_t *node;
271 {
272 node->status = rf_undone;
273 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
274 }
275
276
277 /*****************************************************************************************
278 * the execution function associated with a disk-read node
279 ****************************************************************************************/
280 int
281 rf_DiskReadFuncForThreads(node)
282 RF_DagNode_t *node;
283 {
284 RF_DiskQueueData_t *req;
285 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
286 caddr_t buf = (caddr_t) node->params[1].p;
287 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
288 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
289 unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
290 unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
291 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
292 RF_DiskQueueDataFlags_t flags = 0;
293 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
294 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
295 void *b_proc = NULL;
296 #if RF_BACKWARD > 0
297 caddr_t undoBuf;
298 #endif
299
300 if (node->dagHdr->bp)
301 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
302
303 RF_ASSERT(!(lock && unlock));
304 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
305 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
306 #if RF_BACKWARD > 0
307 /* allocate and zero the undo buffer. this is equivalent to copying
308 * the original buffer's contents to the undo buffer prior to
309 * performing the disk read. XXX hardcoded 512 bytes per sector! */
310 if (node->dagHdr->allocList == NULL)
311 rf_MakeAllocList(node->dagHdr->allocList);
312 RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
313 #endif /* RF_BACKWARD > 0 */
314 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
315 buf, parityStripeID, which_ru,
316 (int (*) (void *, int)) node->wakeFunc,
317 node, NULL, node->dagHdr->tracerec,
318 (void *) (node->dagHdr->raidPtr), flags, b_proc);
319 if (!req) {
320 (node->wakeFunc) (node, ENOMEM);
321 } else {
322 node->dagFuncData = (void *) req;
323 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
324 }
325 return (0);
326 }
327
328
329 /*****************************************************************************************
330 * the execution function associated with a disk-write node
331 ****************************************************************************************/
332 int
333 rf_DiskWriteFuncForThreads(node)
334 RF_DagNode_t *node;
335 {
336 RF_DiskQueueData_t *req;
337 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
338 caddr_t buf = (caddr_t) node->params[1].p;
339 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
340 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
341 unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
342 unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
343 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
344 RF_DiskQueueDataFlags_t flags = 0;
345 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
346 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
347 void *b_proc = NULL;
348 #if RF_BACKWARD > 0
349 caddr_t undoBuf;
350 #endif
351
352 if (node->dagHdr->bp)
353 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
354
355 #if RF_BACKWARD > 0
356 /* This area is used only for backward error recovery experiments
357 * First, schedule allocate a buffer and schedule a pre-read of the
358 * disk After the pre-read, proceed with the normal disk write */
359 if (node->status == rf_bwd2) {
360 /* just finished undo logging, now perform real function */
361 node->status = rf_fired;
362 RF_ASSERT(!(lock && unlock));
363 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
364 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
365 req = rf_CreateDiskQueueData(iotype,
366 pda->startSector, pda->numSector, buf, parityStripeID, which_ru,
367 node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
368 (void *) (node->dagHdr->raidPtr), flags, b_proc);
369
370 if (!req) {
371 (node->wakeFunc) (node, ENOMEM);
372 } else {
373 node->dagFuncData = (void *) req;
374 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
375 }
376 } else {
377 /* node status should be rf_fired */
378 /* schedule a disk pre-read */
379 node->status = rf_bwd1;
380 RF_ASSERT(!(lock && unlock));
381 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
382 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
383 if (node->dagHdr->allocList == NULL)
384 rf_MakeAllocList(node->dagHdr->allocList);
385 RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
386 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ,
387 pda->startSector, pda->numSector, undoBuf, parityStripeID, which_ru,
388 node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
389 (void *) (node->dagHdr->raidPtr), flags, b_proc);
390
391 if (!req) {
392 (node->wakeFunc) (node, ENOMEM);
393 } else {
394 node->dagFuncData = (void *) req;
395 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
396 }
397 }
398 return (0);
399 #endif /* RF_BACKWARD > 0 */
400
401 /* normal processing (rollaway or forward recovery) begins here */
402 RF_ASSERT(!(lock && unlock));
403 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
404 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
405 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
406 buf, parityStripeID, which_ru,
407 (int (*) (void *, int)) node->wakeFunc,
408 (void *) node, NULL,
409 node->dagHdr->tracerec,
410 (void *) (node->dagHdr->raidPtr),
411 flags, b_proc);
412
413 if (!req) {
414 (node->wakeFunc) (node, ENOMEM);
415 } else {
416 node->dagFuncData = (void *) req;
417 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
418 }
419
420 return (0);
421 }
422 /*****************************************************************************************
423 * the undo function for disk nodes
424 * Note: this is not a proper undo of a write node, only locks are released.
425 * old data is not restored to disk!
426 ****************************************************************************************/
427 int
428 rf_DiskUndoFunc(node)
429 RF_DagNode_t *node;
430 {
431 RF_DiskQueueData_t *req;
432 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
433 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
434
435 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
436 0L, 0, NULL, 0L, 0,
437 (int (*) (void *, int)) node->wakeFunc,
438 (void *) node,
439 NULL, node->dagHdr->tracerec,
440 (void *) (node->dagHdr->raidPtr),
441 RF_UNLOCK_DISK_QUEUE, NULL);
442 if (!req)
443 (node->wakeFunc) (node, ENOMEM);
444 else {
445 node->dagFuncData = (void *) req;
446 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
447 }
448
449 return (0);
450 }
451 /*****************************************************************************************
452 * the execution function associated with an "unlock disk queue" node
453 ****************************************************************************************/
454 int
455 rf_DiskUnlockFuncForThreads(node)
456 RF_DagNode_t *node;
457 {
458 RF_DiskQueueData_t *req;
459 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
460 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
461
462 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
463 0L, 0, NULL, 0L, 0,
464 (int (*) (void *, int)) node->wakeFunc,
465 (void *) node,
466 NULL, node->dagHdr->tracerec,
467 (void *) (node->dagHdr->raidPtr),
468 RF_UNLOCK_DISK_QUEUE, NULL);
469 if (!req)
470 (node->wakeFunc) (node, ENOMEM);
471 else {
472 node->dagFuncData = (void *) req;
473 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
474 }
475
476 return (0);
477 }
478 /*****************************************************************************************
479 * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
480 * the routine is called to set the node status and inform the execution engine that
481 * the node has fired.
482 ****************************************************************************************/
483 int
484 rf_GenericWakeupFunc(node, status)
485 RF_DagNode_t *node;
486 int status;
487 {
488 switch (node->status) {
489 case rf_bwd1:
490 node->status = rf_bwd2;
491 if (node->dagFuncData)
492 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
493 return (rf_DiskWriteFuncForThreads(node));
494 break;
495 case rf_fired:
496 if (status)
497 node->status = rf_bad;
498 else
499 node->status = rf_good;
500 break;
501 case rf_recover:
502 /* probably should never reach this case */
503 if (status)
504 node->status = rf_panic;
505 else
506 node->status = rf_undone;
507 break;
508 default:
509 RF_PANIC();
510 break;
511 }
512 if (node->dagFuncData)
513 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
514 return (rf_FinishNode(node, RF_INTR_CONTEXT));
515 }
516
517
518 /*****************************************************************************************
519 * there are three distinct types of xor nodes
520 * A "regular xor" is used in the fault-free case where the access spans a complete
521 * stripe unit. It assumes that the result buffer is one full stripe unit in size,
522 * and uses the stripe-unit-offset values that it computes from the PDAs to determine
523 * where within the stripe unit to XOR each argument buffer.
524 *
525 * A "simple xor" is used in the fault-free case where the access touches only a portion
526 * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
527 * buffers are of the same size and have the same stripe unit offset.
528 *
529 * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
530 * xor function except that it takes the failed PDA as an additional parameter, and
531 * uses it to determine what portions of the argument buffers need to be xor'd into
532 * the result buffer, and where in the result buffer they should go.
533 ****************************************************************************************/
534
535 /* xor the params together and store the result in the result field.
536 * assume the result field points to a buffer that is the size of one SU,
537 * and use the pda params to determine where within the buffer to XOR
538 * the input buffers.
539 */
540 int
541 rf_RegularXorFunc(node)
542 RF_DagNode_t *node;
543 {
544 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
545 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
546 RF_Etimer_t timer;
547 int i, retcode;
548 #if RF_BACKWARD > 0
549 RF_PhysDiskAddr_t *pda;
550 caddr_t undoBuf;
551 #endif
552
553 retcode = 0;
554 if (node->dagHdr->status == rf_enable) {
555 /* don't do the XOR if the input is the same as the output */
556 RF_ETIMER_START(timer);
557 for (i = 0; i < node->numParams - 1; i += 2)
558 if (node->params[i + 1].p != node->results[0]) {
559 #if RF_BACKWARD > 0
560 /* This section mimics undo logging for
561 * backward error recovery experiments b
562 * allocating and initializing a buffer XXX
563 * 512 byte sector size is hard coded! */
564 pda = node->params[i].p;
565 if (node->dagHdr->allocList == NULL)
566 rf_MakeAllocList(node->dagHdr->allocList);
567 RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
568 #endif /* RF_BACKWARD > 0 */
569 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
570 (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
571 }
572 RF_ETIMER_STOP(timer);
573 RF_ETIMER_EVAL(timer);
574 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
575 }
576 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
577 * explicitly since no
578 * I/O in this node */
579 }
580 /* xor the inputs into the result buffer, ignoring placement issues */
581 int
582 rf_SimpleXorFunc(node)
583 RF_DagNode_t *node;
584 {
585 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
586 int i, retcode = 0;
587 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
588 RF_Etimer_t timer;
589 #if RF_BACKWARD > 0
590 RF_PhysDiskAddr_t *pda;
591 caddr_t undoBuf;
592 #endif
593
594 if (node->dagHdr->status == rf_enable) {
595 RF_ETIMER_START(timer);
596 /* don't do the XOR if the input is the same as the output */
597 for (i = 0; i < node->numParams - 1; i += 2)
598 if (node->params[i + 1].p != node->results[0]) {
599 #if RF_BACKWARD > 0
600 /* This section mimics undo logging for
601 * backward error recovery experiments b
602 * allocating and initializing a buffer XXX
603 * 512 byte sector size is hard coded! */
604 pda = node->params[i].p;
605 if (node->dagHdr->allocList == NULL)
606 rf_MakeAllocList(node->dagHdr->allocList);
607 RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
608 #endif /* RF_BACKWARD > 0 */
609 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
610 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
611 (struct buf *) node->dagHdr->bp);
612 }
613 RF_ETIMER_STOP(timer);
614 RF_ETIMER_EVAL(timer);
615 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
616 }
617 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
618 * explicitly since no
619 * I/O in this node */
620 }
621 /* this xor is used by the degraded-mode dag functions to recover lost data.
622 * the second-to-last parameter is the PDA for the failed portion of the access.
623 * the code here looks at this PDA and assumes that the xor target buffer is
624 * equal in size to the number of sectors in the failed PDA. It then uses
625 * the other PDAs in the parameter list to determine where within the target
626 * buffer the corresponding data should be xored.
627 */
628 int
629 rf_RecoveryXorFunc(node)
630 RF_DagNode_t *node;
631 {
632 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
633 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
634 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
635 int i, retcode = 0;
636 RF_PhysDiskAddr_t *pda;
637 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
638 char *srcbuf, *destbuf;
639 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
640 RF_Etimer_t timer;
641 #if RF_BACKWARD > 0
642 caddr_t undoBuf;
643 #endif
644
645 if (node->dagHdr->status == rf_enable) {
646 RF_ETIMER_START(timer);
647 for (i = 0; i < node->numParams - 2; i += 2)
648 if (node->params[i + 1].p != node->results[0]) {
649 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
650 #if RF_BACKWARD > 0
651 /* This section mimics undo logging for
652 * backward error recovery experiments b
653 * allocating and initializing a buffer XXX
654 * 512 byte sector size is hard coded! */
655 if (node->dagHdr->allocList == NULL)
656 rf_MakeAllocList(node->dagHdr->allocList);
657 RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
658 #endif /* RF_BACKWARD > 0 */
659 srcbuf = (char *) node->params[i + 1].p;
660 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
661 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
662 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
663 }
664 RF_ETIMER_STOP(timer);
665 RF_ETIMER_EVAL(timer);
666 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
667 }
668 return (rf_GenericWakeupFunc(node, retcode));
669 }
670 /*****************************************************************************************
671 * The next three functions are utilities used by the above xor-execution functions.
672 ****************************************************************************************/
673
674
675 /*
676 * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
677 * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
678 * access described by pda is one SU in size (which by implication means it's SU-aligned),
679 * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
680 * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
681 */
682
683 int
684 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
685 RF_Raid_t *raidPtr;
686 RF_PhysDiskAddr_t *pda;
687 char *srcbuf;
688 char *targbuf;
689 void *bp;
690 {
691 char *targptr;
692 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
693 int SUOffset = pda->startSector % sectPerSU;
694 int length, retcode = 0;
695
696 RF_ASSERT(pda->numSector <= sectPerSU);
697
698 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
699 length = rf_RaidAddressToByte(raidPtr, pda->numSector);
700 retcode = rf_bxor(srcbuf, targptr, length, bp);
701 return (retcode);
702 }
703 /* it really should be the case that the buffer pointers (returned by malloc)
704 * are aligned to the natural word size of the machine, so this is the only
705 * case we optimize for. The length should always be a multiple of the sector
706 * size, so there should be no problem with leftover bytes at the end.
707 */
708 int
709 rf_bxor(src, dest, len, bp)
710 char *src;
711 char *dest;
712 int len;
713 void *bp;
714 {
715 unsigned mask = sizeof(long) - 1, retcode = 0;
716
717 if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
718 retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
719 } else {
720 RF_ASSERT(0);
721 }
722 return (retcode);
723 }
724 /* map a user buffer into kernel space, if necessary */
725 #define REMAP_VA(_bp,x,y) (y) = (x)
726
727 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
728 * We don't want to assume anything about which input buffers are in kernel/user
729 * space, nor about their alignment, so in each loop we compute the maximum number
730 * of bytes that we can xor without crossing any page boundaries, and do only this many
731 * bytes before the next remap.
732 */
733 int
734 rf_longword_bxor(src, dest, len, bp)
735 register unsigned long *src;
736 register unsigned long *dest;
737 int len; /* longwords */
738 void *bp;
739 {
740 register unsigned long *end = src + len;
741 register unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
742 register unsigned long *pg_src, *pg_dest; /* per-page source/dest
743 * pointers */
744 int longs_this_time;/* # longwords to xor in the current iteration */
745
746 REMAP_VA(bp, src, pg_src);
747 REMAP_VA(bp, dest, pg_dest);
748 if (!pg_src || !pg_dest)
749 return (EFAULT);
750
751 while (len >= 4) {
752 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
753 src += longs_this_time;
754 dest += longs_this_time;
755 len -= longs_this_time;
756 while (longs_this_time >= 4) {
757 d0 = pg_dest[0];
758 d1 = pg_dest[1];
759 d2 = pg_dest[2];
760 d3 = pg_dest[3];
761 s0 = pg_src[0];
762 s1 = pg_src[1];
763 s2 = pg_src[2];
764 s3 = pg_src[3];
765 pg_dest[0] = d0 ^ s0;
766 pg_dest[1] = d1 ^ s1;
767 pg_dest[2] = d2 ^ s2;
768 pg_dest[3] = d3 ^ s3;
769 pg_src += 4;
770 pg_dest += 4;
771 longs_this_time -= 4;
772 }
773 while (longs_this_time > 0) { /* cannot cross any page
774 * boundaries here */
775 *pg_dest++ ^= *pg_src++;
776 longs_this_time--;
777 }
778
779 /* either we're done, or we've reached a page boundary on one
780 * (or possibly both) of the pointers */
781 if (len) {
782 if (RF_PAGE_ALIGNED(src))
783 REMAP_VA(bp, src, pg_src);
784 if (RF_PAGE_ALIGNED(dest))
785 REMAP_VA(bp, dest, pg_dest);
786 if (!pg_src || !pg_dest)
787 return (EFAULT);
788 }
789 }
790 while (src < end) {
791 *pg_dest++ ^= *pg_src++;
792 src++;
793 dest++;
794 len--;
795 if (RF_PAGE_ALIGNED(src))
796 REMAP_VA(bp, src, pg_src);
797 if (RF_PAGE_ALIGNED(dest))
798 REMAP_VA(bp, dest, pg_dest);
799 }
800 RF_ASSERT(len == 0);
801 return (0);
802 }
803
804
805 /*
806 dst = a ^ b ^ c;
807 a may equal dst
808 see comment above longword_bxor
809 */
810 int
811 rf_longword_bxor3(dst, a, b, c, len, bp)
812 register unsigned long *dst;
813 register unsigned long *a;
814 register unsigned long *b;
815 register unsigned long *c;
816 int len; /* length in longwords */
817 void *bp;
818 {
819 unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
820 register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
821 * pointers */
822 int longs_this_time;/* # longs to xor in the current iteration */
823 char dst_is_a = 0;
824
825 REMAP_VA(bp, a, pg_a);
826 REMAP_VA(bp, b, pg_b);
827 REMAP_VA(bp, c, pg_c);
828 if (a == dst) {
829 pg_dst = pg_a;
830 dst_is_a = 1;
831 } else {
832 REMAP_VA(bp, dst, pg_dst);
833 }
834
835 /* align dest to cache line. Can't cross a pg boundary on dst here. */
836 while ((((unsigned long) pg_dst) & 0x1f)) {
837 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
838 dst++;
839 a++;
840 b++;
841 c++;
842 if (RF_PAGE_ALIGNED(a)) {
843 REMAP_VA(bp, a, pg_a);
844 if (!pg_a)
845 return (EFAULT);
846 }
847 if (RF_PAGE_ALIGNED(b)) {
848 REMAP_VA(bp, a, pg_b);
849 if (!pg_b)
850 return (EFAULT);
851 }
852 if (RF_PAGE_ALIGNED(c)) {
853 REMAP_VA(bp, a, pg_c);
854 if (!pg_c)
855 return (EFAULT);
856 }
857 len--;
858 }
859
860 while (len > 4) {
861 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
862 a += longs_this_time;
863 b += longs_this_time;
864 c += longs_this_time;
865 dst += longs_this_time;
866 len -= longs_this_time;
867 while (longs_this_time >= 4) {
868 a0 = pg_a[0];
869 longs_this_time -= 4;
870
871 a1 = pg_a[1];
872 a2 = pg_a[2];
873
874 a3 = pg_a[3];
875 pg_a += 4;
876
877 b0 = pg_b[0];
878 b1 = pg_b[1];
879
880 b2 = pg_b[2];
881 b3 = pg_b[3];
882 /* start dual issue */
883 a0 ^= b0;
884 b0 = pg_c[0];
885
886 pg_b += 4;
887 a1 ^= b1;
888
889 a2 ^= b2;
890 a3 ^= b3;
891
892 b1 = pg_c[1];
893 a0 ^= b0;
894
895 b2 = pg_c[2];
896 a1 ^= b1;
897
898 b3 = pg_c[3];
899 a2 ^= b2;
900
901 pg_dst[0] = a0;
902 a3 ^= b3;
903 pg_dst[1] = a1;
904 pg_c += 4;
905 pg_dst[2] = a2;
906 pg_dst[3] = a3;
907 pg_dst += 4;
908 }
909 while (longs_this_time > 0) { /* cannot cross any page
910 * boundaries here */
911 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
912 longs_this_time--;
913 }
914
915 if (len) {
916 if (RF_PAGE_ALIGNED(a)) {
917 REMAP_VA(bp, a, pg_a);
918 if (!pg_a)
919 return (EFAULT);
920 if (dst_is_a)
921 pg_dst = pg_a;
922 }
923 if (RF_PAGE_ALIGNED(b)) {
924 REMAP_VA(bp, b, pg_b);
925 if (!pg_b)
926 return (EFAULT);
927 }
928 if (RF_PAGE_ALIGNED(c)) {
929 REMAP_VA(bp, c, pg_c);
930 if (!pg_c)
931 return (EFAULT);
932 }
933 if (!dst_is_a)
934 if (RF_PAGE_ALIGNED(dst)) {
935 REMAP_VA(bp, dst, pg_dst);
936 if (!pg_dst)
937 return (EFAULT);
938 }
939 }
940 }
941 while (len) {
942 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
943 dst++;
944 a++;
945 b++;
946 c++;
947 if (RF_PAGE_ALIGNED(a)) {
948 REMAP_VA(bp, a, pg_a);
949 if (!pg_a)
950 return (EFAULT);
951 if (dst_is_a)
952 pg_dst = pg_a;
953 }
954 if (RF_PAGE_ALIGNED(b)) {
955 REMAP_VA(bp, b, pg_b);
956 if (!pg_b)
957 return (EFAULT);
958 }
959 if (RF_PAGE_ALIGNED(c)) {
960 REMAP_VA(bp, c, pg_c);
961 if (!pg_c)
962 return (EFAULT);
963 }
964 if (!dst_is_a)
965 if (RF_PAGE_ALIGNED(dst)) {
966 REMAP_VA(bp, dst, pg_dst);
967 if (!pg_dst)
968 return (EFAULT);
969 }
970 len--;
971 }
972 return (0);
973 }
974
975 int
976 rf_bxor3(dst, a, b, c, len, bp)
977 register unsigned char *dst;
978 register unsigned char *a;
979 register unsigned char *b;
980 register unsigned char *c;
981 unsigned long len;
982 void *bp;
983 {
984 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
985
986 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
987 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
988 }
989