Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.3
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.3 1999/02/05 00:06:08 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/ioctl.h>
     51 #include <sys/param.h>
     52 
     53 #include "rf_archs.h"
     54 #include "rf_raid.h"
     55 #include "rf_dag.h"
     56 #include "rf_layout.h"
     57 #include "rf_etimer.h"
     58 #include "rf_acctrace.h"
     59 #include "rf_diskqueue.h"
     60 #include "rf_dagfuncs.h"
     61 #include "rf_general.h"
     62 #include "rf_engine.h"
     63 #include "rf_dagutils.h"
     64 
     65 #include "rf_kintf.h"
     66 
     67 #if RF_INCLUDE_PARITYLOGGING > 0
     68 #include "rf_paritylog.h"
     69 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     70 
     71 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     72 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     73 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     74 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     79 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     80 
     81 /*****************************************************************************************
     82  * main (only) configuration routine for this module
     83  ****************************************************************************************/
     84 int
     85 rf_ConfigureDAGFuncs(listp)
     86 	RF_ShutdownList_t **listp;
     87 {
     88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     89 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     90 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     91 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     92 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     93 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     94 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     95 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     96 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     97 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     98 	return (0);
     99 }
    100 
    101 
    102 
    103 /*****************************************************************************************
    104  * the execution function associated with a terminate node
    105  ****************************************************************************************/
    106 int
    107 rf_TerminateFunc(node)
    108 	RF_DagNode_t *node;
    109 {
    110 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    111 	node->status = rf_good;
    112 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    113 }
    114 
    115 int
    116 rf_TerminateUndoFunc(node)
    117 	RF_DagNode_t *node;
    118 {
    119 	return (0);
    120 }
    121 
    122 
    123 /*****************************************************************************************
    124  * execution functions associated with a mirror node
    125  *
    126  * parameters:
    127  *
    128  * 0 - physical disk addres of data
    129  * 1 - buffer for holding read data
    130  * 2 - parity stripe ID
    131  * 3 - flags
    132  * 4 - physical disk address of mirror (parity)
    133  *
    134  ****************************************************************************************/
    135 
    136 int
    137 rf_DiskReadMirrorIdleFunc(node)
    138 	RF_DagNode_t *node;
    139 {
    140 	/* select the mirror copy with the shortest queue and fill in node
    141 	 * parameters with physical disk address */
    142 
    143 	rf_SelectMirrorDiskIdle(node);
    144 	return (rf_DiskReadFunc(node));
    145 }
    146 
    147 int
    148 rf_DiskReadMirrorPartitionFunc(node)
    149 	RF_DagNode_t *node;
    150 {
    151 	/* select the mirror copy with the shortest queue and fill in node
    152 	 * parameters with physical disk address */
    153 
    154 	rf_SelectMirrorDiskPartition(node);
    155 	return (rf_DiskReadFunc(node));
    156 }
    157 
    158 int
    159 rf_DiskReadMirrorUndoFunc(node)
    160 	RF_DagNode_t *node;
    161 {
    162 	return (0);
    163 }
    164 
    165 
    166 
    167 #if RF_INCLUDE_PARITYLOGGING > 0
    168 /*****************************************************************************************
    169  * the execution function associated with a parity log update node
    170  ****************************************************************************************/
    171 int
    172 rf_ParityLogUpdateFunc(node)
    173 	RF_DagNode_t *node;
    174 {
    175 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    176 	caddr_t buf = (caddr_t) node->params[1].p;
    177 	RF_ParityLogData_t *logData;
    178 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    179 	RF_Etimer_t timer;
    180 
    181 	if (node->dagHdr->status == rf_enable) {
    182 		RF_ETIMER_START(timer);
    183 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    184 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    185 		    node->wakeFunc, (void *) node,
    186 		    node->dagHdr->tracerec, timer);
    187 		if (logData)
    188 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    189 		else {
    190 			RF_ETIMER_STOP(timer);
    191 			RF_ETIMER_EVAL(timer);
    192 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    193 			(node->wakeFunc) (node, ENOMEM);
    194 		}
    195 	}
    196 	return (0);
    197 }
    198 
    199 
    200 /*****************************************************************************************
    201  * the execution function associated with a parity log overwrite node
    202  ****************************************************************************************/
    203 int
    204 rf_ParityLogOverwriteFunc(node)
    205 	RF_DagNode_t *node;
    206 {
    207 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    208 	caddr_t buf = (caddr_t) node->params[1].p;
    209 	RF_ParityLogData_t *logData;
    210 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    211 	RF_Etimer_t timer;
    212 
    213 	if (node->dagHdr->status == rf_enable) {
    214 		RF_ETIMER_START(timer);
    215 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    216 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    217 		if (logData)
    218 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    219 		else {
    220 			RF_ETIMER_STOP(timer);
    221 			RF_ETIMER_EVAL(timer);
    222 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    223 			(node->wakeFunc) (node, ENOMEM);
    224 		}
    225 	}
    226 	return (0);
    227 }
    228 #else				/* RF_INCLUDE_PARITYLOGGING > 0 */
    229 
    230 int
    231 rf_ParityLogUpdateFunc(node)
    232 	RF_DagNode_t *node;
    233 {
    234 	return (0);
    235 }
    236 int
    237 rf_ParityLogOverwriteFunc(node)
    238 	RF_DagNode_t *node;
    239 {
    240 	return (0);
    241 }
    242 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    243 
    244 int
    245 rf_ParityLogUpdateUndoFunc(node)
    246 	RF_DagNode_t *node;
    247 {
    248 	return (0);
    249 }
    250 
    251 int
    252 rf_ParityLogOverwriteUndoFunc(node)
    253 	RF_DagNode_t *node;
    254 {
    255 	return (0);
    256 }
    257 /*****************************************************************************************
    258  * the execution function associated with a NOP node
    259  ****************************************************************************************/
    260 int
    261 rf_NullNodeFunc(node)
    262 	RF_DagNode_t *node;
    263 {
    264 	node->status = rf_good;
    265 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    266 }
    267 
    268 int
    269 rf_NullNodeUndoFunc(node)
    270 	RF_DagNode_t *node;
    271 {
    272 	node->status = rf_undone;
    273 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    274 }
    275 
    276 
    277 /*****************************************************************************************
    278  * the execution function associated with a disk-read node
    279  ****************************************************************************************/
    280 int
    281 rf_DiskReadFuncForThreads(node)
    282 	RF_DagNode_t *node;
    283 {
    284 	RF_DiskQueueData_t *req;
    285 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    286 	caddr_t buf = (caddr_t) node->params[1].p;
    287 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    288 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    289 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    290 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    291 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    292 	RF_DiskQueueDataFlags_t flags = 0;
    293 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    294 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    295 	void   *b_proc = NULL;
    296 #if RF_BACKWARD > 0
    297 	caddr_t undoBuf;
    298 #endif
    299 
    300 	if (node->dagHdr->bp)
    301 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    302 
    303 	RF_ASSERT(!(lock && unlock));
    304 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    305 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    306 #if RF_BACKWARD > 0
    307 	/* allocate and zero the undo buffer. this is equivalent to copying
    308 	 * the original buffer's contents to the undo buffer prior to
    309 	 * performing the disk read. XXX hardcoded 512 bytes per sector! */
    310 	if (node->dagHdr->allocList == NULL)
    311 		rf_MakeAllocList(node->dagHdr->allocList);
    312 	RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    313 #endif				/* RF_BACKWARD > 0 */
    314 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    315 	    buf, parityStripeID, which_ru,
    316 	    (int (*) (void *, int)) node->wakeFunc,
    317 	    node, NULL, node->dagHdr->tracerec,
    318 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    319 	if (!req) {
    320 		(node->wakeFunc) (node, ENOMEM);
    321 	} else {
    322 		node->dagFuncData = (void *) req;
    323 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    324 	}
    325 	return (0);
    326 }
    327 
    328 
    329 /*****************************************************************************************
    330  * the execution function associated with a disk-write node
    331  ****************************************************************************************/
    332 int
    333 rf_DiskWriteFuncForThreads(node)
    334 	RF_DagNode_t *node;
    335 {
    336 	RF_DiskQueueData_t *req;
    337 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    338 	caddr_t buf = (caddr_t) node->params[1].p;
    339 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    340 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    341 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    342 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    343 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    344 	RF_DiskQueueDataFlags_t flags = 0;
    345 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    346 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    347 	void   *b_proc = NULL;
    348 #if RF_BACKWARD > 0
    349 	caddr_t undoBuf;
    350 #endif
    351 
    352 	if (node->dagHdr->bp)
    353 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    354 
    355 #if RF_BACKWARD > 0
    356 	/* This area is used only for backward error recovery experiments
    357 	 * First, schedule allocate a buffer and schedule a pre-read of the
    358 	 * disk After the pre-read, proceed with the normal disk write */
    359 	if (node->status == rf_bwd2) {
    360 		/* just finished undo logging, now perform real function */
    361 		node->status = rf_fired;
    362 		RF_ASSERT(!(lock && unlock));
    363 		flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    364 		flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    365 		req = rf_CreateDiskQueueData(iotype,
    366 		    pda->startSector, pda->numSector, buf, parityStripeID, which_ru,
    367 		    node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
    368 		    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    369 
    370 		if (!req) {
    371 			(node->wakeFunc) (node, ENOMEM);
    372 		} else {
    373 			node->dagFuncData = (void *) req;
    374 			rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    375 		}
    376 	} else {
    377 		/* node status should be rf_fired */
    378 		/* schedule a disk pre-read */
    379 		node->status = rf_bwd1;
    380 		RF_ASSERT(!(lock && unlock));
    381 		flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    382 		flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    383 		if (node->dagHdr->allocList == NULL)
    384 			rf_MakeAllocList(node->dagHdr->allocList);
    385 		RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    386 		req = rf_CreateDiskQueueData(RF_IO_TYPE_READ,
    387 		    pda->startSector, pda->numSector, undoBuf, parityStripeID, which_ru,
    388 		    node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
    389 		    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    390 
    391 		if (!req) {
    392 			(node->wakeFunc) (node, ENOMEM);
    393 		} else {
    394 			node->dagFuncData = (void *) req;
    395 			rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    396 		}
    397 	}
    398 	return (0);
    399 #endif				/* RF_BACKWARD > 0 */
    400 
    401 	/* normal processing (rollaway or forward recovery) begins here */
    402 	RF_ASSERT(!(lock && unlock));
    403 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    404 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    405 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    406 	    buf, parityStripeID, which_ru,
    407 	    (int (*) (void *, int)) node->wakeFunc,
    408 	    (void *) node, NULL,
    409 	    node->dagHdr->tracerec,
    410 	    (void *) (node->dagHdr->raidPtr),
    411 	    flags, b_proc);
    412 
    413 	if (!req) {
    414 		(node->wakeFunc) (node, ENOMEM);
    415 	} else {
    416 		node->dagFuncData = (void *) req;
    417 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    418 	}
    419 
    420 	return (0);
    421 }
    422 /*****************************************************************************************
    423  * the undo function for disk nodes
    424  * Note:  this is not a proper undo of a write node, only locks are released.
    425  *        old data is not restored to disk!
    426  ****************************************************************************************/
    427 int
    428 rf_DiskUndoFunc(node)
    429 	RF_DagNode_t *node;
    430 {
    431 	RF_DiskQueueData_t *req;
    432 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    433 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    434 
    435 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    436 	    0L, 0, NULL, 0L, 0,
    437 	    (int (*) (void *, int)) node->wakeFunc,
    438 	    (void *) node,
    439 	    NULL, node->dagHdr->tracerec,
    440 	    (void *) (node->dagHdr->raidPtr),
    441 	    RF_UNLOCK_DISK_QUEUE, NULL);
    442 	if (!req)
    443 		(node->wakeFunc) (node, ENOMEM);
    444 	else {
    445 		node->dagFuncData = (void *) req;
    446 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    447 	}
    448 
    449 	return (0);
    450 }
    451 /*****************************************************************************************
    452  * the execution function associated with an "unlock disk queue" node
    453  ****************************************************************************************/
    454 int
    455 rf_DiskUnlockFuncForThreads(node)
    456 	RF_DagNode_t *node;
    457 {
    458 	RF_DiskQueueData_t *req;
    459 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    460 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    461 
    462 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    463 	    0L, 0, NULL, 0L, 0,
    464 	    (int (*) (void *, int)) node->wakeFunc,
    465 	    (void *) node,
    466 	    NULL, node->dagHdr->tracerec,
    467 	    (void *) (node->dagHdr->raidPtr),
    468 	    RF_UNLOCK_DISK_QUEUE, NULL);
    469 	if (!req)
    470 		(node->wakeFunc) (node, ENOMEM);
    471 	else {
    472 		node->dagFuncData = (void *) req;
    473 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    474 	}
    475 
    476 	return (0);
    477 }
    478 /*****************************************************************************************
    479  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    480  * the routine is called to set the node status and inform the execution engine that
    481  * the node has fired.
    482  ****************************************************************************************/
    483 int
    484 rf_GenericWakeupFunc(node, status)
    485 	RF_DagNode_t *node;
    486 	int     status;
    487 {
    488 	switch (node->status) {
    489 	case rf_bwd1:
    490 		node->status = rf_bwd2;
    491 		if (node->dagFuncData)
    492 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    493 		return (rf_DiskWriteFuncForThreads(node));
    494 		break;
    495 	case rf_fired:
    496 		if (status)
    497 			node->status = rf_bad;
    498 		else
    499 			node->status = rf_good;
    500 		break;
    501 	case rf_recover:
    502 		/* probably should never reach this case */
    503 		if (status)
    504 			node->status = rf_panic;
    505 		else
    506 			node->status = rf_undone;
    507 		break;
    508 	default:
    509 		RF_PANIC();
    510 		break;
    511 	}
    512 	if (node->dagFuncData)
    513 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    514 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    515 }
    516 
    517 
    518 /*****************************************************************************************
    519  * there are three distinct types of xor nodes
    520  * A "regular xor" is used in the fault-free case where the access spans a complete
    521  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    522  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    523  * where within the stripe unit to XOR each argument buffer.
    524  *
    525  * A "simple xor" is used in the fault-free case where the access touches only a portion
    526  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    527  * buffers are of the same size and have the same stripe unit offset.
    528  *
    529  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    530  * xor function except that it takes the failed PDA as an additional parameter, and
    531  * uses it to determine what portions of the argument buffers need to be xor'd into
    532  * the result buffer, and where in the result buffer they should go.
    533  ****************************************************************************************/
    534 
    535 /* xor the params together and store the result in the result field.
    536  * assume the result field points to a buffer that is the size of one SU,
    537  * and use the pda params to determine where within the buffer to XOR
    538  * the input buffers.
    539  */
    540 int
    541 rf_RegularXorFunc(node)
    542 	RF_DagNode_t *node;
    543 {
    544 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    545 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    546 	RF_Etimer_t timer;
    547 	int     i, retcode;
    548 #if RF_BACKWARD > 0
    549 	RF_PhysDiskAddr_t *pda;
    550 	caddr_t undoBuf;
    551 #endif
    552 
    553 	retcode = 0;
    554 	if (node->dagHdr->status == rf_enable) {
    555 		/* don't do the XOR if the input is the same as the output */
    556 		RF_ETIMER_START(timer);
    557 		for (i = 0; i < node->numParams - 1; i += 2)
    558 			if (node->params[i + 1].p != node->results[0]) {
    559 #if RF_BACKWARD > 0
    560 				/* This section mimics undo logging for
    561 				 * backward error recovery experiments b
    562 				 * allocating and initializing a buffer XXX
    563 				 * 512 byte sector size is hard coded! */
    564 				pda = node->params[i].p;
    565 				if (node->dagHdr->allocList == NULL)
    566 					rf_MakeAllocList(node->dagHdr->allocList);
    567 				RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    568 #endif				/* RF_BACKWARD > 0 */
    569 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    570 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    571 			}
    572 		RF_ETIMER_STOP(timer);
    573 		RF_ETIMER_EVAL(timer);
    574 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    575 	}
    576 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    577 							 * explicitly since no
    578 							 * I/O in this node */
    579 }
    580 /* xor the inputs into the result buffer, ignoring placement issues */
    581 int
    582 rf_SimpleXorFunc(node)
    583 	RF_DagNode_t *node;
    584 {
    585 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    586 	int     i, retcode = 0;
    587 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    588 	RF_Etimer_t timer;
    589 #if RF_BACKWARD > 0
    590 	RF_PhysDiskAddr_t *pda;
    591 	caddr_t undoBuf;
    592 #endif
    593 
    594 	if (node->dagHdr->status == rf_enable) {
    595 		RF_ETIMER_START(timer);
    596 		/* don't do the XOR if the input is the same as the output */
    597 		for (i = 0; i < node->numParams - 1; i += 2)
    598 			if (node->params[i + 1].p != node->results[0]) {
    599 #if RF_BACKWARD > 0
    600 				/* This section mimics undo logging for
    601 				 * backward error recovery experiments b
    602 				 * allocating and initializing a buffer XXX
    603 				 * 512 byte sector size is hard coded! */
    604 				pda = node->params[i].p;
    605 				if (node->dagHdr->allocList == NULL)
    606 					rf_MakeAllocList(node->dagHdr->allocList);
    607 				RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    608 #endif				/* RF_BACKWARD > 0 */
    609 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    610 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    611 				    (struct buf *) node->dagHdr->bp);
    612 			}
    613 		RF_ETIMER_STOP(timer);
    614 		RF_ETIMER_EVAL(timer);
    615 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    616 	}
    617 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    618 							 * explicitly since no
    619 							 * I/O in this node */
    620 }
    621 /* this xor is used by the degraded-mode dag functions to recover lost data.
    622  * the second-to-last parameter is the PDA for the failed portion of the access.
    623  * the code here looks at this PDA and assumes that the xor target buffer is
    624  * equal in size to the number of sectors in the failed PDA.  It then uses
    625  * the other PDAs in the parameter list to determine where within the target
    626  * buffer the corresponding data should be xored.
    627  */
    628 int
    629 rf_RecoveryXorFunc(node)
    630 	RF_DagNode_t *node;
    631 {
    632 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    633 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    634 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    635 	int     i, retcode = 0;
    636 	RF_PhysDiskAddr_t *pda;
    637 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    638 	char   *srcbuf, *destbuf;
    639 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    640 	RF_Etimer_t timer;
    641 #if RF_BACKWARD > 0
    642 	caddr_t undoBuf;
    643 #endif
    644 
    645 	if (node->dagHdr->status == rf_enable) {
    646 		RF_ETIMER_START(timer);
    647 		for (i = 0; i < node->numParams - 2; i += 2)
    648 			if (node->params[i + 1].p != node->results[0]) {
    649 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    650 #if RF_BACKWARD > 0
    651 				/* This section mimics undo logging for
    652 				 * backward error recovery experiments b
    653 				 * allocating and initializing a buffer XXX
    654 				 * 512 byte sector size is hard coded! */
    655 				if (node->dagHdr->allocList == NULL)
    656 					rf_MakeAllocList(node->dagHdr->allocList);
    657 				RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    658 #endif				/* RF_BACKWARD > 0 */
    659 				srcbuf = (char *) node->params[i + 1].p;
    660 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    661 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    662 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    663 			}
    664 		RF_ETIMER_STOP(timer);
    665 		RF_ETIMER_EVAL(timer);
    666 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    667 	}
    668 	return (rf_GenericWakeupFunc(node, retcode));
    669 }
    670 /*****************************************************************************************
    671  * The next three functions are utilities used by the above xor-execution functions.
    672  ****************************************************************************************/
    673 
    674 
    675 /*
    676  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    677  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    678  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    679  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    680  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    681  */
    682 
    683 int
    684 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    685 	RF_Raid_t *raidPtr;
    686 	RF_PhysDiskAddr_t *pda;
    687 	char   *srcbuf;
    688 	char   *targbuf;
    689 	void   *bp;
    690 {
    691 	char   *targptr;
    692 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    693 	int     SUOffset = pda->startSector % sectPerSU;
    694 	int     length, retcode = 0;
    695 
    696 	RF_ASSERT(pda->numSector <= sectPerSU);
    697 
    698 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    699 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    700 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    701 	return (retcode);
    702 }
    703 /* it really should be the case that the buffer pointers (returned by malloc)
    704  * are aligned to the natural word size of the machine, so this is the only
    705  * case we optimize for.  The length should always be a multiple of the sector
    706  * size, so there should be no problem with leftover bytes at the end.
    707  */
    708 int
    709 rf_bxor(src, dest, len, bp)
    710 	char   *src;
    711 	char   *dest;
    712 	int     len;
    713 	void   *bp;
    714 {
    715 	unsigned mask = sizeof(long) - 1, retcode = 0;
    716 
    717 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
    718 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
    719 	} else {
    720 		RF_ASSERT(0);
    721 	}
    722 	return (retcode);
    723 }
    724 /* map a user buffer into kernel space, if necessary */
    725 #define REMAP_VA(_bp,x,y) (y) = (x)
    726 
    727 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    728  * We don't want to assume anything about which input buffers are in kernel/user
    729  * space, nor about their alignment, so in each loop we compute the maximum number
    730  * of bytes that we can xor without crossing any page boundaries, and do only this many
    731  * bytes before the next remap.
    732  */
    733 int
    734 rf_longword_bxor(src, dest, len, bp)
    735 	register unsigned long *src;
    736 	register unsigned long *dest;
    737 	int     len;		/* longwords */
    738 	void   *bp;
    739 {
    740 	register unsigned long *end = src + len;
    741 	register unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    742 	register unsigned long *pg_src, *pg_dest;	/* per-page source/dest
    743 							 * pointers */
    744 	int     longs_this_time;/* # longwords to xor in the current iteration */
    745 
    746 	REMAP_VA(bp, src, pg_src);
    747 	REMAP_VA(bp, dest, pg_dest);
    748 	if (!pg_src || !pg_dest)
    749 		return (EFAULT);
    750 
    751 	while (len >= 4) {
    752 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    753 		src += longs_this_time;
    754 		dest += longs_this_time;
    755 		len -= longs_this_time;
    756 		while (longs_this_time >= 4) {
    757 			d0 = pg_dest[0];
    758 			d1 = pg_dest[1];
    759 			d2 = pg_dest[2];
    760 			d3 = pg_dest[3];
    761 			s0 = pg_src[0];
    762 			s1 = pg_src[1];
    763 			s2 = pg_src[2];
    764 			s3 = pg_src[3];
    765 			pg_dest[0] = d0 ^ s0;
    766 			pg_dest[1] = d1 ^ s1;
    767 			pg_dest[2] = d2 ^ s2;
    768 			pg_dest[3] = d3 ^ s3;
    769 			pg_src += 4;
    770 			pg_dest += 4;
    771 			longs_this_time -= 4;
    772 		}
    773 		while (longs_this_time > 0) {	/* cannot cross any page
    774 						 * boundaries here */
    775 			*pg_dest++ ^= *pg_src++;
    776 			longs_this_time--;
    777 		}
    778 
    779 		/* either we're done, or we've reached a page boundary on one
    780 		 * (or possibly both) of the pointers */
    781 		if (len) {
    782 			if (RF_PAGE_ALIGNED(src))
    783 				REMAP_VA(bp, src, pg_src);
    784 			if (RF_PAGE_ALIGNED(dest))
    785 				REMAP_VA(bp, dest, pg_dest);
    786 			if (!pg_src || !pg_dest)
    787 				return (EFAULT);
    788 		}
    789 	}
    790 	while (src < end) {
    791 		*pg_dest++ ^= *pg_src++;
    792 		src++;
    793 		dest++;
    794 		len--;
    795 		if (RF_PAGE_ALIGNED(src))
    796 			REMAP_VA(bp, src, pg_src);
    797 		if (RF_PAGE_ALIGNED(dest))
    798 			REMAP_VA(bp, dest, pg_dest);
    799 	}
    800 	RF_ASSERT(len == 0);
    801 	return (0);
    802 }
    803 
    804 
    805 /*
    806    dst = a ^ b ^ c;
    807    a may equal dst
    808    see comment above longword_bxor
    809 */
    810 int
    811 rf_longword_bxor3(dst, a, b, c, len, bp)
    812 	register unsigned long *dst;
    813 	register unsigned long *a;
    814 	register unsigned long *b;
    815 	register unsigned long *c;
    816 	int     len;		/* length in longwords */
    817 	void   *bp;
    818 {
    819 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    820 	register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    821 								 * pointers */
    822 	int     longs_this_time;/* # longs to xor in the current iteration */
    823 	char    dst_is_a = 0;
    824 
    825 	REMAP_VA(bp, a, pg_a);
    826 	REMAP_VA(bp, b, pg_b);
    827 	REMAP_VA(bp, c, pg_c);
    828 	if (a == dst) {
    829 		pg_dst = pg_a;
    830 		dst_is_a = 1;
    831 	} else {
    832 		REMAP_VA(bp, dst, pg_dst);
    833 	}
    834 
    835 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    836 	while ((((unsigned long) pg_dst) & 0x1f)) {
    837 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    838 		dst++;
    839 		a++;
    840 		b++;
    841 		c++;
    842 		if (RF_PAGE_ALIGNED(a)) {
    843 			REMAP_VA(bp, a, pg_a);
    844 			if (!pg_a)
    845 				return (EFAULT);
    846 		}
    847 		if (RF_PAGE_ALIGNED(b)) {
    848 			REMAP_VA(bp, a, pg_b);
    849 			if (!pg_b)
    850 				return (EFAULT);
    851 		}
    852 		if (RF_PAGE_ALIGNED(c)) {
    853 			REMAP_VA(bp, a, pg_c);
    854 			if (!pg_c)
    855 				return (EFAULT);
    856 		}
    857 		len--;
    858 	}
    859 
    860 	while (len > 4) {
    861 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    862 		a += longs_this_time;
    863 		b += longs_this_time;
    864 		c += longs_this_time;
    865 		dst += longs_this_time;
    866 		len -= longs_this_time;
    867 		while (longs_this_time >= 4) {
    868 			a0 = pg_a[0];
    869 			longs_this_time -= 4;
    870 
    871 			a1 = pg_a[1];
    872 			a2 = pg_a[2];
    873 
    874 			a3 = pg_a[3];
    875 			pg_a += 4;
    876 
    877 			b0 = pg_b[0];
    878 			b1 = pg_b[1];
    879 
    880 			b2 = pg_b[2];
    881 			b3 = pg_b[3];
    882 			/* start dual issue */
    883 			a0 ^= b0;
    884 			b0 = pg_c[0];
    885 
    886 			pg_b += 4;
    887 			a1 ^= b1;
    888 
    889 			a2 ^= b2;
    890 			a3 ^= b3;
    891 
    892 			b1 = pg_c[1];
    893 			a0 ^= b0;
    894 
    895 			b2 = pg_c[2];
    896 			a1 ^= b1;
    897 
    898 			b3 = pg_c[3];
    899 			a2 ^= b2;
    900 
    901 			pg_dst[0] = a0;
    902 			a3 ^= b3;
    903 			pg_dst[1] = a1;
    904 			pg_c += 4;
    905 			pg_dst[2] = a2;
    906 			pg_dst[3] = a3;
    907 			pg_dst += 4;
    908 		}
    909 		while (longs_this_time > 0) {	/* cannot cross any page
    910 						 * boundaries here */
    911 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    912 			longs_this_time--;
    913 		}
    914 
    915 		if (len) {
    916 			if (RF_PAGE_ALIGNED(a)) {
    917 				REMAP_VA(bp, a, pg_a);
    918 				if (!pg_a)
    919 					return (EFAULT);
    920 				if (dst_is_a)
    921 					pg_dst = pg_a;
    922 			}
    923 			if (RF_PAGE_ALIGNED(b)) {
    924 				REMAP_VA(bp, b, pg_b);
    925 				if (!pg_b)
    926 					return (EFAULT);
    927 			}
    928 			if (RF_PAGE_ALIGNED(c)) {
    929 				REMAP_VA(bp, c, pg_c);
    930 				if (!pg_c)
    931 					return (EFAULT);
    932 			}
    933 			if (!dst_is_a)
    934 				if (RF_PAGE_ALIGNED(dst)) {
    935 					REMAP_VA(bp, dst, pg_dst);
    936 					if (!pg_dst)
    937 						return (EFAULT);
    938 				}
    939 		}
    940 	}
    941 	while (len) {
    942 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    943 		dst++;
    944 		a++;
    945 		b++;
    946 		c++;
    947 		if (RF_PAGE_ALIGNED(a)) {
    948 			REMAP_VA(bp, a, pg_a);
    949 			if (!pg_a)
    950 				return (EFAULT);
    951 			if (dst_is_a)
    952 				pg_dst = pg_a;
    953 		}
    954 		if (RF_PAGE_ALIGNED(b)) {
    955 			REMAP_VA(bp, b, pg_b);
    956 			if (!pg_b)
    957 				return (EFAULT);
    958 		}
    959 		if (RF_PAGE_ALIGNED(c)) {
    960 			REMAP_VA(bp, c, pg_c);
    961 			if (!pg_c)
    962 				return (EFAULT);
    963 		}
    964 		if (!dst_is_a)
    965 			if (RF_PAGE_ALIGNED(dst)) {
    966 				REMAP_VA(bp, dst, pg_dst);
    967 				if (!pg_dst)
    968 					return (EFAULT);
    969 			}
    970 		len--;
    971 	}
    972 	return (0);
    973 }
    974 
    975 int
    976 rf_bxor3(dst, a, b, c, len, bp)
    977 	register unsigned char *dst;
    978 	register unsigned char *a;
    979 	register unsigned char *b;
    980 	register unsigned char *c;
    981 	unsigned long len;
    982 	void   *bp;
    983 {
    984 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    985 
    986 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    987 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    988 }
    989