rf_dagfuncs.c revision 1.32 1 /* $NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 * get set to "good" or "bad", and "FinishNode" to be called. In the
35 * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 * the node execution function can do these two things directly. In
37 * the case of nodes that have to wait for some event (a disk read to
38 * complete, a lock to be released, etc) to occur before they can
39 * complete, this is typically achieved by having whatever module
40 * is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 * and NOP out their operations if the status is not "enable". However,
43 * execution functions that release resources must be sure to release
44 * them even when they NOP out the function that would use them.
45 * Functions that acquire resources should go ahead and acquire them
46 * even when they NOP, so that a downstream release node will not have
47 * to check to find out whether or not the acquire was suppressed.
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $");
52
53 #include <sys/param.h>
54 #include <sys/ioctl.h>
55
56 #include "rf_archs.h"
57 #include "rf_raid.h"
58 #include "rf_dag.h"
59 #include "rf_layout.h"
60 #include "rf_etimer.h"
61 #include "rf_acctrace.h"
62 #include "rf_diskqueue.h"
63 #include "rf_dagfuncs.h"
64 #include "rf_general.h"
65 #include "rf_engine.h"
66 #include "rf_dagutils.h"
67
68 #include "rf_kintf.h"
69
70 #if RF_INCLUDE_PARITYLOGGING > 0
71 #include "rf_paritylog.h"
72 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
73
74 void (*rf_DiskReadFunc) (RF_DagNode_t *);
75 void (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 void (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 void (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 void (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
79 void (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
80 void (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
81
82 /*****************************************************************************
83 * main (only) configuration routine for this module
84 ****************************************************************************/
85 int
86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
87 {
88 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
89 ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
90 rf_DiskReadFunc = rf_DiskReadFuncForThreads;
91 rf_DiskReadUndoFunc = rf_DiskUndoFunc;
92 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
93 rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
94 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
95 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
96 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
97 return (0);
98 }
99
100
101
102 /*****************************************************************************
103 * the execution function associated with a terminate node
104 ****************************************************************************/
105 void
106 rf_TerminateFunc(RF_DagNode_t *node)
107 {
108 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
109 node->status = rf_good;
110 rf_FinishNode(node, RF_THREAD_CONTEXT);
111 }
112
113 void
114 rf_TerminateUndoFunc(RF_DagNode_t *node)
115 {
116 }
117
118
119 /*****************************************************************************
120 * execution functions associated with a mirror node
121 *
122 * parameters:
123 *
124 * 0 - physical disk addres of data
125 * 1 - buffer for holding read data
126 * 2 - parity stripe ID
127 * 3 - flags
128 * 4 - physical disk address of mirror (parity)
129 *
130 ****************************************************************************/
131
132 void
133 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
134 {
135 /* select the mirror copy with the shortest queue and fill in node
136 * parameters with physical disk address */
137
138 rf_SelectMirrorDiskIdle(node);
139 rf_DiskReadFunc(node);
140 }
141
142 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
143 void
144 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
145 {
146 /* select the mirror copy with the shortest queue and fill in node
147 * parameters with physical disk address */
148
149 rf_SelectMirrorDiskPartition(node);
150 rf_DiskReadFunc(node);
151 }
152 #endif
153
154 void
155 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
156 {
157 }
158
159
160
161 #if RF_INCLUDE_PARITYLOGGING > 0
162 /*****************************************************************************
163 * the execution function associated with a parity log update node
164 ****************************************************************************/
165 void
166 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
167 {
168 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
169 void *bf = (void *) node->params[1].p;
170 RF_ParityLogData_t *logData;
171 #if RF_ACC_TRACE > 0
172 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
173 RF_Etimer_t timer;
174 #endif
175
176 if (node->dagHdr->status == rf_enable) {
177 #if RF_ACC_TRACE > 0
178 RF_ETIMER_START(timer);
179 #endif
180 logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
181 (RF_Raid_t *) (node->dagHdr->raidPtr),
182 node->wakeFunc, node,
183 node->dagHdr->tracerec, timer);
184 if (logData)
185 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
186 else {
187 #if RF_ACC_TRACE > 0
188 RF_ETIMER_STOP(timer);
189 RF_ETIMER_EVAL(timer);
190 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
191 #endif
192 (node->wakeFunc) (node, ENOMEM);
193 }
194 }
195 }
196
197
198 /*****************************************************************************
199 * the execution function associated with a parity log overwrite node
200 ****************************************************************************/
201 void
202 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
203 {
204 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
205 void *bf = (void *) node->params[1].p;
206 RF_ParityLogData_t *logData;
207 #if RF_ACC_TRACE > 0
208 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
209 RF_Etimer_t timer;
210 #endif
211
212 if (node->dagHdr->status == rf_enable) {
213 #if RF_ACC_TRACE > 0
214 RF_ETIMER_START(timer);
215 #endif
216 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
217 (RF_Raid_t *) (node->dagHdr->raidPtr),
218 node->wakeFunc, node, node->dagHdr->tracerec, timer);
219 if (logData)
220 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
221 else {
222 #if RF_ACC_TRACE > 0
223 RF_ETIMER_STOP(timer);
224 RF_ETIMER_EVAL(timer);
225 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226 #endif
227 (node->wakeFunc) (node, ENOMEM);
228 }
229 }
230 }
231
232 void
233 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
234 {
235 }
236
237 void
238 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
239 {
240 }
241 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
242
243 /*****************************************************************************
244 * the execution function associated with a NOP node
245 ****************************************************************************/
246 void
247 rf_NullNodeFunc(RF_DagNode_t *node)
248 {
249 node->status = rf_good;
250 rf_FinishNode(node, RF_THREAD_CONTEXT);
251 }
252
253 void
254 rf_NullNodeUndoFunc(RF_DagNode_t *node)
255 {
256 node->status = rf_undone;
257 rf_FinishNode(node, RF_THREAD_CONTEXT);
258 }
259
260
261 /*****************************************************************************
262 * the execution function associated with a disk-read node
263 ****************************************************************************/
264 void
265 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
266 {
267 RF_DiskQueueData_t *req;
268 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
269 void *bf = (void *) node->params[1].p;
270 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
271 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
272 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
273 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
274 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
275
276 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
277 bf, parityStripeID, which_ru, node->wakeFunc, node,
278 #if RF_ACC_TRACE > 0
279 node->dagHdr->tracerec,
280 #else
281 NULL,
282 #endif
283 (void *) (node->dagHdr->raidPtr), 0, node->dagHdr->bp, PR_NOWAIT);
284 if (!req) {
285 (node->wakeFunc) (node, ENOMEM);
286 } else {
287 node->dagFuncData = (void *) req;
288 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
289 }
290 }
291
292
293 /*****************************************************************************
294 * the execution function associated with a disk-write node
295 ****************************************************************************/
296 void
297 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
298 {
299 RF_DiskQueueData_t *req;
300 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
301 void *bf = (void *) node->params[1].p;
302 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
303 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
304 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
305 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
306 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
307
308 /* normal processing (rollaway or forward recovery) begins here */
309 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
310 bf, parityStripeID, which_ru, node->wakeFunc, node,
311 #if RF_ACC_TRACE > 0
312 node->dagHdr->tracerec,
313 #else
314 NULL,
315 #endif
316 (void *) (node->dagHdr->raidPtr),
317 0, node->dagHdr->bp, PR_NOWAIT);
318
319 if (!req) {
320 (node->wakeFunc) (node, ENOMEM);
321 } else {
322 node->dagFuncData = (void *) req;
323 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
324 }
325 }
326 /*****************************************************************************
327 * the undo function for disk nodes
328 * Note: this is not a proper undo of a write node, only locks are released.
329 * old data is not restored to disk!
330 ****************************************************************************/
331 void
332 rf_DiskUndoFunc(RF_DagNode_t *node)
333 {
334 RF_DiskQueueData_t *req;
335 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
336 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
337
338 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
339 0L, 0, NULL, 0L, 0, node->wakeFunc, node,
340 #if RF_ACC_TRACE > 0
341 node->dagHdr->tracerec,
342 #else
343 NULL,
344 #endif
345 (void *) (node->dagHdr->raidPtr),
346 0, NULL, PR_NOWAIT);
347 if (!req)
348 (node->wakeFunc) (node, ENOMEM);
349 else {
350 node->dagFuncData = (void *) req;
351 rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
352 }
353 }
354
355 /*****************************************************************************
356 * Callback routine for DiskRead and DiskWrite nodes. When the disk
357 * op completes, the routine is called to set the node status and
358 * inform the execution engine that the node has fired.
359 ****************************************************************************/
360 void
361 rf_GenericWakeupFunc(void *v, int status)
362 {
363 RF_DagNode_t *node = v;
364
365 switch (node->status) {
366 case rf_fired:
367 if (status)
368 node->status = rf_bad;
369 else
370 node->status = rf_good;
371 break;
372 case rf_recover:
373 /* probably should never reach this case */
374 if (status)
375 node->status = rf_panic;
376 else
377 node->status = rf_undone;
378 break;
379 default:
380 printf("rf_GenericWakeupFunc:");
381 printf("node->status is %d,", node->status);
382 printf("status is %d \n", status);
383 RF_PANIC();
384 break;
385 }
386 if (node->dagFuncData)
387 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
388 rf_FinishNode(node, RF_INTR_CONTEXT);
389 }
390
391
392 /*****************************************************************************
393 * there are three distinct types of xor nodes:
394
395 * A "regular xor" is used in the fault-free case where the access
396 * spans a complete stripe unit. It assumes that the result buffer is
397 * one full stripe unit in size, and uses the stripe-unit-offset
398 * values that it computes from the PDAs to determine where within the
399 * stripe unit to XOR each argument buffer.
400 *
401 * A "simple xor" is used in the fault-free case where the access
402 * touches only a portion of one (or two, in some cases) stripe
403 * unit(s). It assumes that all the argument buffers are of the same
404 * size and have the same stripe unit offset.
405 *
406 * A "recovery xor" is used in the degraded-mode case. It's similar
407 * to the regular xor function except that it takes the failed PDA as
408 * an additional parameter, and uses it to determine what portions of
409 * the argument buffers need to be xor'd into the result buffer, and
410 * where in the result buffer they should go.
411 ****************************************************************************/
412
413 /* xor the params together and store the result in the result field.
414 * assume the result field points to a buffer that is the size of one
415 * SU, and use the pda params to determine where within the buffer to
416 * XOR the input buffers. */
417 void
418 rf_RegularXorFunc(RF_DagNode_t *node)
419 {
420 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
421 #if RF_ACC_TRACE > 0
422 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
423 RF_Etimer_t timer;
424 #endif
425 int i, retcode;
426
427 retcode = 0;
428 if (node->dagHdr->status == rf_enable) {
429 /* don't do the XOR if the input is the same as the output */
430 #if RF_ACC_TRACE > 0
431 RF_ETIMER_START(timer);
432 #endif
433 for (i = 0; i < node->numParams - 1; i += 2)
434 if (node->params[i + 1].p != node->results[0]) {
435 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
436 (char *) node->params[i + 1].p, (char *) node->results[0]);
437 }
438 #if RF_ACC_TRACE > 0
439 RF_ETIMER_STOP(timer);
440 RF_ETIMER_EVAL(timer);
441 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
442 #endif
443 }
444 rf_GenericWakeupFunc(node, retcode); /* call wake func
445 * explicitly since no
446 * I/O in this node */
447 }
448 /* xor the inputs into the result buffer, ignoring placement issues */
449 void
450 rf_SimpleXorFunc(RF_DagNode_t *node)
451 {
452 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
453 int i, retcode = 0;
454 #if RF_ACC_TRACE > 0
455 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
456 RF_Etimer_t timer;
457 #endif
458
459 if (node->dagHdr->status == rf_enable) {
460 #if RF_ACC_TRACE > 0
461 RF_ETIMER_START(timer);
462 #endif
463 /* don't do the XOR if the input is the same as the output */
464 for (i = 0; i < node->numParams - 1; i += 2)
465 if (node->params[i + 1].p != node->results[0]) {
466 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
467 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
468 }
469 #if RF_ACC_TRACE > 0
470 RF_ETIMER_STOP(timer);
471 RF_ETIMER_EVAL(timer);
472 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
473 #endif
474 }
475 rf_GenericWakeupFunc(node, retcode); /* call wake func
476 * explicitly since no
477 * I/O in this node */
478 }
479 /* this xor is used by the degraded-mode dag functions to recover lost
480 * data. the second-to-last parameter is the PDA for the failed
481 * portion of the access. the code here looks at this PDA and assumes
482 * that the xor target buffer is equal in size to the number of
483 * sectors in the failed PDA. It then uses the other PDAs in the
484 * parameter list to determine where within the target buffer the
485 * corresponding data should be xored. */
486 void
487 rf_RecoveryXorFunc(RF_DagNode_t *node)
488 {
489 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
490 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
491 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
492 int i, retcode = 0;
493 RF_PhysDiskAddr_t *pda;
494 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
495 char *srcbuf, *destbuf;
496 #if RF_ACC_TRACE > 0
497 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
498 RF_Etimer_t timer;
499 #endif
500
501 if (node->dagHdr->status == rf_enable) {
502 #if RF_ACC_TRACE > 0
503 RF_ETIMER_START(timer);
504 #endif
505 for (i = 0; i < node->numParams - 2; i += 2)
506 if (node->params[i + 1].p != node->results[0]) {
507 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
508 srcbuf = (char *) node->params[i + 1].p;
509 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
510 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
511 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
512 }
513 #if RF_ACC_TRACE > 0
514 RF_ETIMER_STOP(timer);
515 RF_ETIMER_EVAL(timer);
516 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
517 #endif
518 }
519 rf_GenericWakeupFunc(node, retcode);
520 }
521 /*****************************************************************************
522 * The next three functions are utilities used by the above
523 * xor-execution functions.
524 ****************************************************************************/
525
526
527 /*
528 * this is just a glorified buffer xor. targbuf points to a buffer
529 * that is one full stripe unit in size. srcbuf points to a buffer
530 * that may be less than 1 SU, but never more. When the access
531 * described by pda is one SU in size (which by implication means it's
532 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
533 * When the access is less than one SU in size the XOR occurs on only
534 * the portion of targbuf identified in the pda. */
535
536 int
537 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
538 char *srcbuf, char *targbuf)
539 {
540 char *targptr;
541 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
542 int SUOffset = pda->startSector % sectPerSU;
543 int length, retcode = 0;
544
545 RF_ASSERT(pda->numSector <= sectPerSU);
546
547 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
548 length = rf_RaidAddressToByte(raidPtr, pda->numSector);
549 retcode = rf_bxor(srcbuf, targptr, length);
550 return (retcode);
551 }
552 /* it really should be the case that the buffer pointers (returned by
553 * malloc) are aligned to the natural word size of the machine, so
554 * this is the only case we optimize for. The length should always be
555 * a multiple of the sector size, so there should be no problem with
556 * leftover bytes at the end. */
557 int
558 rf_bxor(char *src, char *dest, int len)
559 {
560 unsigned mask = sizeof(long) - 1, retcode = 0;
561
562 if (!(((unsigned long) src) & mask) &&
563 !(((unsigned long) dest) & mask) && !(len & mask)) {
564 retcode = rf_longword_bxor((unsigned long *) src,
565 (unsigned long *) dest,
566 len >> RF_LONGSHIFT);
567 } else {
568 RF_ASSERT(0);
569 }
570 return (retcode);
571 }
572
573 /* When XORing in kernel mode, we need to map each user page to kernel
574 * space before we can access it. We don't want to assume anything
575 * about which input buffers are in kernel/user space, nor about their
576 * alignment, so in each loop we compute the maximum number of bytes
577 * that we can xor without crossing any page boundaries, and do only
578 * this many bytes before the next remap.
579 *
580 * len - is in longwords
581 */
582 int
583 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
584 {
585 unsigned long *end = src + len;
586 unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
587 unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */
588 int longs_this_time;/* # longwords to xor in the current iteration */
589
590 pg_src = src;
591 pg_dest = dest;
592 if (!pg_src || !pg_dest)
593 return (EFAULT);
594
595 while (len >= 4) {
596 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
597 src += longs_this_time;
598 dest += longs_this_time;
599 len -= longs_this_time;
600 while (longs_this_time >= 4) {
601 d0 = pg_dest[0];
602 d1 = pg_dest[1];
603 d2 = pg_dest[2];
604 d3 = pg_dest[3];
605 s0 = pg_src[0];
606 s1 = pg_src[1];
607 s2 = pg_src[2];
608 s3 = pg_src[3];
609 pg_dest[0] = d0 ^ s0;
610 pg_dest[1] = d1 ^ s1;
611 pg_dest[2] = d2 ^ s2;
612 pg_dest[3] = d3 ^ s3;
613 pg_src += 4;
614 pg_dest += 4;
615 longs_this_time -= 4;
616 }
617 while (longs_this_time > 0) { /* cannot cross any page
618 * boundaries here */
619 *pg_dest++ ^= *pg_src++;
620 longs_this_time--;
621 }
622
623 /* either we're done, or we've reached a page boundary on one
624 * (or possibly both) of the pointers */
625 if (len) {
626 if (RF_PAGE_ALIGNED(src))
627 pg_src = src;
628 if (RF_PAGE_ALIGNED(dest))
629 pg_dest = dest;
630 if (!pg_src || !pg_dest)
631 return (EFAULT);
632 }
633 }
634 while (src < end) {
635 *pg_dest++ ^= *pg_src++;
636 src++;
637 dest++;
638 len--;
639 if (RF_PAGE_ALIGNED(src))
640 pg_src = src;
641 if (RF_PAGE_ALIGNED(dest))
642 pg_dest = dest;
643 }
644 RF_ASSERT(len == 0);
645 return (0);
646 }
647
648 #if 0
649 /*
650 dst = a ^ b ^ c;
651 a may equal dst
652 see comment above longword_bxor
653 len is length in longwords
654 */
655 int
656 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
657 unsigned long *c, int len, void *bp)
658 {
659 unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
660 unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
661 * pointers */
662 int longs_this_time;/* # longs to xor in the current iteration */
663 char dst_is_a = 0;
664
665 pg_a = a;
666 pg_b = b;
667 pg_c = c;
668 if (a == dst) {
669 pg_dst = pg_a;
670 dst_is_a = 1;
671 } else {
672 pg_dst = dst;
673 }
674
675 /* align dest to cache line. Can't cross a pg boundary on dst here. */
676 while ((((unsigned long) pg_dst) & 0x1f)) {
677 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
678 dst++;
679 a++;
680 b++;
681 c++;
682 if (RF_PAGE_ALIGNED(a)) {
683 pg_a = a;
684 if (!pg_a)
685 return (EFAULT);
686 }
687 if (RF_PAGE_ALIGNED(b)) {
688 pg_b = a;
689 if (!pg_b)
690 return (EFAULT);
691 }
692 if (RF_PAGE_ALIGNED(c)) {
693 pg_c = a;
694 if (!pg_c)
695 return (EFAULT);
696 }
697 len--;
698 }
699
700 while (len > 4) {
701 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
702 a += longs_this_time;
703 b += longs_this_time;
704 c += longs_this_time;
705 dst += longs_this_time;
706 len -= longs_this_time;
707 while (longs_this_time >= 4) {
708 a0 = pg_a[0];
709 longs_this_time -= 4;
710
711 a1 = pg_a[1];
712 a2 = pg_a[2];
713
714 a3 = pg_a[3];
715 pg_a += 4;
716
717 b0 = pg_b[0];
718 b1 = pg_b[1];
719
720 b2 = pg_b[2];
721 b3 = pg_b[3];
722 /* start dual issue */
723 a0 ^= b0;
724 b0 = pg_c[0];
725
726 pg_b += 4;
727 a1 ^= b1;
728
729 a2 ^= b2;
730 a3 ^= b3;
731
732 b1 = pg_c[1];
733 a0 ^= b0;
734
735 b2 = pg_c[2];
736 a1 ^= b1;
737
738 b3 = pg_c[3];
739 a2 ^= b2;
740
741 pg_dst[0] = a0;
742 a3 ^= b3;
743 pg_dst[1] = a1;
744 pg_c += 4;
745 pg_dst[2] = a2;
746 pg_dst[3] = a3;
747 pg_dst += 4;
748 }
749 while (longs_this_time > 0) { /* cannot cross any page
750 * boundaries here */
751 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
752 longs_this_time--;
753 }
754
755 if (len) {
756 if (RF_PAGE_ALIGNED(a)) {
757 pg_a = a;
758 if (!pg_a)
759 return (EFAULT);
760 if (dst_is_a)
761 pg_dst = pg_a;
762 }
763 if (RF_PAGE_ALIGNED(b)) {
764 pg_b = b;
765 if (!pg_b)
766 return (EFAULT);
767 }
768 if (RF_PAGE_ALIGNED(c)) {
769 pg_c = c;
770 if (!pg_c)
771 return (EFAULT);
772 }
773 if (!dst_is_a)
774 if (RF_PAGE_ALIGNED(dst)) {
775 pg_dst = dst;
776 if (!pg_dst)
777 return (EFAULT);
778 }
779 }
780 }
781 while (len) {
782 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
783 dst++;
784 a++;
785 b++;
786 c++;
787 if (RF_PAGE_ALIGNED(a)) {
788 pg_a = a;
789 if (!pg_a)
790 return (EFAULT);
791 if (dst_is_a)
792 pg_dst = pg_a;
793 }
794 if (RF_PAGE_ALIGNED(b)) {
795 pg_b = b;
796 if (!pg_b)
797 return (EFAULT);
798 }
799 if (RF_PAGE_ALIGNED(c)) {
800 pg_c = c;
801 if (!pg_c)
802 return (EFAULT);
803 }
804 if (!dst_is_a)
805 if (RF_PAGE_ALIGNED(dst)) {
806 pg_dst = dst;
807 if (!pg_dst)
808 return (EFAULT);
809 }
810 len--;
811 }
812 return (0);
813 }
814
815 int
816 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
817 unsigned char *c, unsigned long len, void *bp)
818 {
819 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
820
821 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
822 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
823 }
824 #endif
825