Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.32
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 void     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 void     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 void     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 void     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 void     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     79 void     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     80 void     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     81 
     82 /*****************************************************************************
     83  * main (only) configuration routine for this module
     84  ****************************************************************************/
     85 int
     86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     87 {
     88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     89 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     90 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     91 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     92 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     93 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     94 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97 	return (0);
     98 }
     99 
    100 
    101 
    102 /*****************************************************************************
    103  * the execution function associated with a terminate node
    104  ****************************************************************************/
    105 void
    106 rf_TerminateFunc(RF_DagNode_t *node)
    107 {
    108 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109 	node->status = rf_good;
    110 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    111 }
    112 
    113 void
    114 rf_TerminateUndoFunc(RF_DagNode_t *node)
    115 {
    116 }
    117 
    118 
    119 /*****************************************************************************
    120  * execution functions associated with a mirror node
    121  *
    122  * parameters:
    123  *
    124  * 0 - physical disk addres of data
    125  * 1 - buffer for holding read data
    126  * 2 - parity stripe ID
    127  * 3 - flags
    128  * 4 - physical disk address of mirror (parity)
    129  *
    130  ****************************************************************************/
    131 
    132 void
    133 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    134 {
    135 	/* select the mirror copy with the shortest queue and fill in node
    136 	 * parameters with physical disk address */
    137 
    138 	rf_SelectMirrorDiskIdle(node);
    139 	rf_DiskReadFunc(node);
    140 }
    141 
    142 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    143 void
    144 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    145 {
    146 	/* select the mirror copy with the shortest queue and fill in node
    147 	 * parameters with physical disk address */
    148 
    149 	rf_SelectMirrorDiskPartition(node);
    150 	rf_DiskReadFunc(node);
    151 }
    152 #endif
    153 
    154 void
    155 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    156 {
    157 }
    158 
    159 
    160 
    161 #if RF_INCLUDE_PARITYLOGGING > 0
    162 /*****************************************************************************
    163  * the execution function associated with a parity log update node
    164  ****************************************************************************/
    165 void
    166 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    167 {
    168 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    169 	void *bf = (void *) node->params[1].p;
    170 	RF_ParityLogData_t *logData;
    171 #if RF_ACC_TRACE > 0
    172 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    173 	RF_Etimer_t timer;
    174 #endif
    175 
    176 	if (node->dagHdr->status == rf_enable) {
    177 #if RF_ACC_TRACE > 0
    178 		RF_ETIMER_START(timer);
    179 #endif
    180 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
    181 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    182 		    node->wakeFunc, node,
    183 		    node->dagHdr->tracerec, timer);
    184 		if (logData)
    185 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    186 		else {
    187 #if RF_ACC_TRACE > 0
    188 			RF_ETIMER_STOP(timer);
    189 			RF_ETIMER_EVAL(timer);
    190 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    191 #endif
    192 			(node->wakeFunc) (node, ENOMEM);
    193 		}
    194 	}
    195 }
    196 
    197 
    198 /*****************************************************************************
    199  * the execution function associated with a parity log overwrite node
    200  ****************************************************************************/
    201 void
    202 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    203 {
    204 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    205 	void *bf = (void *) node->params[1].p;
    206 	RF_ParityLogData_t *logData;
    207 #if RF_ACC_TRACE > 0
    208 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    209 	RF_Etimer_t timer;
    210 #endif
    211 
    212 	if (node->dagHdr->status == rf_enable) {
    213 #if RF_ACC_TRACE > 0
    214 		RF_ETIMER_START(timer);
    215 #endif
    216 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
    217 (RF_Raid_t *) (node->dagHdr->raidPtr),
    218 		    node->wakeFunc, node, node->dagHdr->tracerec, timer);
    219 		if (logData)
    220 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    221 		else {
    222 #if RF_ACC_TRACE > 0
    223 			RF_ETIMER_STOP(timer);
    224 			RF_ETIMER_EVAL(timer);
    225 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    226 #endif
    227 			(node->wakeFunc) (node, ENOMEM);
    228 		}
    229 	}
    230 }
    231 
    232 void
    233 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    234 {
    235 }
    236 
    237 void
    238 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    239 {
    240 }
    241 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    242 
    243 /*****************************************************************************
    244  * the execution function associated with a NOP node
    245  ****************************************************************************/
    246 void
    247 rf_NullNodeFunc(RF_DagNode_t *node)
    248 {
    249 	node->status = rf_good;
    250 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    251 }
    252 
    253 void
    254 rf_NullNodeUndoFunc(RF_DagNode_t *node)
    255 {
    256 	node->status = rf_undone;
    257 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    258 }
    259 
    260 
    261 /*****************************************************************************
    262  * the execution function associated with a disk-read node
    263  ****************************************************************************/
    264 void
    265 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    266 {
    267 	RF_DiskQueueData_t *req;
    268 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    269 	void *bf = (void *) node->params[1].p;
    270 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    271 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    272 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    273 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    274 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    275 
    276 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    277 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    278 #if RF_ACC_TRACE > 0
    279 	     node->dagHdr->tracerec,
    280 #else
    281              NULL,
    282 #endif
    283 	    (void *) (node->dagHdr->raidPtr), 0, node->dagHdr->bp, PR_NOWAIT);
    284 	if (!req) {
    285 		(node->wakeFunc) (node, ENOMEM);
    286 	} else {
    287 		node->dagFuncData = (void *) req;
    288 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    289 	}
    290 }
    291 
    292 
    293 /*****************************************************************************
    294  * the execution function associated with a disk-write node
    295  ****************************************************************************/
    296 void
    297 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    298 {
    299 	RF_DiskQueueData_t *req;
    300 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    301 	void *bf = (void *) node->params[1].p;
    302 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    303 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    304 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    305 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    306 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    307 
    308 	/* normal processing (rollaway or forward recovery) begins here */
    309 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    310 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    311 #if RF_ACC_TRACE > 0
    312 	    node->dagHdr->tracerec,
    313 #else
    314 	    NULL,
    315 #endif
    316 	    (void *) (node->dagHdr->raidPtr),
    317 	    0, node->dagHdr->bp, PR_NOWAIT);
    318 
    319 	if (!req) {
    320 		(node->wakeFunc) (node, ENOMEM);
    321 	} else {
    322 		node->dagFuncData = (void *) req;
    323 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    324 	}
    325 }
    326 /*****************************************************************************
    327  * the undo function for disk nodes
    328  * Note:  this is not a proper undo of a write node, only locks are released.
    329  *        old data is not restored to disk!
    330  ****************************************************************************/
    331 void
    332 rf_DiskUndoFunc(RF_DagNode_t *node)
    333 {
    334 	RF_DiskQueueData_t *req;
    335 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    336 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    337 
    338 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    339 	    0L, 0, NULL, 0L, 0, node->wakeFunc, node,
    340 #if RF_ACC_TRACE > 0
    341 	     node->dagHdr->tracerec,
    342 #else
    343 	     NULL,
    344 #endif
    345 	    (void *) (node->dagHdr->raidPtr),
    346 	    0, NULL, PR_NOWAIT);
    347 	if (!req)
    348 		(node->wakeFunc) (node, ENOMEM);
    349 	else {
    350 		node->dagFuncData = (void *) req;
    351 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    352 	}
    353 }
    354 
    355 /*****************************************************************************
    356  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    357  * op completes, the routine is called to set the node status and
    358  * inform the execution engine that the node has fired.
    359  ****************************************************************************/
    360 void
    361 rf_GenericWakeupFunc(void *v, int status)
    362 {
    363 	RF_DagNode_t *node = v;
    364 
    365 	switch (node->status) {
    366 	case rf_fired:
    367 		if (status)
    368 			node->status = rf_bad;
    369 		else
    370 			node->status = rf_good;
    371 		break;
    372 	case rf_recover:
    373 		/* probably should never reach this case */
    374 		if (status)
    375 			node->status = rf_panic;
    376 		else
    377 			node->status = rf_undone;
    378 		break;
    379 	default:
    380 		printf("rf_GenericWakeupFunc:");
    381 		printf("node->status is %d,", node->status);
    382 		printf("status is %d \n", status);
    383 		RF_PANIC();
    384 		break;
    385 	}
    386 	if (node->dagFuncData)
    387 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    388 	rf_FinishNode(node, RF_INTR_CONTEXT);
    389 }
    390 
    391 
    392 /*****************************************************************************
    393  * there are three distinct types of xor nodes:
    394 
    395  * A "regular xor" is used in the fault-free case where the access
    396  * spans a complete stripe unit.  It assumes that the result buffer is
    397  * one full stripe unit in size, and uses the stripe-unit-offset
    398  * values that it computes from the PDAs to determine where within the
    399  * stripe unit to XOR each argument buffer.
    400  *
    401  * A "simple xor" is used in the fault-free case where the access
    402  * touches only a portion of one (or two, in some cases) stripe
    403  * unit(s).  It assumes that all the argument buffers are of the same
    404  * size and have the same stripe unit offset.
    405  *
    406  * A "recovery xor" is used in the degraded-mode case.  It's similar
    407  * to the regular xor function except that it takes the failed PDA as
    408  * an additional parameter, and uses it to determine what portions of
    409  * the argument buffers need to be xor'd into the result buffer, and
    410  * where in the result buffer they should go.
    411  ****************************************************************************/
    412 
    413 /* xor the params together and store the result in the result field.
    414  * assume the result field points to a buffer that is the size of one
    415  * SU, and use the pda params to determine where within the buffer to
    416  * XOR the input buffers.  */
    417 void
    418 rf_RegularXorFunc(RF_DagNode_t *node)
    419 {
    420 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    421 #if RF_ACC_TRACE > 0
    422 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    423 	RF_Etimer_t timer;
    424 #endif
    425 	int     i, retcode;
    426 
    427 	retcode = 0;
    428 	if (node->dagHdr->status == rf_enable) {
    429 		/* don't do the XOR if the input is the same as the output */
    430 #if RF_ACC_TRACE > 0
    431 		RF_ETIMER_START(timer);
    432 #endif
    433 		for (i = 0; i < node->numParams - 1; i += 2)
    434 			if (node->params[i + 1].p != node->results[0]) {
    435 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    436 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    437 			}
    438 #if RF_ACC_TRACE > 0
    439 		RF_ETIMER_STOP(timer);
    440 		RF_ETIMER_EVAL(timer);
    441 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    442 #endif
    443 	}
    444 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    445 						 * explicitly since no
    446 						 * I/O in this node */
    447 }
    448 /* xor the inputs into the result buffer, ignoring placement issues */
    449 void
    450 rf_SimpleXorFunc(RF_DagNode_t *node)
    451 {
    452 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    453 	int     i, retcode = 0;
    454 #if RF_ACC_TRACE > 0
    455 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    456 	RF_Etimer_t timer;
    457 #endif
    458 
    459 	if (node->dagHdr->status == rf_enable) {
    460 #if RF_ACC_TRACE > 0
    461 		RF_ETIMER_START(timer);
    462 #endif
    463 		/* don't do the XOR if the input is the same as the output */
    464 		for (i = 0; i < node->numParams - 1; i += 2)
    465 			if (node->params[i + 1].p != node->results[0]) {
    466 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    467 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    468 			}
    469 #if RF_ACC_TRACE > 0
    470 		RF_ETIMER_STOP(timer);
    471 		RF_ETIMER_EVAL(timer);
    472 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    473 #endif
    474 	}
    475 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    476 						 * explicitly since no
    477 						 * I/O in this node */
    478 }
    479 /* this xor is used by the degraded-mode dag functions to recover lost
    480  * data.  the second-to-last parameter is the PDA for the failed
    481  * portion of the access.  the code here looks at this PDA and assumes
    482  * that the xor target buffer is equal in size to the number of
    483  * sectors in the failed PDA.  It then uses the other PDAs in the
    484  * parameter list to determine where within the target buffer the
    485  * corresponding data should be xored.  */
    486 void
    487 rf_RecoveryXorFunc(RF_DagNode_t *node)
    488 {
    489 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    490 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    491 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    492 	int     i, retcode = 0;
    493 	RF_PhysDiskAddr_t *pda;
    494 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    495 	char   *srcbuf, *destbuf;
    496 #if RF_ACC_TRACE > 0
    497 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    498 	RF_Etimer_t timer;
    499 #endif
    500 
    501 	if (node->dagHdr->status == rf_enable) {
    502 #if RF_ACC_TRACE > 0
    503 		RF_ETIMER_START(timer);
    504 #endif
    505 		for (i = 0; i < node->numParams - 2; i += 2)
    506 			if (node->params[i + 1].p != node->results[0]) {
    507 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    508 				srcbuf = (char *) node->params[i + 1].p;
    509 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    510 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    511 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    512 			}
    513 #if RF_ACC_TRACE > 0
    514 		RF_ETIMER_STOP(timer);
    515 		RF_ETIMER_EVAL(timer);
    516 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    517 #endif
    518 	}
    519 	rf_GenericWakeupFunc(node, retcode);
    520 }
    521 /*****************************************************************************
    522  * The next three functions are utilities used by the above
    523  * xor-execution functions.
    524  ****************************************************************************/
    525 
    526 
    527 /*
    528  * this is just a glorified buffer xor.  targbuf points to a buffer
    529  * that is one full stripe unit in size.  srcbuf points to a buffer
    530  * that may be less than 1 SU, but never more.  When the access
    531  * described by pda is one SU in size (which by implication means it's
    532  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    533  * When the access is less than one SU in size the XOR occurs on only
    534  * the portion of targbuf identified in the pda.  */
    535 
    536 int
    537 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    538 		 char *srcbuf, char *targbuf)
    539 {
    540 	char   *targptr;
    541 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    542 	int     SUOffset = pda->startSector % sectPerSU;
    543 	int     length, retcode = 0;
    544 
    545 	RF_ASSERT(pda->numSector <= sectPerSU);
    546 
    547 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    548 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    549 	retcode = rf_bxor(srcbuf, targptr, length);
    550 	return (retcode);
    551 }
    552 /* it really should be the case that the buffer pointers (returned by
    553  * malloc) are aligned to the natural word size of the machine, so
    554  * this is the only case we optimize for.  The length should always be
    555  * a multiple of the sector size, so there should be no problem with
    556  * leftover bytes at the end.  */
    557 int
    558 rf_bxor(char *src, char *dest, int len)
    559 {
    560 	unsigned mask = sizeof(long) - 1, retcode = 0;
    561 
    562 	if (!(((unsigned long) src) & mask) &&
    563 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    564 		retcode = rf_longword_bxor((unsigned long *) src,
    565 					   (unsigned long *) dest,
    566 					   len >> RF_LONGSHIFT);
    567 	} else {
    568 		RF_ASSERT(0);
    569 	}
    570 	return (retcode);
    571 }
    572 
    573 /* When XORing in kernel mode, we need to map each user page to kernel
    574  * space before we can access it.  We don't want to assume anything
    575  * about which input buffers are in kernel/user space, nor about their
    576  * alignment, so in each loop we compute the maximum number of bytes
    577  * that we can xor without crossing any page boundaries, and do only
    578  * this many bytes before the next remap.
    579  *
    580  * len - is in longwords
    581  */
    582 int
    583 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    584 {
    585 	unsigned long *end = src + len;
    586 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    587 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    588 	int     longs_this_time;/* # longwords to xor in the current iteration */
    589 
    590 	pg_src = src;
    591 	pg_dest = dest;
    592 	if (!pg_src || !pg_dest)
    593 		return (EFAULT);
    594 
    595 	while (len >= 4) {
    596 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    597 		src += longs_this_time;
    598 		dest += longs_this_time;
    599 		len -= longs_this_time;
    600 		while (longs_this_time >= 4) {
    601 			d0 = pg_dest[0];
    602 			d1 = pg_dest[1];
    603 			d2 = pg_dest[2];
    604 			d3 = pg_dest[3];
    605 			s0 = pg_src[0];
    606 			s1 = pg_src[1];
    607 			s2 = pg_src[2];
    608 			s3 = pg_src[3];
    609 			pg_dest[0] = d0 ^ s0;
    610 			pg_dest[1] = d1 ^ s1;
    611 			pg_dest[2] = d2 ^ s2;
    612 			pg_dest[3] = d3 ^ s3;
    613 			pg_src += 4;
    614 			pg_dest += 4;
    615 			longs_this_time -= 4;
    616 		}
    617 		while (longs_this_time > 0) {	/* cannot cross any page
    618 						 * boundaries here */
    619 			*pg_dest++ ^= *pg_src++;
    620 			longs_this_time--;
    621 		}
    622 
    623 		/* either we're done, or we've reached a page boundary on one
    624 		 * (or possibly both) of the pointers */
    625 		if (len) {
    626 			if (RF_PAGE_ALIGNED(src))
    627 				pg_src = src;
    628 			if (RF_PAGE_ALIGNED(dest))
    629 				pg_dest = dest;
    630 			if (!pg_src || !pg_dest)
    631 				return (EFAULT);
    632 		}
    633 	}
    634 	while (src < end) {
    635 		*pg_dest++ ^= *pg_src++;
    636 		src++;
    637 		dest++;
    638 		len--;
    639 		if (RF_PAGE_ALIGNED(src))
    640 			pg_src = src;
    641 		if (RF_PAGE_ALIGNED(dest))
    642 			pg_dest = dest;
    643 	}
    644 	RF_ASSERT(len == 0);
    645 	return (0);
    646 }
    647 
    648 #if 0
    649 /*
    650    dst = a ^ b ^ c;
    651    a may equal dst
    652    see comment above longword_bxor
    653    len is length in longwords
    654 */
    655 int
    656 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    657 		  unsigned long *c, int len, void *bp)
    658 {
    659 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    660 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    661 								 * pointers */
    662 	int     longs_this_time;/* # longs to xor in the current iteration */
    663 	char    dst_is_a = 0;
    664 
    665 	pg_a = a;
    666 	pg_b = b;
    667 	pg_c = c;
    668 	if (a == dst) {
    669 		pg_dst = pg_a;
    670 		dst_is_a = 1;
    671 	} else {
    672 		pg_dst = dst;
    673 	}
    674 
    675 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    676 	while ((((unsigned long) pg_dst) & 0x1f)) {
    677 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    678 		dst++;
    679 		a++;
    680 		b++;
    681 		c++;
    682 		if (RF_PAGE_ALIGNED(a)) {
    683 			pg_a = a;
    684 			if (!pg_a)
    685 				return (EFAULT);
    686 		}
    687 		if (RF_PAGE_ALIGNED(b)) {
    688 			pg_b = a;
    689 			if (!pg_b)
    690 				return (EFAULT);
    691 		}
    692 		if (RF_PAGE_ALIGNED(c)) {
    693 			pg_c = a;
    694 			if (!pg_c)
    695 				return (EFAULT);
    696 		}
    697 		len--;
    698 	}
    699 
    700 	while (len > 4) {
    701 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    702 		a += longs_this_time;
    703 		b += longs_this_time;
    704 		c += longs_this_time;
    705 		dst += longs_this_time;
    706 		len -= longs_this_time;
    707 		while (longs_this_time >= 4) {
    708 			a0 = pg_a[0];
    709 			longs_this_time -= 4;
    710 
    711 			a1 = pg_a[1];
    712 			a2 = pg_a[2];
    713 
    714 			a3 = pg_a[3];
    715 			pg_a += 4;
    716 
    717 			b0 = pg_b[0];
    718 			b1 = pg_b[1];
    719 
    720 			b2 = pg_b[2];
    721 			b3 = pg_b[3];
    722 			/* start dual issue */
    723 			a0 ^= b0;
    724 			b0 = pg_c[0];
    725 
    726 			pg_b += 4;
    727 			a1 ^= b1;
    728 
    729 			a2 ^= b2;
    730 			a3 ^= b3;
    731 
    732 			b1 = pg_c[1];
    733 			a0 ^= b0;
    734 
    735 			b2 = pg_c[2];
    736 			a1 ^= b1;
    737 
    738 			b3 = pg_c[3];
    739 			a2 ^= b2;
    740 
    741 			pg_dst[0] = a0;
    742 			a3 ^= b3;
    743 			pg_dst[1] = a1;
    744 			pg_c += 4;
    745 			pg_dst[2] = a2;
    746 			pg_dst[3] = a3;
    747 			pg_dst += 4;
    748 		}
    749 		while (longs_this_time > 0) {	/* cannot cross any page
    750 						 * boundaries here */
    751 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    752 			longs_this_time--;
    753 		}
    754 
    755 		if (len) {
    756 			if (RF_PAGE_ALIGNED(a)) {
    757 				pg_a = a;
    758 				if (!pg_a)
    759 					return (EFAULT);
    760 				if (dst_is_a)
    761 					pg_dst = pg_a;
    762 			}
    763 			if (RF_PAGE_ALIGNED(b)) {
    764 				pg_b = b;
    765 				if (!pg_b)
    766 					return (EFAULT);
    767 			}
    768 			if (RF_PAGE_ALIGNED(c)) {
    769 				pg_c = c;
    770 				if (!pg_c)
    771 					return (EFAULT);
    772 			}
    773 			if (!dst_is_a)
    774 				if (RF_PAGE_ALIGNED(dst)) {
    775 					pg_dst = dst;
    776 					if (!pg_dst)
    777 						return (EFAULT);
    778 				}
    779 		}
    780 	}
    781 	while (len) {
    782 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    783 		dst++;
    784 		a++;
    785 		b++;
    786 		c++;
    787 		if (RF_PAGE_ALIGNED(a)) {
    788 			pg_a = a;
    789 			if (!pg_a)
    790 				return (EFAULT);
    791 			if (dst_is_a)
    792 				pg_dst = pg_a;
    793 		}
    794 		if (RF_PAGE_ALIGNED(b)) {
    795 			pg_b = b;
    796 			if (!pg_b)
    797 				return (EFAULT);
    798 		}
    799 		if (RF_PAGE_ALIGNED(c)) {
    800 			pg_c = c;
    801 			if (!pg_c)
    802 				return (EFAULT);
    803 		}
    804 		if (!dst_is_a)
    805 			if (RF_PAGE_ALIGNED(dst)) {
    806 				pg_dst = dst;
    807 				if (!pg_dst)
    808 					return (EFAULT);
    809 			}
    810 		len--;
    811 	}
    812 	return (0);
    813 }
    814 
    815 int
    816 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    817 	 unsigned char *c, unsigned long len, void *bp)
    818 {
    819 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    820 
    821 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    822 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    823 }
    824 #endif
    825