Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.5
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.5 1999/08/26 02:40:28 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/ioctl.h>
     51 #include <sys/param.h>
     52 
     53 #include "rf_archs.h"
     54 #include "rf_raid.h"
     55 #include "rf_dag.h"
     56 #include "rf_layout.h"
     57 #include "rf_etimer.h"
     58 #include "rf_acctrace.h"
     59 #include "rf_diskqueue.h"
     60 #include "rf_dagfuncs.h"
     61 #include "rf_general.h"
     62 #include "rf_engine.h"
     63 #include "rf_dagutils.h"
     64 
     65 #include "rf_kintf.h"
     66 
     67 #if RF_INCLUDE_PARITYLOGGING > 0
     68 #include "rf_paritylog.h"
     69 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     70 
     71 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     72 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     73 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     74 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     79 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     80 
     81 /*****************************************************************************************
     82  * main (only) configuration routine for this module
     83  ****************************************************************************************/
     84 int
     85 rf_ConfigureDAGFuncs(listp)
     86 	RF_ShutdownList_t **listp;
     87 {
     88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     89 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     90 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     91 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     92 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     93 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     94 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     95 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     96 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     97 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     98 	return (0);
     99 }
    100 
    101 
    102 
    103 /*****************************************************************************************
    104  * the execution function associated with a terminate node
    105  ****************************************************************************************/
    106 int
    107 rf_TerminateFunc(node)
    108 	RF_DagNode_t *node;
    109 {
    110 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    111 	node->status = rf_good;
    112 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    113 }
    114 
    115 int
    116 rf_TerminateUndoFunc(node)
    117 	RF_DagNode_t *node;
    118 {
    119 	return (0);
    120 }
    121 
    122 
    123 /*****************************************************************************************
    124  * execution functions associated with a mirror node
    125  *
    126  * parameters:
    127  *
    128  * 0 - physical disk addres of data
    129  * 1 - buffer for holding read data
    130  * 2 - parity stripe ID
    131  * 3 - flags
    132  * 4 - physical disk address of mirror (parity)
    133  *
    134  ****************************************************************************************/
    135 
    136 int
    137 rf_DiskReadMirrorIdleFunc(node)
    138 	RF_DagNode_t *node;
    139 {
    140 	/* select the mirror copy with the shortest queue and fill in node
    141 	 * parameters with physical disk address */
    142 
    143 	rf_SelectMirrorDiskIdle(node);
    144 	return (rf_DiskReadFunc(node));
    145 }
    146 
    147 int
    148 rf_DiskReadMirrorPartitionFunc(node)
    149 	RF_DagNode_t *node;
    150 {
    151 	/* select the mirror copy with the shortest queue and fill in node
    152 	 * parameters with physical disk address */
    153 
    154 	rf_SelectMirrorDiskPartition(node);
    155 	return (rf_DiskReadFunc(node));
    156 }
    157 
    158 int
    159 rf_DiskReadMirrorUndoFunc(node)
    160 	RF_DagNode_t *node;
    161 {
    162 	return (0);
    163 }
    164 
    165 
    166 
    167 #if RF_INCLUDE_PARITYLOGGING > 0
    168 /*****************************************************************************************
    169  * the execution function associated with a parity log update node
    170  ****************************************************************************************/
    171 int
    172 rf_ParityLogUpdateFunc(node)
    173 	RF_DagNode_t *node;
    174 {
    175 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    176 	caddr_t buf = (caddr_t) node->params[1].p;
    177 	RF_ParityLogData_t *logData;
    178 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    179 	RF_Etimer_t timer;
    180 
    181 	if (node->dagHdr->status == rf_enable) {
    182 		RF_ETIMER_START(timer);
    183 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    184 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    185 		    node->wakeFunc, (void *) node,
    186 		    node->dagHdr->tracerec, timer);
    187 		if (logData)
    188 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    189 		else {
    190 			RF_ETIMER_STOP(timer);
    191 			RF_ETIMER_EVAL(timer);
    192 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    193 			(node->wakeFunc) (node, ENOMEM);
    194 		}
    195 	}
    196 	return (0);
    197 }
    198 
    199 
    200 /*****************************************************************************************
    201  * the execution function associated with a parity log overwrite node
    202  ****************************************************************************************/
    203 int
    204 rf_ParityLogOverwriteFunc(node)
    205 	RF_DagNode_t *node;
    206 {
    207 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    208 	caddr_t buf = (caddr_t) node->params[1].p;
    209 	RF_ParityLogData_t *logData;
    210 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    211 	RF_Etimer_t timer;
    212 
    213 	if (node->dagHdr->status == rf_enable) {
    214 		RF_ETIMER_START(timer);
    215 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    216 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    217 		if (logData)
    218 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    219 		else {
    220 			RF_ETIMER_STOP(timer);
    221 			RF_ETIMER_EVAL(timer);
    222 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    223 			(node->wakeFunc) (node, ENOMEM);
    224 		}
    225 	}
    226 	return (0);
    227 }
    228 #else				/* RF_INCLUDE_PARITYLOGGING > 0 */
    229 
    230 int
    231 rf_ParityLogUpdateFunc(node)
    232 	RF_DagNode_t *node;
    233 {
    234 	return (0);
    235 }
    236 int
    237 rf_ParityLogOverwriteFunc(node)
    238 	RF_DagNode_t *node;
    239 {
    240 	return (0);
    241 }
    242 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    243 
    244 int
    245 rf_ParityLogUpdateUndoFunc(node)
    246 	RF_DagNode_t *node;
    247 {
    248 	return (0);
    249 }
    250 
    251 int
    252 rf_ParityLogOverwriteUndoFunc(node)
    253 	RF_DagNode_t *node;
    254 {
    255 	return (0);
    256 }
    257 /*****************************************************************************************
    258  * the execution function associated with a NOP node
    259  ****************************************************************************************/
    260 int
    261 rf_NullNodeFunc(node)
    262 	RF_DagNode_t *node;
    263 {
    264 	node->status = rf_good;
    265 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    266 }
    267 
    268 int
    269 rf_NullNodeUndoFunc(node)
    270 	RF_DagNode_t *node;
    271 {
    272 	node->status = rf_undone;
    273 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    274 }
    275 
    276 
    277 /*****************************************************************************************
    278  * the execution function associated with a disk-read node
    279  ****************************************************************************************/
    280 int
    281 rf_DiskReadFuncForThreads(node)
    282 	RF_DagNode_t *node;
    283 {
    284 	RF_DiskQueueData_t *req;
    285 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    286 	caddr_t buf = (caddr_t) node->params[1].p;
    287 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    288 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    289 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    290 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    291 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    292 	RF_DiskQueueDataFlags_t flags = 0;
    293 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    294 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    295 	void   *b_proc = NULL;
    296 
    297 	if (node->dagHdr->bp)
    298 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    299 
    300 	RF_ASSERT(!(lock && unlock));
    301 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    302 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    303 
    304 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    305 	    buf, parityStripeID, which_ru,
    306 	    (int (*) (void *, int)) node->wakeFunc,
    307 	    node, NULL, node->dagHdr->tracerec,
    308 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    309 	if (!req) {
    310 		(node->wakeFunc) (node, ENOMEM);
    311 	} else {
    312 		node->dagFuncData = (void *) req;
    313 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    314 	}
    315 	return (0);
    316 }
    317 
    318 
    319 /*****************************************************************************************
    320  * the execution function associated with a disk-write node
    321  ****************************************************************************************/
    322 int
    323 rf_DiskWriteFuncForThreads(node)
    324 	RF_DagNode_t *node;
    325 {
    326 	RF_DiskQueueData_t *req;
    327 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    328 	caddr_t buf = (caddr_t) node->params[1].p;
    329 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    330 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    331 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    332 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    333 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    334 	RF_DiskQueueDataFlags_t flags = 0;
    335 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    336 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    337 	void   *b_proc = NULL;
    338 
    339 	if (node->dagHdr->bp)
    340 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    341 
    342 	/* normal processing (rollaway or forward recovery) begins here */
    343 	RF_ASSERT(!(lock && unlock));
    344 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    345 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    346 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    347 	    buf, parityStripeID, which_ru,
    348 	    (int (*) (void *, int)) node->wakeFunc,
    349 	    (void *) node, NULL,
    350 	    node->dagHdr->tracerec,
    351 	    (void *) (node->dagHdr->raidPtr),
    352 	    flags, b_proc);
    353 
    354 	if (!req) {
    355 		(node->wakeFunc) (node, ENOMEM);
    356 	} else {
    357 		node->dagFuncData = (void *) req;
    358 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    359 	}
    360 
    361 	return (0);
    362 }
    363 /*****************************************************************************************
    364  * the undo function for disk nodes
    365  * Note:  this is not a proper undo of a write node, only locks are released.
    366  *        old data is not restored to disk!
    367  ****************************************************************************************/
    368 int
    369 rf_DiskUndoFunc(node)
    370 	RF_DagNode_t *node;
    371 {
    372 	RF_DiskQueueData_t *req;
    373 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    374 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    375 
    376 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    377 	    0L, 0, NULL, 0L, 0,
    378 	    (int (*) (void *, int)) node->wakeFunc,
    379 	    (void *) node,
    380 	    NULL, node->dagHdr->tracerec,
    381 	    (void *) (node->dagHdr->raidPtr),
    382 	    RF_UNLOCK_DISK_QUEUE, NULL);
    383 	if (!req)
    384 		(node->wakeFunc) (node, ENOMEM);
    385 	else {
    386 		node->dagFuncData = (void *) req;
    387 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    388 	}
    389 
    390 	return (0);
    391 }
    392 /*****************************************************************************************
    393  * the execution function associated with an "unlock disk queue" node
    394  ****************************************************************************************/
    395 int
    396 rf_DiskUnlockFuncForThreads(node)
    397 	RF_DagNode_t *node;
    398 {
    399 	RF_DiskQueueData_t *req;
    400 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    401 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    402 
    403 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    404 	    0L, 0, NULL, 0L, 0,
    405 	    (int (*) (void *, int)) node->wakeFunc,
    406 	    (void *) node,
    407 	    NULL, node->dagHdr->tracerec,
    408 	    (void *) (node->dagHdr->raidPtr),
    409 	    RF_UNLOCK_DISK_QUEUE, NULL);
    410 	if (!req)
    411 		(node->wakeFunc) (node, ENOMEM);
    412 	else {
    413 		node->dagFuncData = (void *) req;
    414 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    415 	}
    416 
    417 	return (0);
    418 }
    419 /*****************************************************************************************
    420  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    421  * the routine is called to set the node status and inform the execution engine that
    422  * the node has fired.
    423  ****************************************************************************************/
    424 int
    425 rf_GenericWakeupFunc(node, status)
    426 	RF_DagNode_t *node;
    427 	int     status;
    428 {
    429 	switch (node->status) {
    430 	case rf_bwd1:
    431 		node->status = rf_bwd2;
    432 		if (node->dagFuncData)
    433 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    434 		return (rf_DiskWriteFuncForThreads(node));
    435 		break;
    436 	case rf_fired:
    437 		if (status)
    438 			node->status = rf_bad;
    439 		else
    440 			node->status = rf_good;
    441 		break;
    442 	case rf_recover:
    443 		/* probably should never reach this case */
    444 		if (status)
    445 			node->status = rf_panic;
    446 		else
    447 			node->status = rf_undone;
    448 		break;
    449 	default:
    450 		printf("rf_GenericWakeupFunc:");
    451 		printf("node->status is %d,", node->status);
    452 		printf("status is %d \n", status);
    453 		RF_PANIC();
    454 		break;
    455 	}
    456 	if (node->dagFuncData)
    457 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    458 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    459 }
    460 
    461 
    462 /*****************************************************************************************
    463  * there are three distinct types of xor nodes
    464  * A "regular xor" is used in the fault-free case where the access spans a complete
    465  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    466  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    467  * where within the stripe unit to XOR each argument buffer.
    468  *
    469  * A "simple xor" is used in the fault-free case where the access touches only a portion
    470  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    471  * buffers are of the same size and have the same stripe unit offset.
    472  *
    473  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    474  * xor function except that it takes the failed PDA as an additional parameter, and
    475  * uses it to determine what portions of the argument buffers need to be xor'd into
    476  * the result buffer, and where in the result buffer they should go.
    477  ****************************************************************************************/
    478 
    479 /* xor the params together and store the result in the result field.
    480  * assume the result field points to a buffer that is the size of one SU,
    481  * and use the pda params to determine where within the buffer to XOR
    482  * the input buffers.
    483  */
    484 int
    485 rf_RegularXorFunc(node)
    486 	RF_DagNode_t *node;
    487 {
    488 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    489 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    490 	RF_Etimer_t timer;
    491 	int     i, retcode;
    492 
    493 	retcode = 0;
    494 	if (node->dagHdr->status == rf_enable) {
    495 		/* don't do the XOR if the input is the same as the output */
    496 		RF_ETIMER_START(timer);
    497 		for (i = 0; i < node->numParams - 1; i += 2)
    498 			if (node->params[i + 1].p != node->results[0]) {
    499 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    500 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    501 			}
    502 		RF_ETIMER_STOP(timer);
    503 		RF_ETIMER_EVAL(timer);
    504 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    505 	}
    506 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    507 							 * explicitly since no
    508 							 * I/O in this node */
    509 }
    510 /* xor the inputs into the result buffer, ignoring placement issues */
    511 int
    512 rf_SimpleXorFunc(node)
    513 	RF_DagNode_t *node;
    514 {
    515 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    516 	int     i, retcode = 0;
    517 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    518 	RF_Etimer_t timer;
    519 
    520 	if (node->dagHdr->status == rf_enable) {
    521 		RF_ETIMER_START(timer);
    522 		/* don't do the XOR if the input is the same as the output */
    523 		for (i = 0; i < node->numParams - 1; i += 2)
    524 			if (node->params[i + 1].p != node->results[0]) {
    525 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    526 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    527 				    (struct buf *) node->dagHdr->bp);
    528 			}
    529 		RF_ETIMER_STOP(timer);
    530 		RF_ETIMER_EVAL(timer);
    531 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    532 	}
    533 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    534 							 * explicitly since no
    535 							 * I/O in this node */
    536 }
    537 /* this xor is used by the degraded-mode dag functions to recover lost data.
    538  * the second-to-last parameter is the PDA for the failed portion of the access.
    539  * the code here looks at this PDA and assumes that the xor target buffer is
    540  * equal in size to the number of sectors in the failed PDA.  It then uses
    541  * the other PDAs in the parameter list to determine where within the target
    542  * buffer the corresponding data should be xored.
    543  */
    544 int
    545 rf_RecoveryXorFunc(node)
    546 	RF_DagNode_t *node;
    547 {
    548 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    549 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    550 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    551 	int     i, retcode = 0;
    552 	RF_PhysDiskAddr_t *pda;
    553 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    554 	char   *srcbuf, *destbuf;
    555 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    556 	RF_Etimer_t timer;
    557 
    558 	if (node->dagHdr->status == rf_enable) {
    559 		RF_ETIMER_START(timer);
    560 		for (i = 0; i < node->numParams - 2; i += 2)
    561 			if (node->params[i + 1].p != node->results[0]) {
    562 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    563 				srcbuf = (char *) node->params[i + 1].p;
    564 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    565 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    566 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    567 			}
    568 		RF_ETIMER_STOP(timer);
    569 		RF_ETIMER_EVAL(timer);
    570 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    571 	}
    572 	return (rf_GenericWakeupFunc(node, retcode));
    573 }
    574 /*****************************************************************************************
    575  * The next three functions are utilities used by the above xor-execution functions.
    576  ****************************************************************************************/
    577 
    578 
    579 /*
    580  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    581  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    582  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    583  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    584  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    585  */
    586 
    587 int
    588 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    589 	RF_Raid_t *raidPtr;
    590 	RF_PhysDiskAddr_t *pda;
    591 	char   *srcbuf;
    592 	char   *targbuf;
    593 	void   *bp;
    594 {
    595 	char   *targptr;
    596 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    597 	int     SUOffset = pda->startSector % sectPerSU;
    598 	int     length, retcode = 0;
    599 
    600 	RF_ASSERT(pda->numSector <= sectPerSU);
    601 
    602 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    603 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    604 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    605 	return (retcode);
    606 }
    607 /* it really should be the case that the buffer pointers (returned by malloc)
    608  * are aligned to the natural word size of the machine, so this is the only
    609  * case we optimize for.  The length should always be a multiple of the sector
    610  * size, so there should be no problem with leftover bytes at the end.
    611  */
    612 int
    613 rf_bxor(src, dest, len, bp)
    614 	char   *src;
    615 	char   *dest;
    616 	int     len;
    617 	void   *bp;
    618 {
    619 	unsigned mask = sizeof(long) - 1, retcode = 0;
    620 
    621 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
    622 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
    623 	} else {
    624 		RF_ASSERT(0);
    625 	}
    626 	return (retcode);
    627 }
    628 /* map a user buffer into kernel space, if necessary */
    629 #define REMAP_VA(_bp,x,y) (y) = (x)
    630 
    631 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    632  * We don't want to assume anything about which input buffers are in kernel/user
    633  * space, nor about their alignment, so in each loop we compute the maximum number
    634  * of bytes that we can xor without crossing any page boundaries, and do only this many
    635  * bytes before the next remap.
    636  */
    637 int
    638 rf_longword_bxor(src, dest, len, bp)
    639 	register unsigned long *src;
    640 	register unsigned long *dest;
    641 	int     len;		/* longwords */
    642 	void   *bp;
    643 {
    644 	register unsigned long *end = src + len;
    645 	register unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    646 	register unsigned long *pg_src, *pg_dest;	/* per-page source/dest
    647 							 * pointers */
    648 	int     longs_this_time;/* # longwords to xor in the current iteration */
    649 
    650 	REMAP_VA(bp, src, pg_src);
    651 	REMAP_VA(bp, dest, pg_dest);
    652 	if (!pg_src || !pg_dest)
    653 		return (EFAULT);
    654 
    655 	while (len >= 4) {
    656 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    657 		src += longs_this_time;
    658 		dest += longs_this_time;
    659 		len -= longs_this_time;
    660 		while (longs_this_time >= 4) {
    661 			d0 = pg_dest[0];
    662 			d1 = pg_dest[1];
    663 			d2 = pg_dest[2];
    664 			d3 = pg_dest[3];
    665 			s0 = pg_src[0];
    666 			s1 = pg_src[1];
    667 			s2 = pg_src[2];
    668 			s3 = pg_src[3];
    669 			pg_dest[0] = d0 ^ s0;
    670 			pg_dest[1] = d1 ^ s1;
    671 			pg_dest[2] = d2 ^ s2;
    672 			pg_dest[3] = d3 ^ s3;
    673 			pg_src += 4;
    674 			pg_dest += 4;
    675 			longs_this_time -= 4;
    676 		}
    677 		while (longs_this_time > 0) {	/* cannot cross any page
    678 						 * boundaries here */
    679 			*pg_dest++ ^= *pg_src++;
    680 			longs_this_time--;
    681 		}
    682 
    683 		/* either we're done, or we've reached a page boundary on one
    684 		 * (or possibly both) of the pointers */
    685 		if (len) {
    686 			if (RF_PAGE_ALIGNED(src))
    687 				REMAP_VA(bp, src, pg_src);
    688 			if (RF_PAGE_ALIGNED(dest))
    689 				REMAP_VA(bp, dest, pg_dest);
    690 			if (!pg_src || !pg_dest)
    691 				return (EFAULT);
    692 		}
    693 	}
    694 	while (src < end) {
    695 		*pg_dest++ ^= *pg_src++;
    696 		src++;
    697 		dest++;
    698 		len--;
    699 		if (RF_PAGE_ALIGNED(src))
    700 			REMAP_VA(bp, src, pg_src);
    701 		if (RF_PAGE_ALIGNED(dest))
    702 			REMAP_VA(bp, dest, pg_dest);
    703 	}
    704 	RF_ASSERT(len == 0);
    705 	return (0);
    706 }
    707 
    708 
    709 /*
    710    dst = a ^ b ^ c;
    711    a may equal dst
    712    see comment above longword_bxor
    713 */
    714 int
    715 rf_longword_bxor3(dst, a, b, c, len, bp)
    716 	register unsigned long *dst;
    717 	register unsigned long *a;
    718 	register unsigned long *b;
    719 	register unsigned long *c;
    720 	int     len;		/* length in longwords */
    721 	void   *bp;
    722 {
    723 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    724 	register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    725 								 * pointers */
    726 	int     longs_this_time;/* # longs to xor in the current iteration */
    727 	char    dst_is_a = 0;
    728 
    729 	REMAP_VA(bp, a, pg_a);
    730 	REMAP_VA(bp, b, pg_b);
    731 	REMAP_VA(bp, c, pg_c);
    732 	if (a == dst) {
    733 		pg_dst = pg_a;
    734 		dst_is_a = 1;
    735 	} else {
    736 		REMAP_VA(bp, dst, pg_dst);
    737 	}
    738 
    739 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    740 	while ((((unsigned long) pg_dst) & 0x1f)) {
    741 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    742 		dst++;
    743 		a++;
    744 		b++;
    745 		c++;
    746 		if (RF_PAGE_ALIGNED(a)) {
    747 			REMAP_VA(bp, a, pg_a);
    748 			if (!pg_a)
    749 				return (EFAULT);
    750 		}
    751 		if (RF_PAGE_ALIGNED(b)) {
    752 			REMAP_VA(bp, a, pg_b);
    753 			if (!pg_b)
    754 				return (EFAULT);
    755 		}
    756 		if (RF_PAGE_ALIGNED(c)) {
    757 			REMAP_VA(bp, a, pg_c);
    758 			if (!pg_c)
    759 				return (EFAULT);
    760 		}
    761 		len--;
    762 	}
    763 
    764 	while (len > 4) {
    765 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    766 		a += longs_this_time;
    767 		b += longs_this_time;
    768 		c += longs_this_time;
    769 		dst += longs_this_time;
    770 		len -= longs_this_time;
    771 		while (longs_this_time >= 4) {
    772 			a0 = pg_a[0];
    773 			longs_this_time -= 4;
    774 
    775 			a1 = pg_a[1];
    776 			a2 = pg_a[2];
    777 
    778 			a3 = pg_a[3];
    779 			pg_a += 4;
    780 
    781 			b0 = pg_b[0];
    782 			b1 = pg_b[1];
    783 
    784 			b2 = pg_b[2];
    785 			b3 = pg_b[3];
    786 			/* start dual issue */
    787 			a0 ^= b0;
    788 			b0 = pg_c[0];
    789 
    790 			pg_b += 4;
    791 			a1 ^= b1;
    792 
    793 			a2 ^= b2;
    794 			a3 ^= b3;
    795 
    796 			b1 = pg_c[1];
    797 			a0 ^= b0;
    798 
    799 			b2 = pg_c[2];
    800 			a1 ^= b1;
    801 
    802 			b3 = pg_c[3];
    803 			a2 ^= b2;
    804 
    805 			pg_dst[0] = a0;
    806 			a3 ^= b3;
    807 			pg_dst[1] = a1;
    808 			pg_c += 4;
    809 			pg_dst[2] = a2;
    810 			pg_dst[3] = a3;
    811 			pg_dst += 4;
    812 		}
    813 		while (longs_this_time > 0) {	/* cannot cross any page
    814 						 * boundaries here */
    815 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    816 			longs_this_time--;
    817 		}
    818 
    819 		if (len) {
    820 			if (RF_PAGE_ALIGNED(a)) {
    821 				REMAP_VA(bp, a, pg_a);
    822 				if (!pg_a)
    823 					return (EFAULT);
    824 				if (dst_is_a)
    825 					pg_dst = pg_a;
    826 			}
    827 			if (RF_PAGE_ALIGNED(b)) {
    828 				REMAP_VA(bp, b, pg_b);
    829 				if (!pg_b)
    830 					return (EFAULT);
    831 			}
    832 			if (RF_PAGE_ALIGNED(c)) {
    833 				REMAP_VA(bp, c, pg_c);
    834 				if (!pg_c)
    835 					return (EFAULT);
    836 			}
    837 			if (!dst_is_a)
    838 				if (RF_PAGE_ALIGNED(dst)) {
    839 					REMAP_VA(bp, dst, pg_dst);
    840 					if (!pg_dst)
    841 						return (EFAULT);
    842 				}
    843 		}
    844 	}
    845 	while (len) {
    846 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    847 		dst++;
    848 		a++;
    849 		b++;
    850 		c++;
    851 		if (RF_PAGE_ALIGNED(a)) {
    852 			REMAP_VA(bp, a, pg_a);
    853 			if (!pg_a)
    854 				return (EFAULT);
    855 			if (dst_is_a)
    856 				pg_dst = pg_a;
    857 		}
    858 		if (RF_PAGE_ALIGNED(b)) {
    859 			REMAP_VA(bp, b, pg_b);
    860 			if (!pg_b)
    861 				return (EFAULT);
    862 		}
    863 		if (RF_PAGE_ALIGNED(c)) {
    864 			REMAP_VA(bp, c, pg_c);
    865 			if (!pg_c)
    866 				return (EFAULT);
    867 		}
    868 		if (!dst_is_a)
    869 			if (RF_PAGE_ALIGNED(dst)) {
    870 				REMAP_VA(bp, dst, pg_dst);
    871 				if (!pg_dst)
    872 					return (EFAULT);
    873 			}
    874 		len--;
    875 	}
    876 	return (0);
    877 }
    878 
    879 int
    880 rf_bxor3(dst, a, b, c, len, bp)
    881 	register unsigned char *dst;
    882 	register unsigned char *a;
    883 	register unsigned char *b;
    884 	register unsigned char *c;
    885 	unsigned long len;
    886 	void   *bp;
    887 {
    888 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    889 
    890 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    891 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    892 }
    893