rf_dagfuncs.c revision 1.5 1 /* $NetBSD: rf_dagfuncs.c,v 1.5 1999/08/26 02:40:28 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 * get set to "good" or "bad", and "FinishNode" to be called. In the
35 * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 * the node execution function can do these two things directly. In
37 * the case of nodes that have to wait for some event (a disk read to
38 * complete, a lock to be released, etc) to occur before they can
39 * complete, this is typically achieved by having whatever module
40 * is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 * and NOP out their operations if the status is not "enable". However,
43 * execution functions that release resources must be sure to release
44 * them even when they NOP out the function that would use them.
45 * Functions that acquire resources should go ahead and acquire them
46 * even when they NOP, so that a downstream release node will not have
47 * to check to find out whether or not the acquire was suppressed.
48 */
49
50 #include <sys/ioctl.h>
51 #include <sys/param.h>
52
53 #include "rf_archs.h"
54 #include "rf_raid.h"
55 #include "rf_dag.h"
56 #include "rf_layout.h"
57 #include "rf_etimer.h"
58 #include "rf_acctrace.h"
59 #include "rf_diskqueue.h"
60 #include "rf_dagfuncs.h"
61 #include "rf_general.h"
62 #include "rf_engine.h"
63 #include "rf_dagutils.h"
64
65 #include "rf_kintf.h"
66
67 #if RF_INCLUDE_PARITYLOGGING > 0
68 #include "rf_paritylog.h"
69 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
70
71 int (*rf_DiskReadFunc) (RF_DagNode_t *);
72 int (*rf_DiskWriteFunc) (RF_DagNode_t *);
73 int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
74 int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
75 int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
76 int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
77 int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
78 int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
79 int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
80
81 /*****************************************************************************************
82 * main (only) configuration routine for this module
83 ****************************************************************************************/
84 int
85 rf_ConfigureDAGFuncs(listp)
86 RF_ShutdownList_t **listp;
87 {
88 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
89 rf_DiskReadFunc = rf_DiskReadFuncForThreads;
90 rf_DiskReadUndoFunc = rf_DiskUndoFunc;
91 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
92 rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
93 rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
94 rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
95 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
96 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
97 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
98 return (0);
99 }
100
101
102
103 /*****************************************************************************************
104 * the execution function associated with a terminate node
105 ****************************************************************************************/
106 int
107 rf_TerminateFunc(node)
108 RF_DagNode_t *node;
109 {
110 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
111 node->status = rf_good;
112 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
113 }
114
115 int
116 rf_TerminateUndoFunc(node)
117 RF_DagNode_t *node;
118 {
119 return (0);
120 }
121
122
123 /*****************************************************************************************
124 * execution functions associated with a mirror node
125 *
126 * parameters:
127 *
128 * 0 - physical disk addres of data
129 * 1 - buffer for holding read data
130 * 2 - parity stripe ID
131 * 3 - flags
132 * 4 - physical disk address of mirror (parity)
133 *
134 ****************************************************************************************/
135
136 int
137 rf_DiskReadMirrorIdleFunc(node)
138 RF_DagNode_t *node;
139 {
140 /* select the mirror copy with the shortest queue and fill in node
141 * parameters with physical disk address */
142
143 rf_SelectMirrorDiskIdle(node);
144 return (rf_DiskReadFunc(node));
145 }
146
147 int
148 rf_DiskReadMirrorPartitionFunc(node)
149 RF_DagNode_t *node;
150 {
151 /* select the mirror copy with the shortest queue and fill in node
152 * parameters with physical disk address */
153
154 rf_SelectMirrorDiskPartition(node);
155 return (rf_DiskReadFunc(node));
156 }
157
158 int
159 rf_DiskReadMirrorUndoFunc(node)
160 RF_DagNode_t *node;
161 {
162 return (0);
163 }
164
165
166
167 #if RF_INCLUDE_PARITYLOGGING > 0
168 /*****************************************************************************************
169 * the execution function associated with a parity log update node
170 ****************************************************************************************/
171 int
172 rf_ParityLogUpdateFunc(node)
173 RF_DagNode_t *node;
174 {
175 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
176 caddr_t buf = (caddr_t) node->params[1].p;
177 RF_ParityLogData_t *logData;
178 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
179 RF_Etimer_t timer;
180
181 if (node->dagHdr->status == rf_enable) {
182 RF_ETIMER_START(timer);
183 logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
184 (RF_Raid_t *) (node->dagHdr->raidPtr),
185 node->wakeFunc, (void *) node,
186 node->dagHdr->tracerec, timer);
187 if (logData)
188 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
189 else {
190 RF_ETIMER_STOP(timer);
191 RF_ETIMER_EVAL(timer);
192 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
193 (node->wakeFunc) (node, ENOMEM);
194 }
195 }
196 return (0);
197 }
198
199
200 /*****************************************************************************************
201 * the execution function associated with a parity log overwrite node
202 ****************************************************************************************/
203 int
204 rf_ParityLogOverwriteFunc(node)
205 RF_DagNode_t *node;
206 {
207 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
208 caddr_t buf = (caddr_t) node->params[1].p;
209 RF_ParityLogData_t *logData;
210 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
211 RF_Etimer_t timer;
212
213 if (node->dagHdr->status == rf_enable) {
214 RF_ETIMER_START(timer);
215 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
216 node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
217 if (logData)
218 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
219 else {
220 RF_ETIMER_STOP(timer);
221 RF_ETIMER_EVAL(timer);
222 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
223 (node->wakeFunc) (node, ENOMEM);
224 }
225 }
226 return (0);
227 }
228 #else /* RF_INCLUDE_PARITYLOGGING > 0 */
229
230 int
231 rf_ParityLogUpdateFunc(node)
232 RF_DagNode_t *node;
233 {
234 return (0);
235 }
236 int
237 rf_ParityLogOverwriteFunc(node)
238 RF_DagNode_t *node;
239 {
240 return (0);
241 }
242 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
243
244 int
245 rf_ParityLogUpdateUndoFunc(node)
246 RF_DagNode_t *node;
247 {
248 return (0);
249 }
250
251 int
252 rf_ParityLogOverwriteUndoFunc(node)
253 RF_DagNode_t *node;
254 {
255 return (0);
256 }
257 /*****************************************************************************************
258 * the execution function associated with a NOP node
259 ****************************************************************************************/
260 int
261 rf_NullNodeFunc(node)
262 RF_DagNode_t *node;
263 {
264 node->status = rf_good;
265 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
266 }
267
268 int
269 rf_NullNodeUndoFunc(node)
270 RF_DagNode_t *node;
271 {
272 node->status = rf_undone;
273 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
274 }
275
276
277 /*****************************************************************************************
278 * the execution function associated with a disk-read node
279 ****************************************************************************************/
280 int
281 rf_DiskReadFuncForThreads(node)
282 RF_DagNode_t *node;
283 {
284 RF_DiskQueueData_t *req;
285 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
286 caddr_t buf = (caddr_t) node->params[1].p;
287 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
288 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
289 unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
290 unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
291 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
292 RF_DiskQueueDataFlags_t flags = 0;
293 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
294 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
295 void *b_proc = NULL;
296
297 if (node->dagHdr->bp)
298 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
299
300 RF_ASSERT(!(lock && unlock));
301 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
302 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
303
304 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
305 buf, parityStripeID, which_ru,
306 (int (*) (void *, int)) node->wakeFunc,
307 node, NULL, node->dagHdr->tracerec,
308 (void *) (node->dagHdr->raidPtr), flags, b_proc);
309 if (!req) {
310 (node->wakeFunc) (node, ENOMEM);
311 } else {
312 node->dagFuncData = (void *) req;
313 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
314 }
315 return (0);
316 }
317
318
319 /*****************************************************************************************
320 * the execution function associated with a disk-write node
321 ****************************************************************************************/
322 int
323 rf_DiskWriteFuncForThreads(node)
324 RF_DagNode_t *node;
325 {
326 RF_DiskQueueData_t *req;
327 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
328 caddr_t buf = (caddr_t) node->params[1].p;
329 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
330 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
331 unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
332 unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
333 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
334 RF_DiskQueueDataFlags_t flags = 0;
335 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
336 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
337 void *b_proc = NULL;
338
339 if (node->dagHdr->bp)
340 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
341
342 /* normal processing (rollaway or forward recovery) begins here */
343 RF_ASSERT(!(lock && unlock));
344 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
345 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
346 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
347 buf, parityStripeID, which_ru,
348 (int (*) (void *, int)) node->wakeFunc,
349 (void *) node, NULL,
350 node->dagHdr->tracerec,
351 (void *) (node->dagHdr->raidPtr),
352 flags, b_proc);
353
354 if (!req) {
355 (node->wakeFunc) (node, ENOMEM);
356 } else {
357 node->dagFuncData = (void *) req;
358 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
359 }
360
361 return (0);
362 }
363 /*****************************************************************************************
364 * the undo function for disk nodes
365 * Note: this is not a proper undo of a write node, only locks are released.
366 * old data is not restored to disk!
367 ****************************************************************************************/
368 int
369 rf_DiskUndoFunc(node)
370 RF_DagNode_t *node;
371 {
372 RF_DiskQueueData_t *req;
373 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
374 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
375
376 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
377 0L, 0, NULL, 0L, 0,
378 (int (*) (void *, int)) node->wakeFunc,
379 (void *) node,
380 NULL, node->dagHdr->tracerec,
381 (void *) (node->dagHdr->raidPtr),
382 RF_UNLOCK_DISK_QUEUE, NULL);
383 if (!req)
384 (node->wakeFunc) (node, ENOMEM);
385 else {
386 node->dagFuncData = (void *) req;
387 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
388 }
389
390 return (0);
391 }
392 /*****************************************************************************************
393 * the execution function associated with an "unlock disk queue" node
394 ****************************************************************************************/
395 int
396 rf_DiskUnlockFuncForThreads(node)
397 RF_DagNode_t *node;
398 {
399 RF_DiskQueueData_t *req;
400 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
401 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
402
403 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
404 0L, 0, NULL, 0L, 0,
405 (int (*) (void *, int)) node->wakeFunc,
406 (void *) node,
407 NULL, node->dagHdr->tracerec,
408 (void *) (node->dagHdr->raidPtr),
409 RF_UNLOCK_DISK_QUEUE, NULL);
410 if (!req)
411 (node->wakeFunc) (node, ENOMEM);
412 else {
413 node->dagFuncData = (void *) req;
414 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
415 }
416
417 return (0);
418 }
419 /*****************************************************************************************
420 * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
421 * the routine is called to set the node status and inform the execution engine that
422 * the node has fired.
423 ****************************************************************************************/
424 int
425 rf_GenericWakeupFunc(node, status)
426 RF_DagNode_t *node;
427 int status;
428 {
429 switch (node->status) {
430 case rf_bwd1:
431 node->status = rf_bwd2;
432 if (node->dagFuncData)
433 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
434 return (rf_DiskWriteFuncForThreads(node));
435 break;
436 case rf_fired:
437 if (status)
438 node->status = rf_bad;
439 else
440 node->status = rf_good;
441 break;
442 case rf_recover:
443 /* probably should never reach this case */
444 if (status)
445 node->status = rf_panic;
446 else
447 node->status = rf_undone;
448 break;
449 default:
450 printf("rf_GenericWakeupFunc:");
451 printf("node->status is %d,", node->status);
452 printf("status is %d \n", status);
453 RF_PANIC();
454 break;
455 }
456 if (node->dagFuncData)
457 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
458 return (rf_FinishNode(node, RF_INTR_CONTEXT));
459 }
460
461
462 /*****************************************************************************************
463 * there are three distinct types of xor nodes
464 * A "regular xor" is used in the fault-free case where the access spans a complete
465 * stripe unit. It assumes that the result buffer is one full stripe unit in size,
466 * and uses the stripe-unit-offset values that it computes from the PDAs to determine
467 * where within the stripe unit to XOR each argument buffer.
468 *
469 * A "simple xor" is used in the fault-free case where the access touches only a portion
470 * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
471 * buffers are of the same size and have the same stripe unit offset.
472 *
473 * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
474 * xor function except that it takes the failed PDA as an additional parameter, and
475 * uses it to determine what portions of the argument buffers need to be xor'd into
476 * the result buffer, and where in the result buffer they should go.
477 ****************************************************************************************/
478
479 /* xor the params together and store the result in the result field.
480 * assume the result field points to a buffer that is the size of one SU,
481 * and use the pda params to determine where within the buffer to XOR
482 * the input buffers.
483 */
484 int
485 rf_RegularXorFunc(node)
486 RF_DagNode_t *node;
487 {
488 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
489 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
490 RF_Etimer_t timer;
491 int i, retcode;
492
493 retcode = 0;
494 if (node->dagHdr->status == rf_enable) {
495 /* don't do the XOR if the input is the same as the output */
496 RF_ETIMER_START(timer);
497 for (i = 0; i < node->numParams - 1; i += 2)
498 if (node->params[i + 1].p != node->results[0]) {
499 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
500 (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
501 }
502 RF_ETIMER_STOP(timer);
503 RF_ETIMER_EVAL(timer);
504 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
505 }
506 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
507 * explicitly since no
508 * I/O in this node */
509 }
510 /* xor the inputs into the result buffer, ignoring placement issues */
511 int
512 rf_SimpleXorFunc(node)
513 RF_DagNode_t *node;
514 {
515 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
516 int i, retcode = 0;
517 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
518 RF_Etimer_t timer;
519
520 if (node->dagHdr->status == rf_enable) {
521 RF_ETIMER_START(timer);
522 /* don't do the XOR if the input is the same as the output */
523 for (i = 0; i < node->numParams - 1; i += 2)
524 if (node->params[i + 1].p != node->results[0]) {
525 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
526 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
527 (struct buf *) node->dagHdr->bp);
528 }
529 RF_ETIMER_STOP(timer);
530 RF_ETIMER_EVAL(timer);
531 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
532 }
533 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
534 * explicitly since no
535 * I/O in this node */
536 }
537 /* this xor is used by the degraded-mode dag functions to recover lost data.
538 * the second-to-last parameter is the PDA for the failed portion of the access.
539 * the code here looks at this PDA and assumes that the xor target buffer is
540 * equal in size to the number of sectors in the failed PDA. It then uses
541 * the other PDAs in the parameter list to determine where within the target
542 * buffer the corresponding data should be xored.
543 */
544 int
545 rf_RecoveryXorFunc(node)
546 RF_DagNode_t *node;
547 {
548 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
549 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
550 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
551 int i, retcode = 0;
552 RF_PhysDiskAddr_t *pda;
553 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
554 char *srcbuf, *destbuf;
555 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
556 RF_Etimer_t timer;
557
558 if (node->dagHdr->status == rf_enable) {
559 RF_ETIMER_START(timer);
560 for (i = 0; i < node->numParams - 2; i += 2)
561 if (node->params[i + 1].p != node->results[0]) {
562 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
563 srcbuf = (char *) node->params[i + 1].p;
564 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
565 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
566 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
567 }
568 RF_ETIMER_STOP(timer);
569 RF_ETIMER_EVAL(timer);
570 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
571 }
572 return (rf_GenericWakeupFunc(node, retcode));
573 }
574 /*****************************************************************************************
575 * The next three functions are utilities used by the above xor-execution functions.
576 ****************************************************************************************/
577
578
579 /*
580 * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
581 * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
582 * access described by pda is one SU in size (which by implication means it's SU-aligned),
583 * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
584 * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
585 */
586
587 int
588 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
589 RF_Raid_t *raidPtr;
590 RF_PhysDiskAddr_t *pda;
591 char *srcbuf;
592 char *targbuf;
593 void *bp;
594 {
595 char *targptr;
596 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
597 int SUOffset = pda->startSector % sectPerSU;
598 int length, retcode = 0;
599
600 RF_ASSERT(pda->numSector <= sectPerSU);
601
602 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
603 length = rf_RaidAddressToByte(raidPtr, pda->numSector);
604 retcode = rf_bxor(srcbuf, targptr, length, bp);
605 return (retcode);
606 }
607 /* it really should be the case that the buffer pointers (returned by malloc)
608 * are aligned to the natural word size of the machine, so this is the only
609 * case we optimize for. The length should always be a multiple of the sector
610 * size, so there should be no problem with leftover bytes at the end.
611 */
612 int
613 rf_bxor(src, dest, len, bp)
614 char *src;
615 char *dest;
616 int len;
617 void *bp;
618 {
619 unsigned mask = sizeof(long) - 1, retcode = 0;
620
621 if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
622 retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
623 } else {
624 RF_ASSERT(0);
625 }
626 return (retcode);
627 }
628 /* map a user buffer into kernel space, if necessary */
629 #define REMAP_VA(_bp,x,y) (y) = (x)
630
631 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
632 * We don't want to assume anything about which input buffers are in kernel/user
633 * space, nor about their alignment, so in each loop we compute the maximum number
634 * of bytes that we can xor without crossing any page boundaries, and do only this many
635 * bytes before the next remap.
636 */
637 int
638 rf_longword_bxor(src, dest, len, bp)
639 register unsigned long *src;
640 register unsigned long *dest;
641 int len; /* longwords */
642 void *bp;
643 {
644 register unsigned long *end = src + len;
645 register unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
646 register unsigned long *pg_src, *pg_dest; /* per-page source/dest
647 * pointers */
648 int longs_this_time;/* # longwords to xor in the current iteration */
649
650 REMAP_VA(bp, src, pg_src);
651 REMAP_VA(bp, dest, pg_dest);
652 if (!pg_src || !pg_dest)
653 return (EFAULT);
654
655 while (len >= 4) {
656 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
657 src += longs_this_time;
658 dest += longs_this_time;
659 len -= longs_this_time;
660 while (longs_this_time >= 4) {
661 d0 = pg_dest[0];
662 d1 = pg_dest[1];
663 d2 = pg_dest[2];
664 d3 = pg_dest[3];
665 s0 = pg_src[0];
666 s1 = pg_src[1];
667 s2 = pg_src[2];
668 s3 = pg_src[3];
669 pg_dest[0] = d0 ^ s0;
670 pg_dest[1] = d1 ^ s1;
671 pg_dest[2] = d2 ^ s2;
672 pg_dest[3] = d3 ^ s3;
673 pg_src += 4;
674 pg_dest += 4;
675 longs_this_time -= 4;
676 }
677 while (longs_this_time > 0) { /* cannot cross any page
678 * boundaries here */
679 *pg_dest++ ^= *pg_src++;
680 longs_this_time--;
681 }
682
683 /* either we're done, or we've reached a page boundary on one
684 * (or possibly both) of the pointers */
685 if (len) {
686 if (RF_PAGE_ALIGNED(src))
687 REMAP_VA(bp, src, pg_src);
688 if (RF_PAGE_ALIGNED(dest))
689 REMAP_VA(bp, dest, pg_dest);
690 if (!pg_src || !pg_dest)
691 return (EFAULT);
692 }
693 }
694 while (src < end) {
695 *pg_dest++ ^= *pg_src++;
696 src++;
697 dest++;
698 len--;
699 if (RF_PAGE_ALIGNED(src))
700 REMAP_VA(bp, src, pg_src);
701 if (RF_PAGE_ALIGNED(dest))
702 REMAP_VA(bp, dest, pg_dest);
703 }
704 RF_ASSERT(len == 0);
705 return (0);
706 }
707
708
709 /*
710 dst = a ^ b ^ c;
711 a may equal dst
712 see comment above longword_bxor
713 */
714 int
715 rf_longword_bxor3(dst, a, b, c, len, bp)
716 register unsigned long *dst;
717 register unsigned long *a;
718 register unsigned long *b;
719 register unsigned long *c;
720 int len; /* length in longwords */
721 void *bp;
722 {
723 unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
724 register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
725 * pointers */
726 int longs_this_time;/* # longs to xor in the current iteration */
727 char dst_is_a = 0;
728
729 REMAP_VA(bp, a, pg_a);
730 REMAP_VA(bp, b, pg_b);
731 REMAP_VA(bp, c, pg_c);
732 if (a == dst) {
733 pg_dst = pg_a;
734 dst_is_a = 1;
735 } else {
736 REMAP_VA(bp, dst, pg_dst);
737 }
738
739 /* align dest to cache line. Can't cross a pg boundary on dst here. */
740 while ((((unsigned long) pg_dst) & 0x1f)) {
741 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
742 dst++;
743 a++;
744 b++;
745 c++;
746 if (RF_PAGE_ALIGNED(a)) {
747 REMAP_VA(bp, a, pg_a);
748 if (!pg_a)
749 return (EFAULT);
750 }
751 if (RF_PAGE_ALIGNED(b)) {
752 REMAP_VA(bp, a, pg_b);
753 if (!pg_b)
754 return (EFAULT);
755 }
756 if (RF_PAGE_ALIGNED(c)) {
757 REMAP_VA(bp, a, pg_c);
758 if (!pg_c)
759 return (EFAULT);
760 }
761 len--;
762 }
763
764 while (len > 4) {
765 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
766 a += longs_this_time;
767 b += longs_this_time;
768 c += longs_this_time;
769 dst += longs_this_time;
770 len -= longs_this_time;
771 while (longs_this_time >= 4) {
772 a0 = pg_a[0];
773 longs_this_time -= 4;
774
775 a1 = pg_a[1];
776 a2 = pg_a[2];
777
778 a3 = pg_a[3];
779 pg_a += 4;
780
781 b0 = pg_b[0];
782 b1 = pg_b[1];
783
784 b2 = pg_b[2];
785 b3 = pg_b[3];
786 /* start dual issue */
787 a0 ^= b0;
788 b0 = pg_c[0];
789
790 pg_b += 4;
791 a1 ^= b1;
792
793 a2 ^= b2;
794 a3 ^= b3;
795
796 b1 = pg_c[1];
797 a0 ^= b0;
798
799 b2 = pg_c[2];
800 a1 ^= b1;
801
802 b3 = pg_c[3];
803 a2 ^= b2;
804
805 pg_dst[0] = a0;
806 a3 ^= b3;
807 pg_dst[1] = a1;
808 pg_c += 4;
809 pg_dst[2] = a2;
810 pg_dst[3] = a3;
811 pg_dst += 4;
812 }
813 while (longs_this_time > 0) { /* cannot cross any page
814 * boundaries here */
815 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
816 longs_this_time--;
817 }
818
819 if (len) {
820 if (RF_PAGE_ALIGNED(a)) {
821 REMAP_VA(bp, a, pg_a);
822 if (!pg_a)
823 return (EFAULT);
824 if (dst_is_a)
825 pg_dst = pg_a;
826 }
827 if (RF_PAGE_ALIGNED(b)) {
828 REMAP_VA(bp, b, pg_b);
829 if (!pg_b)
830 return (EFAULT);
831 }
832 if (RF_PAGE_ALIGNED(c)) {
833 REMAP_VA(bp, c, pg_c);
834 if (!pg_c)
835 return (EFAULT);
836 }
837 if (!dst_is_a)
838 if (RF_PAGE_ALIGNED(dst)) {
839 REMAP_VA(bp, dst, pg_dst);
840 if (!pg_dst)
841 return (EFAULT);
842 }
843 }
844 }
845 while (len) {
846 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
847 dst++;
848 a++;
849 b++;
850 c++;
851 if (RF_PAGE_ALIGNED(a)) {
852 REMAP_VA(bp, a, pg_a);
853 if (!pg_a)
854 return (EFAULT);
855 if (dst_is_a)
856 pg_dst = pg_a;
857 }
858 if (RF_PAGE_ALIGNED(b)) {
859 REMAP_VA(bp, b, pg_b);
860 if (!pg_b)
861 return (EFAULT);
862 }
863 if (RF_PAGE_ALIGNED(c)) {
864 REMAP_VA(bp, c, pg_c);
865 if (!pg_c)
866 return (EFAULT);
867 }
868 if (!dst_is_a)
869 if (RF_PAGE_ALIGNED(dst)) {
870 REMAP_VA(bp, dst, pg_dst);
871 if (!pg_dst)
872 return (EFAULT);
873 }
874 len--;
875 }
876 return (0);
877 }
878
879 int
880 rf_bxor3(dst, a, b, c, len, bp)
881 register unsigned char *dst;
882 register unsigned char *a;
883 register unsigned char *b;
884 register unsigned char *c;
885 unsigned long len;
886 void *bp;
887 {
888 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
889
890 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
891 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
892 }
893