rf_dagfuncs.c revision 1.8 1 /* $NetBSD: rf_dagfuncs.c,v 1.8 2001/11/13 07:11:13 lukem Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 * get set to "good" or "bad", and "FinishNode" to be called. In the
35 * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 * the node execution function can do these two things directly. In
37 * the case of nodes that have to wait for some event (a disk read to
38 * complete, a lock to be released, etc) to occur before they can
39 * complete, this is typically achieved by having whatever module
40 * is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 * and NOP out their operations if the status is not "enable". However,
43 * execution functions that release resources must be sure to release
44 * them even when they NOP out the function that would use them.
45 * Functions that acquire resources should go ahead and acquire them
46 * even when they NOP, so that a downstream release node will not have
47 * to check to find out whether or not the acquire was suppressed.
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.8 2001/11/13 07:11:13 lukem Exp $");
52
53 #include <sys/param.h>
54 #include <sys/ioctl.h>
55
56 #include "rf_archs.h"
57 #include "rf_raid.h"
58 #include "rf_dag.h"
59 #include "rf_layout.h"
60 #include "rf_etimer.h"
61 #include "rf_acctrace.h"
62 #include "rf_diskqueue.h"
63 #include "rf_dagfuncs.h"
64 #include "rf_general.h"
65 #include "rf_engine.h"
66 #include "rf_dagutils.h"
67
68 #include "rf_kintf.h"
69
70 #if RF_INCLUDE_PARITYLOGGING > 0
71 #include "rf_paritylog.h"
72 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
73
74 int (*rf_DiskReadFunc) (RF_DagNode_t *);
75 int (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79 int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80 int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81 int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82 int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83
84 /*****************************************************************************************
85 * main (only) configuration routine for this module
86 ****************************************************************************************/
87 int
88 rf_ConfigureDAGFuncs(listp)
89 RF_ShutdownList_t **listp;
90 {
91 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92 rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93 rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95 rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96 rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97 rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101 return (0);
102 }
103
104
105
106 /*****************************************************************************************
107 * the execution function associated with a terminate node
108 ****************************************************************************************/
109 int
110 rf_TerminateFunc(node)
111 RF_DagNode_t *node;
112 {
113 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
114 node->status = rf_good;
115 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
116 }
117
118 int
119 rf_TerminateUndoFunc(node)
120 RF_DagNode_t *node;
121 {
122 return (0);
123 }
124
125
126 /*****************************************************************************************
127 * execution functions associated with a mirror node
128 *
129 * parameters:
130 *
131 * 0 - physical disk addres of data
132 * 1 - buffer for holding read data
133 * 2 - parity stripe ID
134 * 3 - flags
135 * 4 - physical disk address of mirror (parity)
136 *
137 ****************************************************************************************/
138
139 int
140 rf_DiskReadMirrorIdleFunc(node)
141 RF_DagNode_t *node;
142 {
143 /* select the mirror copy with the shortest queue and fill in node
144 * parameters with physical disk address */
145
146 rf_SelectMirrorDiskIdle(node);
147 return (rf_DiskReadFunc(node));
148 }
149
150 int
151 rf_DiskReadMirrorPartitionFunc(node)
152 RF_DagNode_t *node;
153 {
154 /* select the mirror copy with the shortest queue and fill in node
155 * parameters with physical disk address */
156
157 rf_SelectMirrorDiskPartition(node);
158 return (rf_DiskReadFunc(node));
159 }
160
161 int
162 rf_DiskReadMirrorUndoFunc(node)
163 RF_DagNode_t *node;
164 {
165 return (0);
166 }
167
168
169
170 #if RF_INCLUDE_PARITYLOGGING > 0
171 /*****************************************************************************************
172 * the execution function associated with a parity log update node
173 ****************************************************************************************/
174 int
175 rf_ParityLogUpdateFunc(node)
176 RF_DagNode_t *node;
177 {
178 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
179 caddr_t buf = (caddr_t) node->params[1].p;
180 RF_ParityLogData_t *logData;
181 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
182 RF_Etimer_t timer;
183
184 if (node->dagHdr->status == rf_enable) {
185 RF_ETIMER_START(timer);
186 logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
187 (RF_Raid_t *) (node->dagHdr->raidPtr),
188 node->wakeFunc, (void *) node,
189 node->dagHdr->tracerec, timer);
190 if (logData)
191 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
192 else {
193 RF_ETIMER_STOP(timer);
194 RF_ETIMER_EVAL(timer);
195 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
196 (node->wakeFunc) (node, ENOMEM);
197 }
198 }
199 return (0);
200 }
201
202
203 /*****************************************************************************************
204 * the execution function associated with a parity log overwrite node
205 ****************************************************************************************/
206 int
207 rf_ParityLogOverwriteFunc(node)
208 RF_DagNode_t *node;
209 {
210 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
211 caddr_t buf = (caddr_t) node->params[1].p;
212 RF_ParityLogData_t *logData;
213 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
214 RF_Etimer_t timer;
215
216 if (node->dagHdr->status == rf_enable) {
217 RF_ETIMER_START(timer);
218 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
219 node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
220 if (logData)
221 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
222 else {
223 RF_ETIMER_STOP(timer);
224 RF_ETIMER_EVAL(timer);
225 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226 (node->wakeFunc) (node, ENOMEM);
227 }
228 }
229 return (0);
230 }
231 #else /* RF_INCLUDE_PARITYLOGGING > 0 */
232
233 int
234 rf_ParityLogUpdateFunc(node)
235 RF_DagNode_t *node;
236 {
237 return (0);
238 }
239 int
240 rf_ParityLogOverwriteFunc(node)
241 RF_DagNode_t *node;
242 {
243 return (0);
244 }
245 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
246
247 int
248 rf_ParityLogUpdateUndoFunc(node)
249 RF_DagNode_t *node;
250 {
251 return (0);
252 }
253
254 int
255 rf_ParityLogOverwriteUndoFunc(node)
256 RF_DagNode_t *node;
257 {
258 return (0);
259 }
260 /*****************************************************************************************
261 * the execution function associated with a NOP node
262 ****************************************************************************************/
263 int
264 rf_NullNodeFunc(node)
265 RF_DagNode_t *node;
266 {
267 node->status = rf_good;
268 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
269 }
270
271 int
272 rf_NullNodeUndoFunc(node)
273 RF_DagNode_t *node;
274 {
275 node->status = rf_undone;
276 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
277 }
278
279
280 /*****************************************************************************************
281 * the execution function associated with a disk-read node
282 ****************************************************************************************/
283 int
284 rf_DiskReadFuncForThreads(node)
285 RF_DagNode_t *node;
286 {
287 RF_DiskQueueData_t *req;
288 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
289 caddr_t buf = (caddr_t) node->params[1].p;
290 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
291 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
292 unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
293 unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
294 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
295 RF_DiskQueueDataFlags_t flags = 0;
296 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
297 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
298 void *b_proc = NULL;
299
300 if (node->dagHdr->bp)
301 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
302
303 RF_ASSERT(!(lock && unlock));
304 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
305 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
306
307 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
308 buf, parityStripeID, which_ru,
309 (int (*) (void *, int)) node->wakeFunc,
310 node, NULL, node->dagHdr->tracerec,
311 (void *) (node->dagHdr->raidPtr), flags, b_proc);
312 if (!req) {
313 (node->wakeFunc) (node, ENOMEM);
314 } else {
315 node->dagFuncData = (void *) req;
316 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
317 }
318 return (0);
319 }
320
321
322 /*****************************************************************************************
323 * the execution function associated with a disk-write node
324 ****************************************************************************************/
325 int
326 rf_DiskWriteFuncForThreads(node)
327 RF_DagNode_t *node;
328 {
329 RF_DiskQueueData_t *req;
330 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
331 caddr_t buf = (caddr_t) node->params[1].p;
332 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
333 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
334 unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
335 unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
336 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
337 RF_DiskQueueDataFlags_t flags = 0;
338 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
339 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
340 void *b_proc = NULL;
341
342 if (node->dagHdr->bp)
343 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
344
345 /* normal processing (rollaway or forward recovery) begins here */
346 RF_ASSERT(!(lock && unlock));
347 flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
348 flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
349 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
350 buf, parityStripeID, which_ru,
351 (int (*) (void *, int)) node->wakeFunc,
352 (void *) node, NULL,
353 node->dagHdr->tracerec,
354 (void *) (node->dagHdr->raidPtr),
355 flags, b_proc);
356
357 if (!req) {
358 (node->wakeFunc) (node, ENOMEM);
359 } else {
360 node->dagFuncData = (void *) req;
361 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
362 }
363
364 return (0);
365 }
366 /*****************************************************************************************
367 * the undo function for disk nodes
368 * Note: this is not a proper undo of a write node, only locks are released.
369 * old data is not restored to disk!
370 ****************************************************************************************/
371 int
372 rf_DiskUndoFunc(node)
373 RF_DagNode_t *node;
374 {
375 RF_DiskQueueData_t *req;
376 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
377 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
378
379 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
380 0L, 0, NULL, 0L, 0,
381 (int (*) (void *, int)) node->wakeFunc,
382 (void *) node,
383 NULL, node->dagHdr->tracerec,
384 (void *) (node->dagHdr->raidPtr),
385 RF_UNLOCK_DISK_QUEUE, NULL);
386 if (!req)
387 (node->wakeFunc) (node, ENOMEM);
388 else {
389 node->dagFuncData = (void *) req;
390 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
391 }
392
393 return (0);
394 }
395 /*****************************************************************************************
396 * the execution function associated with an "unlock disk queue" node
397 ****************************************************************************************/
398 int
399 rf_DiskUnlockFuncForThreads(node)
400 RF_DagNode_t *node;
401 {
402 RF_DiskQueueData_t *req;
403 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
404 RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
405
406 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
407 0L, 0, NULL, 0L, 0,
408 (int (*) (void *, int)) node->wakeFunc,
409 (void *) node,
410 NULL, node->dagHdr->tracerec,
411 (void *) (node->dagHdr->raidPtr),
412 RF_UNLOCK_DISK_QUEUE, NULL);
413 if (!req)
414 (node->wakeFunc) (node, ENOMEM);
415 else {
416 node->dagFuncData = (void *) req;
417 rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
418 }
419
420 return (0);
421 }
422 /*****************************************************************************************
423 * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
424 * the routine is called to set the node status and inform the execution engine that
425 * the node has fired.
426 ****************************************************************************************/
427 int
428 rf_GenericWakeupFunc(node, status)
429 RF_DagNode_t *node;
430 int status;
431 {
432 switch (node->status) {
433 case rf_bwd1:
434 node->status = rf_bwd2;
435 if (node->dagFuncData)
436 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
437 return (rf_DiskWriteFuncForThreads(node));
438 break;
439 case rf_fired:
440 if (status)
441 node->status = rf_bad;
442 else
443 node->status = rf_good;
444 break;
445 case rf_recover:
446 /* probably should never reach this case */
447 if (status)
448 node->status = rf_panic;
449 else
450 node->status = rf_undone;
451 break;
452 default:
453 printf("rf_GenericWakeupFunc:");
454 printf("node->status is %d,", node->status);
455 printf("status is %d \n", status);
456 RF_PANIC();
457 break;
458 }
459 if (node->dagFuncData)
460 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
461 return (rf_FinishNode(node, RF_INTR_CONTEXT));
462 }
463
464
465 /*****************************************************************************************
466 * there are three distinct types of xor nodes
467 * A "regular xor" is used in the fault-free case where the access spans a complete
468 * stripe unit. It assumes that the result buffer is one full stripe unit in size,
469 * and uses the stripe-unit-offset values that it computes from the PDAs to determine
470 * where within the stripe unit to XOR each argument buffer.
471 *
472 * A "simple xor" is used in the fault-free case where the access touches only a portion
473 * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
474 * buffers are of the same size and have the same stripe unit offset.
475 *
476 * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
477 * xor function except that it takes the failed PDA as an additional parameter, and
478 * uses it to determine what portions of the argument buffers need to be xor'd into
479 * the result buffer, and where in the result buffer they should go.
480 ****************************************************************************************/
481
482 /* xor the params together and store the result in the result field.
483 * assume the result field points to a buffer that is the size of one SU,
484 * and use the pda params to determine where within the buffer to XOR
485 * the input buffers.
486 */
487 int
488 rf_RegularXorFunc(node)
489 RF_DagNode_t *node;
490 {
491 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
492 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
493 RF_Etimer_t timer;
494 int i, retcode;
495
496 retcode = 0;
497 if (node->dagHdr->status == rf_enable) {
498 /* don't do the XOR if the input is the same as the output */
499 RF_ETIMER_START(timer);
500 for (i = 0; i < node->numParams - 1; i += 2)
501 if (node->params[i + 1].p != node->results[0]) {
502 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
503 (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
504 }
505 RF_ETIMER_STOP(timer);
506 RF_ETIMER_EVAL(timer);
507 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
508 }
509 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
510 * explicitly since no
511 * I/O in this node */
512 }
513 /* xor the inputs into the result buffer, ignoring placement issues */
514 int
515 rf_SimpleXorFunc(node)
516 RF_DagNode_t *node;
517 {
518 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
519 int i, retcode = 0;
520 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
521 RF_Etimer_t timer;
522
523 if (node->dagHdr->status == rf_enable) {
524 RF_ETIMER_START(timer);
525 /* don't do the XOR if the input is the same as the output */
526 for (i = 0; i < node->numParams - 1; i += 2)
527 if (node->params[i + 1].p != node->results[0]) {
528 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
529 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
530 (struct buf *) node->dagHdr->bp);
531 }
532 RF_ETIMER_STOP(timer);
533 RF_ETIMER_EVAL(timer);
534 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
535 }
536 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
537 * explicitly since no
538 * I/O in this node */
539 }
540 /* this xor is used by the degraded-mode dag functions to recover lost data.
541 * the second-to-last parameter is the PDA for the failed portion of the access.
542 * the code here looks at this PDA and assumes that the xor target buffer is
543 * equal in size to the number of sectors in the failed PDA. It then uses
544 * the other PDAs in the parameter list to determine where within the target
545 * buffer the corresponding data should be xored.
546 */
547 int
548 rf_RecoveryXorFunc(node)
549 RF_DagNode_t *node;
550 {
551 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
552 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
553 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
554 int i, retcode = 0;
555 RF_PhysDiskAddr_t *pda;
556 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
557 char *srcbuf, *destbuf;
558 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
559 RF_Etimer_t timer;
560
561 if (node->dagHdr->status == rf_enable) {
562 RF_ETIMER_START(timer);
563 for (i = 0; i < node->numParams - 2; i += 2)
564 if (node->params[i + 1].p != node->results[0]) {
565 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
566 srcbuf = (char *) node->params[i + 1].p;
567 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
568 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
569 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
570 }
571 RF_ETIMER_STOP(timer);
572 RF_ETIMER_EVAL(timer);
573 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
574 }
575 return (rf_GenericWakeupFunc(node, retcode));
576 }
577 /*****************************************************************************************
578 * The next three functions are utilities used by the above xor-execution functions.
579 ****************************************************************************************/
580
581
582 /*
583 * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
584 * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
585 * access described by pda is one SU in size (which by implication means it's SU-aligned),
586 * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
587 * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
588 */
589
590 int
591 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
592 RF_Raid_t *raidPtr;
593 RF_PhysDiskAddr_t *pda;
594 char *srcbuf;
595 char *targbuf;
596 void *bp;
597 {
598 char *targptr;
599 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
600 int SUOffset = pda->startSector % sectPerSU;
601 int length, retcode = 0;
602
603 RF_ASSERT(pda->numSector <= sectPerSU);
604
605 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
606 length = rf_RaidAddressToByte(raidPtr, pda->numSector);
607 retcode = rf_bxor(srcbuf, targptr, length, bp);
608 return (retcode);
609 }
610 /* it really should be the case that the buffer pointers (returned by malloc)
611 * are aligned to the natural word size of the machine, so this is the only
612 * case we optimize for. The length should always be a multiple of the sector
613 * size, so there should be no problem with leftover bytes at the end.
614 */
615 int
616 rf_bxor(src, dest, len, bp)
617 char *src;
618 char *dest;
619 int len;
620 void *bp;
621 {
622 unsigned mask = sizeof(long) - 1, retcode = 0;
623
624 if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
625 retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
626 } else {
627 RF_ASSERT(0);
628 }
629 return (retcode);
630 }
631 /* map a user buffer into kernel space, if necessary */
632 #define REMAP_VA(_bp,x,y) (y) = (x)
633
634 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
635 * We don't want to assume anything about which input buffers are in kernel/user
636 * space, nor about their alignment, so in each loop we compute the maximum number
637 * of bytes that we can xor without crossing any page boundaries, and do only this many
638 * bytes before the next remap.
639 */
640 int
641 rf_longword_bxor(src, dest, len, bp)
642 unsigned long *src;
643 unsigned long *dest;
644 int len; /* longwords */
645 void *bp;
646 {
647 unsigned long *end = src + len;
648 unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
649 unsigned long *pg_src, *pg_dest; /* per-page source/dest
650 * pointers */
651 int longs_this_time;/* # longwords to xor in the current iteration */
652
653 REMAP_VA(bp, src, pg_src);
654 REMAP_VA(bp, dest, pg_dest);
655 if (!pg_src || !pg_dest)
656 return (EFAULT);
657
658 while (len >= 4) {
659 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
660 src += longs_this_time;
661 dest += longs_this_time;
662 len -= longs_this_time;
663 while (longs_this_time >= 4) {
664 d0 = pg_dest[0];
665 d1 = pg_dest[1];
666 d2 = pg_dest[2];
667 d3 = pg_dest[3];
668 s0 = pg_src[0];
669 s1 = pg_src[1];
670 s2 = pg_src[2];
671 s3 = pg_src[3];
672 pg_dest[0] = d0 ^ s0;
673 pg_dest[1] = d1 ^ s1;
674 pg_dest[2] = d2 ^ s2;
675 pg_dest[3] = d3 ^ s3;
676 pg_src += 4;
677 pg_dest += 4;
678 longs_this_time -= 4;
679 }
680 while (longs_this_time > 0) { /* cannot cross any page
681 * boundaries here */
682 *pg_dest++ ^= *pg_src++;
683 longs_this_time--;
684 }
685
686 /* either we're done, or we've reached a page boundary on one
687 * (or possibly both) of the pointers */
688 if (len) {
689 if (RF_PAGE_ALIGNED(src))
690 REMAP_VA(bp, src, pg_src);
691 if (RF_PAGE_ALIGNED(dest))
692 REMAP_VA(bp, dest, pg_dest);
693 if (!pg_src || !pg_dest)
694 return (EFAULT);
695 }
696 }
697 while (src < end) {
698 *pg_dest++ ^= *pg_src++;
699 src++;
700 dest++;
701 len--;
702 if (RF_PAGE_ALIGNED(src))
703 REMAP_VA(bp, src, pg_src);
704 if (RF_PAGE_ALIGNED(dest))
705 REMAP_VA(bp, dest, pg_dest);
706 }
707 RF_ASSERT(len == 0);
708 return (0);
709 }
710
711
712 /*
713 dst = a ^ b ^ c;
714 a may equal dst
715 see comment above longword_bxor
716 */
717 int
718 rf_longword_bxor3(dst, a, b, c, len, bp)
719 unsigned long *dst;
720 unsigned long *a;
721 unsigned long *b;
722 unsigned long *c;
723 int len; /* length in longwords */
724 void *bp;
725 {
726 unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
727 unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
728 * pointers */
729 int longs_this_time;/* # longs to xor in the current iteration */
730 char dst_is_a = 0;
731
732 REMAP_VA(bp, a, pg_a);
733 REMAP_VA(bp, b, pg_b);
734 REMAP_VA(bp, c, pg_c);
735 if (a == dst) {
736 pg_dst = pg_a;
737 dst_is_a = 1;
738 } else {
739 REMAP_VA(bp, dst, pg_dst);
740 }
741
742 /* align dest to cache line. Can't cross a pg boundary on dst here. */
743 while ((((unsigned long) pg_dst) & 0x1f)) {
744 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
745 dst++;
746 a++;
747 b++;
748 c++;
749 if (RF_PAGE_ALIGNED(a)) {
750 REMAP_VA(bp, a, pg_a);
751 if (!pg_a)
752 return (EFAULT);
753 }
754 if (RF_PAGE_ALIGNED(b)) {
755 REMAP_VA(bp, a, pg_b);
756 if (!pg_b)
757 return (EFAULT);
758 }
759 if (RF_PAGE_ALIGNED(c)) {
760 REMAP_VA(bp, a, pg_c);
761 if (!pg_c)
762 return (EFAULT);
763 }
764 len--;
765 }
766
767 while (len > 4) {
768 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
769 a += longs_this_time;
770 b += longs_this_time;
771 c += longs_this_time;
772 dst += longs_this_time;
773 len -= longs_this_time;
774 while (longs_this_time >= 4) {
775 a0 = pg_a[0];
776 longs_this_time -= 4;
777
778 a1 = pg_a[1];
779 a2 = pg_a[2];
780
781 a3 = pg_a[3];
782 pg_a += 4;
783
784 b0 = pg_b[0];
785 b1 = pg_b[1];
786
787 b2 = pg_b[2];
788 b3 = pg_b[3];
789 /* start dual issue */
790 a0 ^= b0;
791 b0 = pg_c[0];
792
793 pg_b += 4;
794 a1 ^= b1;
795
796 a2 ^= b2;
797 a3 ^= b3;
798
799 b1 = pg_c[1];
800 a0 ^= b0;
801
802 b2 = pg_c[2];
803 a1 ^= b1;
804
805 b3 = pg_c[3];
806 a2 ^= b2;
807
808 pg_dst[0] = a0;
809 a3 ^= b3;
810 pg_dst[1] = a1;
811 pg_c += 4;
812 pg_dst[2] = a2;
813 pg_dst[3] = a3;
814 pg_dst += 4;
815 }
816 while (longs_this_time > 0) { /* cannot cross any page
817 * boundaries here */
818 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
819 longs_this_time--;
820 }
821
822 if (len) {
823 if (RF_PAGE_ALIGNED(a)) {
824 REMAP_VA(bp, a, pg_a);
825 if (!pg_a)
826 return (EFAULT);
827 if (dst_is_a)
828 pg_dst = pg_a;
829 }
830 if (RF_PAGE_ALIGNED(b)) {
831 REMAP_VA(bp, b, pg_b);
832 if (!pg_b)
833 return (EFAULT);
834 }
835 if (RF_PAGE_ALIGNED(c)) {
836 REMAP_VA(bp, c, pg_c);
837 if (!pg_c)
838 return (EFAULT);
839 }
840 if (!dst_is_a)
841 if (RF_PAGE_ALIGNED(dst)) {
842 REMAP_VA(bp, dst, pg_dst);
843 if (!pg_dst)
844 return (EFAULT);
845 }
846 }
847 }
848 while (len) {
849 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
850 dst++;
851 a++;
852 b++;
853 c++;
854 if (RF_PAGE_ALIGNED(a)) {
855 REMAP_VA(bp, a, pg_a);
856 if (!pg_a)
857 return (EFAULT);
858 if (dst_is_a)
859 pg_dst = pg_a;
860 }
861 if (RF_PAGE_ALIGNED(b)) {
862 REMAP_VA(bp, b, pg_b);
863 if (!pg_b)
864 return (EFAULT);
865 }
866 if (RF_PAGE_ALIGNED(c)) {
867 REMAP_VA(bp, c, pg_c);
868 if (!pg_c)
869 return (EFAULT);
870 }
871 if (!dst_is_a)
872 if (RF_PAGE_ALIGNED(dst)) {
873 REMAP_VA(bp, dst, pg_dst);
874 if (!pg_dst)
875 return (EFAULT);
876 }
877 len--;
878 }
879 return (0);
880 }
881
882 int
883 rf_bxor3(dst, a, b, c, len, bp)
884 unsigned char *dst;
885 unsigned char *a;
886 unsigned char *b;
887 unsigned char *c;
888 unsigned long len;
889 void *bp;
890 {
891 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
892
893 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
894 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
895 }
896