1 1.58 oster /* $NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $ */ 2 1.1 oster /* 3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University. 4 1.1 oster * All rights reserved. 5 1.1 oster * 6 1.1 oster * Authors: Mark Holland, William V. Courtright II, Jim Zelenka 7 1.1 oster * 8 1.1 oster * Permission to use, copy, modify and distribute this software and 9 1.1 oster * its documentation is hereby granted, provided that both the copyright 10 1.1 oster * notice and this permission notice appear in all copies of the 11 1.1 oster * software, derivative works or modified versions, and any portions 12 1.1 oster * thereof, and that both notices appear in supporting documentation. 13 1.1 oster * 14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 1.1 oster * 18 1.1 oster * Carnegie Mellon requests users of this software to return to 19 1.1 oster * 20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU 21 1.1 oster * School of Computer Science 22 1.1 oster * Carnegie Mellon University 23 1.1 oster * Pittsburgh PA 15213-3890 24 1.1 oster * 25 1.1 oster * any improvements or extensions that they make and grant Carnegie the 26 1.1 oster * rights to redistribute these changes. 27 1.1 oster */ 28 1.1 oster 29 1.1 oster /****************************************************************************** 30 1.1 oster * 31 1.1 oster * rf_dagutils.c -- utility routines for manipulating dags 32 1.1 oster * 33 1.1 oster *****************************************************************************/ 34 1.9 lukem 35 1.9 lukem #include <sys/cdefs.h> 36 1.58 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $"); 37 1.1 oster 38 1.8 oster #include <dev/raidframe/raidframevar.h> 39 1.8 oster 40 1.1 oster #include "rf_archs.h" 41 1.1 oster #include "rf_threadstuff.h" 42 1.1 oster #include "rf_raid.h" 43 1.1 oster #include "rf_dag.h" 44 1.1 oster #include "rf_dagutils.h" 45 1.1 oster #include "rf_dagfuncs.h" 46 1.1 oster #include "rf_general.h" 47 1.1 oster #include "rf_map.h" 48 1.1 oster #include "rf_shutdown.h" 49 1.1 oster 50 1.1 oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_))) 51 1.1 oster 52 1.20 jdolecek const RF_RedFuncs_t rf_xorFuncs = { 53 1.1 oster rf_RegularXorFunc, "Reg Xr", 54 1.32 oster rf_SimpleXorFunc, "Simple Xr"}; 55 1.1 oster 56 1.20 jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = { 57 1.1 oster rf_RecoveryXorFunc, "Recovery Xr", 58 1.32 oster rf_RecoveryXorFunc, "Recovery Xr"}; 59 1.1 oster 60 1.13 oster #if RF_DEBUG_VALIDATE_DAG 61 1.1 oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int); 62 1.1 oster static void rf_PrintDAG(RF_DagHeader_t *); 63 1.12 oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *, 64 1.12 oster RF_DagNode_t **, int); 65 1.1 oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int); 66 1.1 oster static void rf_ValidateVisitedBits(RF_DagHeader_t *); 67 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */ 68 1.1 oster 69 1.40 oster /* The maximum number of nodes in a DAG is bounded by 70 1.40 oster 71 1.45 perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) + 72 1.40 oster (1 * 2 * layoutPtr->numParityCol) + 3 73 1.40 oster 74 1.40 oster which is: 2*RF_MAXCOL+1*2+1*2*2+3 75 1.40 oster 76 1.40 oster For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate 77 1.45 perry on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure 78 1.45 perry would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to 79 1.40 oster have a few kicking around. 80 1.40 oster */ 81 1.40 oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *)))) 82 1.40 oster 83 1.40 oster 84 1.1 oster /****************************************************************************** 85 1.1 oster * 86 1.1 oster * InitNode - initialize a dag node 87 1.1 oster * 88 1.1 oster * the size of the propList array is always the same as that of the 89 1.1 oster * successors array. 90 1.1 oster * 91 1.1 oster *****************************************************************************/ 92 1.40 oster void 93 1.23 oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit, 94 1.57 christos void (*doFunc) (RF_DagNode_t *node), 95 1.57 christos void (*undoFunc) (RF_DagNode_t *node), 96 1.57 christos void (*wakeFunc) (void *node, int status), 97 1.23 oster int nSucc, int nAnte, int nParam, int nResult, 98 1.46 christos RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist) 99 1.3 oster { 100 1.3 oster void **ptrs; 101 1.3 oster int nptrs; 102 1.58 oster RF_Raid_t *raidPtr; 103 1.58 oster 104 1.3 oster if (nAnte > RF_MAX_ANTECEDENTS) 105 1.3 oster RF_PANIC(); 106 1.3 oster node->status = initstatus; 107 1.3 oster node->commitNode = commit; 108 1.3 oster node->doFunc = doFunc; 109 1.3 oster node->undoFunc = undoFunc; 110 1.3 oster node->wakeFunc = wakeFunc; 111 1.3 oster node->numParams = nParam; 112 1.3 oster node->numResults = nResult; 113 1.3 oster node->numAntecedents = nAnte; 114 1.3 oster node->numAntDone = 0; 115 1.3 oster node->next = NULL; 116 1.45 perry /* node->list_next = NULL */ /* Don't touch this here! 117 1.45 perry It may already be 118 1.38 oster in use by the caller! */ 119 1.3 oster node->numSuccedents = nSucc; 120 1.3 oster node->name = name; 121 1.3 oster node->dagHdr = hdr; 122 1.40 oster node->big_dag_ptrs = NULL; 123 1.40 oster node->big_dag_params = NULL; 124 1.3 oster node->visited = 0; 125 1.3 oster 126 1.58 oster RF_ASSERT(hdr != NULL); 127 1.58 oster raidPtr = hdr->raidPtr; 128 1.58 oster 129 1.3 oster /* allocate all the pointers with one call to malloc */ 130 1.3 oster nptrs = nSucc + nAnte + nResult + nSucc; 131 1.3 oster 132 1.3 oster if (nptrs <= RF_DAG_PTRCACHESIZE) { 133 1.3 oster /* 134 1.3 oster * The dag_ptrs field of the node is basically some scribble 135 1.3 oster * space to be used here. We could get rid of it, and always 136 1.3 oster * allocate the range of pointers, but that's expensive. So, 137 1.3 oster * we pick a "common case" size for the pointer cache. Hopefully, 138 1.3 oster * we'll find that: 139 1.3 oster * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by 140 1.3 oster * only a little bit (least efficient case) 141 1.3 oster * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE 142 1.3 oster * (wasted memory) 143 1.3 oster */ 144 1.3 oster ptrs = (void **) node->dag_ptrs; 145 1.40 oster } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) { 146 1.58 oster node->big_dag_ptrs = rf_AllocDAGPCache(raidPtr); 147 1.40 oster ptrs = (void **) node->big_dag_ptrs; 148 1.3 oster } else { 149 1.55 christos ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist); 150 1.3 oster } 151 1.3 oster node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL; 152 1.3 oster node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL; 153 1.3 oster node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL; 154 1.3 oster node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL; 155 1.3 oster 156 1.3 oster if (nParam) { 157 1.3 oster if (nParam <= RF_DAG_PARAMCACHESIZE) { 158 1.3 oster node->params = (RF_DagParam_t *) node->dag_params; 159 1.40 oster } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) { 160 1.58 oster node->big_dag_params = rf_AllocDAGPCache(raidPtr); 161 1.40 oster node->params = node->big_dag_params; 162 1.3 oster } else { 163 1.55 christos node->params = RF_MallocAndAdd( 164 1.55 christos nParam * sizeof(*node->params), alist); 165 1.3 oster } 166 1.3 oster } else { 167 1.3 oster node->params = NULL; 168 1.3 oster } 169 1.1 oster } 170 1.1 oster 171 1.1 oster 172 1.1 oster 173 1.1 oster /****************************************************************************** 174 1.1 oster * 175 1.1 oster * allocation and deallocation routines 176 1.1 oster * 177 1.1 oster *****************************************************************************/ 178 1.1 oster 179 1.45 perry void 180 1.23 oster rf_FreeDAG(RF_DagHeader_t *dag_h) 181 1.3 oster { 182 1.3 oster RF_AccessStripeMapHeader_t *asmap, *t_asmap; 183 1.39 oster RF_PhysDiskAddr_t *pda; 184 1.38 oster RF_DagNode_t *tmpnode; 185 1.3 oster RF_DagHeader_t *nextDag; 186 1.58 oster RF_Raid_t *raidPtr; 187 1.3 oster 188 1.58 oster if (dag_h) 189 1.58 oster raidPtr = dag_h->raidPtr; 190 1.58 oster 191 1.3 oster while (dag_h) { 192 1.3 oster nextDag = dag_h->next; 193 1.3 oster rf_FreeAllocList(dag_h->allocList); 194 1.3 oster for (asmap = dag_h->asmList; asmap;) { 195 1.3 oster t_asmap = asmap; 196 1.3 oster asmap = asmap->next; 197 1.58 oster rf_FreeAccessStripeMap(raidPtr, t_asmap); 198 1.3 oster } 199 1.39 oster while (dag_h->pda_cleanup_list) { 200 1.39 oster pda = dag_h->pda_cleanup_list; 201 1.39 oster dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next; 202 1.58 oster rf_FreePhysDiskAddr(raidPtr, pda); 203 1.39 oster } 204 1.39 oster while (dag_h->nodes) { 205 1.38 oster tmpnode = dag_h->nodes; 206 1.38 oster dag_h->nodes = dag_h->nodes->list_next; 207 1.58 oster rf_FreeDAGNode(raidPtr, tmpnode); 208 1.38 oster } 209 1.58 oster rf_FreeDAGHeader(raidPtr, dag_h); 210 1.3 oster dag_h = nextDag; 211 1.3 oster } 212 1.3 oster } 213 1.3 oster 214 1.1 oster #define RF_MAX_FREE_DAGH 128 215 1.30 oster #define RF_MIN_FREE_DAGH 32 216 1.1 oster 217 1.38 oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */ 218 1.38 oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */ 219 1.38 oster 220 1.25 oster #define RF_MAX_FREE_DAGLIST 128 221 1.30 oster #define RF_MIN_FREE_DAGLIST 32 222 1.25 oster 223 1.40 oster #define RF_MAX_FREE_DAGPCACHE 128 224 1.40 oster #define RF_MIN_FREE_DAGPCACHE 8 225 1.40 oster 226 1.27 oster #define RF_MAX_FREE_FUNCLIST 128 227 1.30 oster #define RF_MIN_FREE_FUNCLIST 32 228 1.25 oster 229 1.41 oster #define RF_MAX_FREE_BUFFERS 128 230 1.41 oster #define RF_MIN_FREE_BUFFERS 32 231 1.41 oster 232 1.1 oster static void rf_ShutdownDAGs(void *); 233 1.45 perry static void 234 1.58 oster rf_ShutdownDAGs(void *arg) 235 1.1 oster { 236 1.58 oster RF_Raid_t *raidPtr; 237 1.58 oster 238 1.58 oster raidPtr = (RF_Raid_t *) arg; 239 1.58 oster 240 1.58 oster pool_destroy(&raidPtr->pools.dagh); 241 1.58 oster pool_destroy(&raidPtr->pools.dagnode); 242 1.58 oster pool_destroy(&raidPtr->pools.daglist); 243 1.58 oster pool_destroy(&raidPtr->pools.dagpcache); 244 1.58 oster pool_destroy(&raidPtr->pools.funclist); 245 1.1 oster } 246 1.1 oster 247 1.45 perry int 248 1.58 oster rf_ConfigureDAGs(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, 249 1.58 oster RF_Config_t *cfgPtr) 250 1.1 oster { 251 1.1 oster 252 1.58 oster rf_pool_init(raidPtr, raidPtr->poolNames.dagnode, &raidPtr->pools.dagnode, sizeof(RF_DagNode_t), 253 1.58 oster "dagnode", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE); 254 1.58 oster rf_pool_init(raidPtr, raidPtr->poolNames.dagh, &raidPtr->pools.dagh, sizeof(RF_DagHeader_t), 255 1.58 oster "dagh", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH); 256 1.58 oster rf_pool_init(raidPtr, raidPtr->poolNames.daglist, &raidPtr->pools.daglist, sizeof(RF_DagList_t), 257 1.58 oster "daglist", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST); 258 1.58 oster rf_pool_init(raidPtr, raidPtr->poolNames.dagpcache, &raidPtr->pools.dagpcache, RF_DAGPCACHE_SIZE, 259 1.58 oster "dagpcache", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE); 260 1.58 oster rf_pool_init(raidPtr, raidPtr->poolNames.funclist, &raidPtr->pools.funclist, sizeof(RF_FuncList_t), 261 1.58 oster "funclist", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST); 262 1.58 oster rf_ShutdownCreate(listp, rf_ShutdownDAGs, raidPtr); 263 1.29 oster 264 1.3 oster return (0); 265 1.1 oster } 266 1.1 oster 267 1.3 oster RF_DagHeader_t * 268 1.58 oster rf_AllocDAGHeader(RF_Raid_t *raidPtr) 269 1.1 oster { 270 1.58 oster return pool_get(&raidPtr->pools.dagh, PR_WAITOK | PR_ZERO); 271 1.1 oster } 272 1.1 oster 273 1.45 perry void 274 1.58 oster rf_FreeDAGHeader(RF_Raid_t *raidPtr, RF_DagHeader_t * dh) 275 1.1 oster { 276 1.58 oster pool_put(&raidPtr->pools.dagh, dh); 277 1.1 oster } 278 1.25 oster 279 1.38 oster RF_DagNode_t * 280 1.58 oster rf_AllocDAGNode(RF_Raid_t *raidPtr) 281 1.38 oster { 282 1.58 oster return pool_get(&raidPtr->pools.dagnode, PR_WAITOK | PR_ZERO); 283 1.38 oster } 284 1.38 oster 285 1.38 oster void 286 1.58 oster rf_FreeDAGNode(RF_Raid_t *raidPtr, RF_DagNode_t *node) 287 1.38 oster { 288 1.40 oster if (node->big_dag_ptrs) { 289 1.58 oster rf_FreeDAGPCache(raidPtr, node->big_dag_ptrs); 290 1.40 oster } 291 1.40 oster if (node->big_dag_params) { 292 1.58 oster rf_FreeDAGPCache(raidPtr, node->big_dag_params); 293 1.40 oster } 294 1.58 oster pool_put(&raidPtr->pools.dagnode, node); 295 1.38 oster } 296 1.38 oster 297 1.25 oster RF_DagList_t * 298 1.58 oster rf_AllocDAGList(RF_Raid_t *raidPtr) 299 1.25 oster { 300 1.58 oster return pool_get(&raidPtr->pools.daglist, PR_WAITOK | PR_ZERO); 301 1.25 oster } 302 1.25 oster 303 1.25 oster void 304 1.58 oster rf_FreeDAGList(RF_Raid_t *raidPtr, RF_DagList_t *dagList) 305 1.25 oster { 306 1.58 oster pool_put(&raidPtr->pools.daglist, dagList); 307 1.25 oster } 308 1.25 oster 309 1.40 oster void * 310 1.58 oster rf_AllocDAGPCache(RF_Raid_t *raidPtr) 311 1.40 oster { 312 1.58 oster return pool_get(&raidPtr->pools.dagpcache, PR_WAITOK | PR_ZERO); 313 1.40 oster } 314 1.40 oster 315 1.40 oster void 316 1.58 oster rf_FreeDAGPCache(RF_Raid_t *raidPtr, void *p) 317 1.40 oster { 318 1.58 oster pool_put(&raidPtr->pools.dagpcache, p); 319 1.40 oster } 320 1.40 oster 321 1.27 oster RF_FuncList_t * 322 1.58 oster rf_AllocFuncList(RF_Raid_t *raidPtr) 323 1.27 oster { 324 1.58 oster return pool_get(&raidPtr->pools.funclist, PR_WAITOK | PR_ZERO); 325 1.27 oster } 326 1.27 oster 327 1.27 oster void 328 1.58 oster rf_FreeFuncList(RF_Raid_t *raidPtr, RF_FuncList_t *funcList) 329 1.27 oster { 330 1.58 oster pool_put(&raidPtr->pools.funclist, funcList); 331 1.27 oster } 332 1.25 oster 333 1.44 oster /* allocates a stripe buffer -- a buffer large enough to hold all the data 334 1.45 perry in an entire stripe. 335 1.44 oster */ 336 1.44 oster 337 1.44 oster void * 338 1.49 christos rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, 339 1.50 christos int size) 340 1.44 oster { 341 1.44 oster RF_VoidPointerListElem_t *vple; 342 1.44 oster void *p; 343 1.44 oster 344 1.45 perry RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 345 1.44 oster raidPtr->logBytesPerSector)))); 346 1.44 oster 347 1.45 perry p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 348 1.45 perry raidPtr->logBytesPerSector), 349 1.44 oster M_RAIDFRAME, M_NOWAIT); 350 1.44 oster if (!p) { 351 1.53 mrg rf_lock_mutex2(raidPtr->mutex); 352 1.44 oster if (raidPtr->stripebuf_count > 0) { 353 1.44 oster vple = raidPtr->stripebuf; 354 1.44 oster raidPtr->stripebuf = vple->next; 355 1.44 oster p = vple->p; 356 1.58 oster rf_FreeVPListElem(raidPtr, vple); 357 1.44 oster raidPtr->stripebuf_count--; 358 1.44 oster } else { 359 1.44 oster #ifdef DIAGNOSTIC 360 1.44 oster printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid); 361 1.44 oster #endif 362 1.44 oster } 363 1.53 mrg rf_unlock_mutex2(raidPtr->mutex); 364 1.44 oster if (!p) { 365 1.45 perry /* We didn't get a buffer... not much we can do other than wait, 366 1.44 oster and hope that someone frees up memory for us.. */ 367 1.45 perry p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 368 1.44 oster raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK); 369 1.44 oster } 370 1.44 oster } 371 1.44 oster memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector)); 372 1.44 oster 373 1.58 oster vple = rf_AllocVPListElem(raidPtr); 374 1.44 oster vple->p = p; 375 1.44 oster vple->next = dag_h->desc->stripebufs; 376 1.44 oster dag_h->desc->stripebufs = vple; 377 1.44 oster 378 1.44 oster return (p); 379 1.44 oster } 380 1.44 oster 381 1.25 oster 382 1.44 oster void 383 1.44 oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 384 1.44 oster { 385 1.53 mrg rf_lock_mutex2(raidPtr->mutex); 386 1.44 oster if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) { 387 1.44 oster /* just tack it in */ 388 1.44 oster vple->next = raidPtr->stripebuf; 389 1.44 oster raidPtr->stripebuf = vple; 390 1.44 oster raidPtr->stripebuf_count++; 391 1.44 oster } else { 392 1.44 oster free(vple->p, M_RAIDFRAME); 393 1.58 oster rf_FreeVPListElem(raidPtr, vple); 394 1.44 oster } 395 1.53 mrg rf_unlock_mutex2(raidPtr->mutex); 396 1.44 oster } 397 1.25 oster 398 1.42 oster /* allocates a buffer big enough to hold the data described by the 399 1.42 oster caller (ie. the data of the associated PDA). Glue this buffer 400 1.42 oster into our dag_h cleanup structure. */ 401 1.42 oster 402 1.43 oster void * 403 1.44 oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size) 404 1.3 oster { 405 1.42 oster RF_VoidPointerListElem_t *vple; 406 1.42 oster void *p; 407 1.3 oster 408 1.42 oster p = rf_AllocIOBuffer(raidPtr, size); 409 1.58 oster vple = rf_AllocVPListElem(raidPtr); 410 1.42 oster vple->p = p; 411 1.44 oster vple->next = dag_h->desc->iobufs; 412 1.44 oster dag_h->desc->iobufs = vple; 413 1.42 oster 414 1.42 oster return (p); 415 1.1 oster } 416 1.41 oster 417 1.41 oster void * 418 1.50 christos rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size) 419 1.41 oster { 420 1.44 oster RF_VoidPointerListElem_t *vple; 421 1.41 oster void *p; 422 1.41 oster 423 1.45 perry RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit << 424 1.44 oster raidPtr->logBytesPerSector))); 425 1.41 oster 426 1.45 perry p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 427 1.45 perry raidPtr->logBytesPerSector, 428 1.41 oster M_RAIDFRAME, M_NOWAIT); 429 1.41 oster if (!p) { 430 1.53 mrg rf_lock_mutex2(raidPtr->mutex); 431 1.41 oster if (raidPtr->iobuf_count > 0) { 432 1.44 oster vple = raidPtr->iobuf; 433 1.44 oster raidPtr->iobuf = vple->next; 434 1.44 oster p = vple->p; 435 1.58 oster rf_FreeVPListElem(raidPtr, vple); 436 1.41 oster raidPtr->iobuf_count--; 437 1.41 oster } else { 438 1.41 oster #ifdef DIAGNOSTIC 439 1.41 oster printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid); 440 1.41 oster #endif 441 1.41 oster } 442 1.53 mrg rf_unlock_mutex2(raidPtr->mutex); 443 1.41 oster if (!p) { 444 1.45 perry /* We didn't get a buffer... not much we can do other than wait, 445 1.41 oster and hope that someone frees up memory for us.. */ 446 1.45 perry p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 447 1.45 perry raidPtr->logBytesPerSector, 448 1.41 oster M_RAIDFRAME, M_WAITOK); 449 1.41 oster } 450 1.41 oster } 451 1.44 oster memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector); 452 1.41 oster return (p); 453 1.41 oster } 454 1.41 oster 455 1.41 oster void 456 1.44 oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 457 1.41 oster { 458 1.53 mrg rf_lock_mutex2(raidPtr->mutex); 459 1.41 oster if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) { 460 1.44 oster /* just tack it in */ 461 1.44 oster vple->next = raidPtr->iobuf; 462 1.44 oster raidPtr->iobuf = vple; 463 1.41 oster raidPtr->iobuf_count++; 464 1.41 oster } else { 465 1.44 oster free(vple->p, M_RAIDFRAME); 466 1.58 oster rf_FreeVPListElem(raidPtr, vple); 467 1.41 oster } 468 1.53 mrg rf_unlock_mutex2(raidPtr->mutex); 469 1.41 oster } 470 1.41 oster 471 1.41 oster 472 1.41 oster 473 1.13 oster #if RF_DEBUG_VALIDATE_DAG 474 1.1 oster /****************************************************************************** 475 1.1 oster * 476 1.1 oster * debug routines 477 1.1 oster * 478 1.1 oster *****************************************************************************/ 479 1.1 oster 480 1.3 oster char * 481 1.23 oster rf_NodeStatusString(RF_DagNode_t *node) 482 1.1 oster { 483 1.3 oster switch (node->status) { 484 1.34 oster case rf_wait: 485 1.34 oster return ("wait"); 486 1.3 oster case rf_fired: 487 1.3 oster return ("fired"); 488 1.3 oster case rf_good: 489 1.3 oster return ("good"); 490 1.3 oster case rf_bad: 491 1.3 oster return ("bad"); 492 1.3 oster default: 493 1.3 oster return ("?"); 494 1.3 oster } 495 1.3 oster } 496 1.1 oster 497 1.45 perry void 498 1.23 oster rf_PrintNodeInfoString(RF_DagNode_t *node) 499 1.3 oster { 500 1.3 oster RF_PhysDiskAddr_t *pda; 501 1.3 oster int (*df) (RF_DagNode_t *) = node->doFunc; 502 1.3 oster int i, lk, unlk; 503 1.3 oster void *bufPtr; 504 1.3 oster 505 1.3 oster if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) 506 1.3 oster || (df == rf_DiskReadMirrorIdleFunc) 507 1.3 oster || (df == rf_DiskReadMirrorPartitionFunc)) { 508 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p; 509 1.3 oster bufPtr = (void *) node->params[1].p; 510 1.24 oster lk = 0; 511 1.24 oster unlk = 0; 512 1.3 oster RF_ASSERT(!(lk && unlk)); 513 1.21 oster printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col, 514 1.3 oster (long) pda->startSector, (int) pda->numSector, (long) bufPtr, 515 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : " ")); 516 1.3 oster return; 517 1.3 oster } 518 1.3 oster if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc) 519 1.3 oster || (df == rf_RecoveryXorFunc)) { 520 1.3 oster printf("result buf 0x%lx\n", (long) node->results[0]); 521 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) { 522 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p; 523 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 524 1.21 oster printf(" buf 0x%lx c%d offs %ld nsect %d\n", 525 1.21 oster (long) bufPtr, pda->col, 526 1.3 oster (long) pda->startSector, (int) pda->numSector); 527 1.3 oster } 528 1.3 oster return; 529 1.3 oster } 530 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0 531 1.3 oster if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) { 532 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) { 533 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p; 534 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 535 1.21 oster printf(" c%d offs %ld nsect %d buf 0x%lx\n", 536 1.21 oster pda->col, (long) pda->startSector, 537 1.3 oster (int) pda->numSector, (long) bufPtr); 538 1.3 oster } 539 1.3 oster return; 540 1.3 oster } 541 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ 542 1.3 oster 543 1.3 oster if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) { 544 1.3 oster printf("\n"); 545 1.3 oster return; 546 1.3 oster } 547 1.3 oster printf("?\n"); 548 1.3 oster } 549 1.16 oster #ifdef DEBUG 550 1.45 perry static void 551 1.23 oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited) 552 1.3 oster { 553 1.3 oster char *anttype; 554 1.3 oster int i; 555 1.3 oster 556 1.3 oster node->visited = (unvisited) ? 0 : 1; 557 1.3 oster printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth, 558 1.3 oster node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node), 559 1.3 oster node->numSuccedents, node->numSuccFired, node->numSuccDone, 560 1.3 oster node->numAntecedents, node->numAntDone, node->numParams, node->numResults); 561 1.3 oster for (i = 0; i < node->numSuccedents; i++) { 562 1.3 oster printf("%d%s", node->succedents[i]->nodeNum, 563 1.3 oster ((i == node->numSuccedents - 1) ? "\0" : " ")); 564 1.3 oster } 565 1.3 oster printf("} A{"); 566 1.3 oster for (i = 0; i < node->numAntecedents; i++) { 567 1.3 oster switch (node->antType[i]) { 568 1.3 oster case rf_trueData: 569 1.3 oster anttype = "T"; 570 1.3 oster break; 571 1.3 oster case rf_antiData: 572 1.3 oster anttype = "A"; 573 1.3 oster break; 574 1.3 oster case rf_outputData: 575 1.3 oster anttype = "O"; 576 1.3 oster break; 577 1.3 oster case rf_control: 578 1.3 oster anttype = "C"; 579 1.3 oster break; 580 1.3 oster default: 581 1.3 oster anttype = "?"; 582 1.3 oster break; 583 1.3 oster } 584 1.3 oster printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " "); 585 1.3 oster } 586 1.3 oster printf("}; "); 587 1.3 oster rf_PrintNodeInfoString(node); 588 1.3 oster for (i = 0; i < node->numSuccedents; i++) { 589 1.3 oster if (node->succedents[i]->visited == unvisited) 590 1.3 oster rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited); 591 1.3 oster } 592 1.1 oster } 593 1.1 oster 594 1.45 perry static void 595 1.23 oster rf_PrintDAG(RF_DagHeader_t *dag_h) 596 1.3 oster { 597 1.3 oster int unvisited, i; 598 1.3 oster char *status; 599 1.3 oster 600 1.3 oster /* set dag status */ 601 1.3 oster switch (dag_h->status) { 602 1.3 oster case rf_enable: 603 1.3 oster status = "enable"; 604 1.3 oster break; 605 1.3 oster case rf_rollForward: 606 1.3 oster status = "rollForward"; 607 1.3 oster break; 608 1.3 oster case rf_rollBackward: 609 1.3 oster status = "rollBackward"; 610 1.3 oster break; 611 1.3 oster default: 612 1.3 oster status = "illegal!"; 613 1.3 oster break; 614 1.3 oster } 615 1.3 oster /* find out if visited bits are currently set or clear */ 616 1.3 oster unvisited = dag_h->succedents[0]->visited; 617 1.3 oster 618 1.3 oster printf("DAG type: %s\n", dag_h->creator); 619 1.3 oster printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n"); 620 1.3 oster printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum, 621 1.3 oster status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits); 622 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) { 623 1.3 oster printf("%d%s", dag_h->succedents[i]->nodeNum, 624 1.3 oster ((i == dag_h->numSuccedents - 1) ? "\0" : " ")); 625 1.3 oster } 626 1.3 oster printf("};\n"); 627 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) { 628 1.3 oster if (dag_h->succedents[i]->visited == unvisited) 629 1.3 oster rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited); 630 1.3 oster } 631 1.3 oster } 632 1.16 oster #endif 633 1.1 oster /* assigns node numbers */ 634 1.45 perry int 635 1.3 oster rf_AssignNodeNums(RF_DagHeader_t * dag_h) 636 1.1 oster { 637 1.3 oster int unvisited, i, nnum; 638 1.3 oster RF_DagNode_t *node; 639 1.1 oster 640 1.3 oster nnum = 0; 641 1.3 oster unvisited = dag_h->succedents[0]->visited; 642 1.3 oster 643 1.3 oster dag_h->nodeNum = nnum++; 644 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) { 645 1.3 oster node = dag_h->succedents[i]; 646 1.3 oster if (node->visited == unvisited) { 647 1.3 oster nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited); 648 1.3 oster } 649 1.3 oster } 650 1.3 oster return (nnum); 651 1.1 oster } 652 1.1 oster 653 1.45 perry int 654 1.23 oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited) 655 1.3 oster { 656 1.3 oster int i; 657 1.3 oster 658 1.3 oster node->visited = (unvisited) ? 0 : 1; 659 1.3 oster 660 1.3 oster node->nodeNum = num++; 661 1.3 oster for (i = 0; i < node->numSuccedents; i++) { 662 1.3 oster if (node->succedents[i]->visited == unvisited) { 663 1.3 oster num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited); 664 1.3 oster } 665 1.3 oster } 666 1.3 oster return (num); 667 1.3 oster } 668 1.1 oster /* set the header pointers in each node to "newptr" */ 669 1.45 perry void 670 1.23 oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr) 671 1.3 oster { 672 1.3 oster int i; 673 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) 674 1.3 oster if (dag_h->succedents[i]->dagHdr != newptr) 675 1.3 oster rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr); 676 1.1 oster } 677 1.1 oster 678 1.45 perry void 679 1.23 oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr) 680 1.1 oster { 681 1.3 oster int i; 682 1.3 oster node->dagHdr = newptr; 683 1.3 oster for (i = 0; i < node->numSuccedents; i++) 684 1.3 oster if (node->succedents[i]->dagHdr != newptr) 685 1.3 oster rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr); 686 1.3 oster } 687 1.1 oster 688 1.1 oster 689 1.45 perry void 690 1.3 oster rf_PrintDAGList(RF_DagHeader_t * dag_h) 691 1.3 oster { 692 1.3 oster int i = 0; 693 1.3 oster 694 1.3 oster for (; dag_h; dag_h = dag_h->next) { 695 1.3 oster rf_AssignNodeNums(dag_h); 696 1.3 oster printf("\n\nDAG %d IN LIST:\n", i++); 697 1.3 oster rf_PrintDAG(dag_h); 698 1.3 oster } 699 1.1 oster } 700 1.1 oster 701 1.45 perry static int 702 1.23 oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount, 703 1.23 oster RF_DagNode_t **nodes, int unvisited) 704 1.3 oster { 705 1.3 oster int i, retcode = 0; 706 1.3 oster 707 1.3 oster /* construct an array of node pointers indexed by node num */ 708 1.3 oster node->visited = (unvisited) ? 0 : 1; 709 1.3 oster nodes[node->nodeNum] = node; 710 1.3 oster 711 1.3 oster if (node->next != NULL) { 712 1.3 oster printf("INVALID DAG: next pointer in node is not NULL\n"); 713 1.3 oster retcode = 1; 714 1.3 oster } 715 1.3 oster if (node->status != rf_wait) { 716 1.3 oster printf("INVALID DAG: Node status is not wait\n"); 717 1.3 oster retcode = 1; 718 1.3 oster } 719 1.3 oster if (node->numAntDone != 0) { 720 1.3 oster printf("INVALID DAG: numAntDone is not zero\n"); 721 1.3 oster retcode = 1; 722 1.3 oster } 723 1.3 oster if (node->doFunc == rf_TerminateFunc) { 724 1.3 oster if (node->numSuccedents != 0) { 725 1.3 oster printf("INVALID DAG: Terminator node has succedents\n"); 726 1.3 oster retcode = 1; 727 1.3 oster } 728 1.3 oster } else { 729 1.3 oster if (node->numSuccedents == 0) { 730 1.3 oster printf("INVALID DAG: Non-terminator node has no succedents\n"); 731 1.3 oster retcode = 1; 732 1.3 oster } 733 1.3 oster } 734 1.3 oster for (i = 0; i < node->numSuccedents; i++) { 735 1.3 oster if (!node->succedents[i]) { 736 1.3 oster printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name); 737 1.3 oster retcode = 1; 738 1.3 oster } 739 1.3 oster scount[node->succedents[i]->nodeNum]++; 740 1.3 oster } 741 1.3 oster for (i = 0; i < node->numAntecedents; i++) { 742 1.3 oster if (!node->antecedents[i]) { 743 1.3 oster printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name); 744 1.3 oster retcode = 1; 745 1.3 oster } 746 1.3 oster acount[node->antecedents[i]->nodeNum]++; 747 1.3 oster } 748 1.3 oster for (i = 0; i < node->numSuccedents; i++) { 749 1.3 oster if (node->succedents[i]->visited == unvisited) { 750 1.3 oster if (rf_ValidateBranch(node->succedents[i], scount, 751 1.3 oster acount, nodes, unvisited)) { 752 1.3 oster retcode = 1; 753 1.3 oster } 754 1.3 oster } 755 1.3 oster } 756 1.3 oster return (retcode); 757 1.3 oster } 758 1.3 oster 759 1.45 perry static void 760 1.23 oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl) 761 1.3 oster { 762 1.3 oster int i; 763 1.3 oster 764 1.3 oster RF_ASSERT(node->visited == unvisited); 765 1.3 oster for (i = 0; i < node->numSuccedents; i++) { 766 1.3 oster if (node->succedents[i] == NULL) { 767 1.3 oster printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i); 768 1.3 oster RF_ASSERT(0); 769 1.3 oster } 770 1.3 oster rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1); 771 1.3 oster } 772 1.3 oster } 773 1.3 oster /* NOTE: never call this on a big dag, because it is exponential 774 1.3 oster * in execution time 775 1.3 oster */ 776 1.45 perry static void 777 1.23 oster rf_ValidateVisitedBits(RF_DagHeader_t *dag) 778 1.3 oster { 779 1.3 oster int i, unvisited; 780 1.3 oster 781 1.3 oster unvisited = dag->succedents[0]->visited; 782 1.3 oster 783 1.3 oster for (i = 0; i < dag->numSuccedents; i++) { 784 1.3 oster if (dag->succedents[i] == NULL) { 785 1.3 oster printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i); 786 1.3 oster RF_ASSERT(0); 787 1.3 oster } 788 1.3 oster rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0); 789 1.3 oster } 790 1.3 oster } 791 1.1 oster /* validate a DAG. _at entry_ verify that: 792 1.1 oster * -- numNodesCompleted is zero 793 1.1 oster * -- node queue is null 794 1.1 oster * -- dag status is rf_enable 795 1.1 oster * -- next pointer is null on every node 796 1.1 oster * -- all nodes have status wait 797 1.1 oster * -- numAntDone is zero in all nodes 798 1.1 oster * -- terminator node has zero successors 799 1.1 oster * -- no other node besides terminator has zero successors 800 1.1 oster * -- no successor or antecedent pointer in a node is NULL 801 1.1 oster * -- number of times that each node appears as a successor of another node 802 1.1 oster * is equal to the antecedent count on that node 803 1.1 oster * -- number of times that each node appears as an antecedent of another node 804 1.1 oster * is equal to the succedent count on that node 805 1.1 oster * -- what else? 806 1.1 oster */ 807 1.45 perry int 808 1.23 oster rf_ValidateDAG(RF_DagHeader_t *dag_h) 809 1.3 oster { 810 1.3 oster int i, nodecount; 811 1.3 oster int *scount, *acount;/* per-node successor and antecedent counts */ 812 1.3 oster RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */ 813 1.3 oster int retcode = 0; 814 1.3 oster int unvisited; 815 1.3 oster int commitNodeCount = 0; 816 1.3 oster 817 1.3 oster if (rf_validateVisitedDebug) 818 1.3 oster rf_ValidateVisitedBits(dag_h); 819 1.3 oster 820 1.3 oster if (dag_h->numNodesCompleted != 0) { 821 1.3 oster printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted); 822 1.3 oster retcode = 1; 823 1.3 oster goto validate_dag_bad; 824 1.3 oster } 825 1.3 oster if (dag_h->status != rf_enable) { 826 1.3 oster printf("INVALID DAG: not enabled\n"); 827 1.3 oster retcode = 1; 828 1.3 oster goto validate_dag_bad; 829 1.3 oster } 830 1.3 oster if (dag_h->numCommits != 0) { 831 1.3 oster printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits); 832 1.3 oster retcode = 1; 833 1.3 oster goto validate_dag_bad; 834 1.3 oster } 835 1.3 oster if (dag_h->numSuccedents != 1) { 836 1.3 oster /* currently, all dags must have only one succedent */ 837 1.3 oster printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents); 838 1.3 oster retcode = 1; 839 1.3 oster goto validate_dag_bad; 840 1.3 oster } 841 1.3 oster nodecount = rf_AssignNodeNums(dag_h); 842 1.3 oster 843 1.3 oster unvisited = dag_h->succedents[0]->visited; 844 1.3 oster 845 1.55 christos scount = RF_Malloc(nodecount * sizeof(*scount)); 846 1.55 christos acount = RF_Malloc(nodecount * sizeof(*acount)); 847 1.55 christos nodes = RF_Malloc(nodecount * sizeof(*nodes)); 848 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) { 849 1.3 oster if ((dag_h->succedents[i]->visited == unvisited) 850 1.3 oster && rf_ValidateBranch(dag_h->succedents[i], scount, 851 1.3 oster acount, nodes, unvisited)) { 852 1.3 oster retcode = 1; 853 1.3 oster } 854 1.3 oster } 855 1.3 oster /* start at 1 to skip the header node */ 856 1.3 oster for (i = 1; i < nodecount; i++) { 857 1.3 oster if (nodes[i]->commitNode) 858 1.3 oster commitNodeCount++; 859 1.3 oster if (nodes[i]->doFunc == NULL) { 860 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 861 1.3 oster retcode = 1; 862 1.3 oster goto validate_dag_out; 863 1.3 oster } 864 1.3 oster if (nodes[i]->undoFunc == NULL) { 865 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 866 1.3 oster retcode = 1; 867 1.3 oster goto validate_dag_out; 868 1.3 oster } 869 1.3 oster if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) { 870 1.3 oster printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n", 871 1.3 oster nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]); 872 1.3 oster retcode = 1; 873 1.3 oster goto validate_dag_out; 874 1.3 oster } 875 1.3 oster if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) { 876 1.3 oster printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n", 877 1.3 oster nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]); 878 1.3 oster retcode = 1; 879 1.3 oster goto validate_dag_out; 880 1.3 oster } 881 1.3 oster } 882 1.1 oster 883 1.3 oster if (dag_h->numCommitNodes != commitNodeCount) { 884 1.3 oster printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n", 885 1.3 oster dag_h->numCommitNodes, commitNodeCount); 886 1.3 oster retcode = 1; 887 1.3 oster goto validate_dag_out; 888 1.3 oster } 889 1.1 oster validate_dag_out: 890 1.3 oster RF_Free(scount, nodecount * sizeof(int)); 891 1.3 oster RF_Free(acount, nodecount * sizeof(int)); 892 1.3 oster RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *)); 893 1.3 oster if (retcode) 894 1.3 oster rf_PrintDAGList(dag_h); 895 1.3 oster 896 1.3 oster if (rf_validateVisitedDebug) 897 1.3 oster rf_ValidateVisitedBits(dag_h); 898 1.3 oster 899 1.3 oster return (retcode); 900 1.1 oster 901 1.1 oster validate_dag_bad: 902 1.3 oster rf_PrintDAGList(dag_h); 903 1.3 oster return (retcode); 904 1.1 oster } 905 1.1 oster 906 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */ 907 1.1 oster 908 1.1 oster /****************************************************************************** 909 1.1 oster * 910 1.1 oster * misc construction routines 911 1.1 oster * 912 1.1 oster *****************************************************************************/ 913 1.1 oster 914 1.45 perry void 915 1.23 oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 916 1.3 oster { 917 1.3 oster int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0; 918 1.21 oster int fcol = raidPtr->reconControl->fcol; 919 1.21 oster int scol = raidPtr->reconControl->spareCol; 920 1.3 oster RF_PhysDiskAddr_t *pda; 921 1.3 oster 922 1.21 oster RF_ASSERT(raidPtr->status == rf_rs_reconstructing); 923 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) { 924 1.3 oster if (pda->col == fcol) { 925 1.31 oster #if RF_DEBUG_DAG 926 1.3 oster if (rf_dagDebug) { 927 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, 928 1.3 oster pda->startSector)) { 929 1.3 oster RF_PANIC(); 930 1.3 oster } 931 1.3 oster } 932 1.31 oster #endif 933 1.3 oster /* printf("Remapped data for large write\n"); */ 934 1.3 oster if (ds) { 935 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress, 936 1.21 oster &pda->col, &pda->startSector, RF_REMAP); 937 1.3 oster } else { 938 1.3 oster pda->col = scol; 939 1.3 oster } 940 1.3 oster } 941 1.3 oster } 942 1.3 oster for (pda = asmap->parityInfo; pda; pda = pda->next) { 943 1.3 oster if (pda->col == fcol) { 944 1.31 oster #if RF_DEBUG_DAG 945 1.3 oster if (rf_dagDebug) { 946 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) { 947 1.3 oster RF_PANIC(); 948 1.3 oster } 949 1.3 oster } 950 1.31 oster #endif 951 1.3 oster } 952 1.3 oster if (ds) { 953 1.21 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); 954 1.3 oster } else { 955 1.3 oster pda->col = scol; 956 1.3 oster } 957 1.3 oster } 958 1.1 oster } 959 1.1 oster 960 1.1 oster 961 1.1 oster /* this routine allocates read buffers and generates stripe maps for the 962 1.1 oster * regions of the array from the start of the stripe to the start of the 963 1.1 oster * access, and from the end of the access to the end of the stripe. It also 964 1.1 oster * computes and returns the number of DAG nodes needed to read all this data. 965 1.1 oster * Note that this routine does the wrong thing if the access is fully 966 1.1 oster * contained within one stripe unit, so we RF_ASSERT against this case at the 967 1.1 oster * start. 968 1.45 perry * 969 1.23 oster * layoutPtr - in: layout information 970 1.23 oster * asmap - in: access stripe map 971 1.23 oster * dag_h - in: header of the dag to create 972 1.23 oster * new_asm_h - in: ptr to array of 2 headers. to be filled in 973 1.23 oster * nRodNodes - out: num nodes to be generated to read unaccessed data 974 1.23 oster * sosBuffer, eosBuffer - out: pointers to newly allocated buffer 975 1.1 oster */ 976 1.45 perry void 977 1.23 oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr, 978 1.23 oster RF_RaidLayout_t *layoutPtr, 979 1.23 oster RF_AccessStripeMap_t *asmap, 980 1.23 oster RF_DagHeader_t *dag_h, 981 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h, 982 1.45 perry int *nRodNodes, 983 1.23 oster char **sosBuffer, char **eosBuffer, 984 1.50 christos RF_AllocListElem_t *allocList) 985 1.3 oster { 986 1.3 oster RF_RaidAddr_t sosRaidAddress, eosRaidAddress; 987 1.3 oster RF_SectorNum_t sosNumSector, eosNumSector; 988 1.3 oster 989 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2)); 990 1.3 oster /* generate an access map for the region of the array from start of 991 1.3 oster * stripe to start of access */ 992 1.3 oster new_asm_h[0] = new_asm_h[1] = NULL; 993 1.3 oster *nRodNodes = 0; 994 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) { 995 1.3 oster sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 996 1.3 oster sosNumSector = asmap->raidAddress - sosRaidAddress; 997 1.44 oster *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector)); 998 1.3 oster new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP); 999 1.3 oster new_asm_h[0]->next = dag_h->asmList; 1000 1.3 oster dag_h->asmList = new_asm_h[0]; 1001 1.3 oster *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1002 1.3 oster 1003 1.3 oster RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL); 1004 1.3 oster /* we're totally within one stripe here */ 1005 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1006 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap); 1007 1.3 oster } 1008 1.3 oster /* generate an access map for the region of the array from end of 1009 1.3 oster * access to end of stripe */ 1010 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) { 1011 1.3 oster eosRaidAddress = asmap->endRaidAddress; 1012 1.3 oster eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress; 1013 1.44 oster *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector)); 1014 1.3 oster new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP); 1015 1.3 oster new_asm_h[1]->next = dag_h->asmList; 1016 1.3 oster dag_h->asmList = new_asm_h[1]; 1017 1.3 oster *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1018 1.3 oster 1019 1.3 oster RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL); 1020 1.3 oster /* we're totally within one stripe here */ 1021 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1022 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap); 1023 1.3 oster } 1024 1.1 oster } 1025 1.1 oster 1026 1.1 oster 1027 1.1 oster 1028 1.1 oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */ 1029 1.45 perry int 1030 1.45 perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr, 1031 1.23 oster RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest) 1032 1.3 oster { 1033 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1034 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1035 1.3 oster /* use -1 to be sure we stay within SU */ 1036 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); 1037 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1038 1.3 oster return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0); 1039 1.1 oster } 1040 1.1 oster 1041 1.1 oster 1042 1.1 oster /* GenerateFailedAccessASMs 1043 1.1 oster * 1044 1.1 oster * this routine figures out what portion of the stripe needs to be read 1045 1.1 oster * to effect the degraded read or write operation. It's primary function 1046 1.1 oster * is to identify everything required to recover the data, and then 1047 1.1 oster * eliminate anything that is already being accessed by the user. 1048 1.1 oster * 1049 1.1 oster * The main result is two new ASMs, one for the region from the start of the 1050 1.1 oster * stripe to the start of the access, and one for the region from the end of 1051 1.1 oster * the access to the end of the stripe. These ASMs describe everything that 1052 1.1 oster * needs to be read to effect the degraded access. Other results are: 1053 1.1 oster * nXorBufs -- the total number of buffers that need to be XORed together to 1054 1.1 oster * recover the lost data, 1055 1.1 oster * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL 1056 1.1 oster * at entry, not allocated. 1057 1.1 oster * overlappingPDAs -- 1058 1.1 oster * describes which of the non-failed PDAs in the user access 1059 1.1 oster * overlap data that needs to be read to effect recovery. 1060 1.1 oster * overlappingPDAs[i]==1 if and only if, neglecting the failed 1061 1.1 oster * PDA, the ith pda in the input asm overlaps data that needs 1062 1.1 oster * to be read for recovery. 1063 1.1 oster */ 1064 1.1 oster /* in: asm - ASM for the actual access, one stripe only */ 1065 1.10 wiz /* in: failedPDA - which component of the access has failed */ 1066 1.1 oster /* in: dag_h - header of the DAG we're going to create */ 1067 1.1 oster /* out: new_asm_h - the two new ASMs */ 1068 1.1 oster /* out: nXorBufs - the total number of xor bufs required */ 1069 1.1 oster /* out: rpBufPtr - a buffer for the parity read */ 1070 1.45 perry void 1071 1.23 oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1072 1.23 oster RF_PhysDiskAddr_t *failedPDA, 1073 1.23 oster RF_DagHeader_t *dag_h, 1074 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h, 1075 1.23 oster int *nXorBufs, char **rpBufPtr, 1076 1.23 oster char *overlappingPDAs, 1077 1.50 christos RF_AllocListElem_t *allocList) 1078 1.3 oster { 1079 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); 1080 1.3 oster 1081 1.3 oster /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */ 1082 1.3 oster RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr; 1083 1.3 oster RF_PhysDiskAddr_t *pda; 1084 1.3 oster int foundit, i; 1085 1.3 oster 1086 1.3 oster foundit = 0; 1087 1.3 oster /* first compute the following raid addresses: start of stripe, 1088 1.3 oster * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr) 1089 1.3 oster * MAX(end of access, end of failed SU), (eosStartAddr) end of 1090 1.3 oster * stripe (i.e. start of next stripe) (eosAddr) */ 1091 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 1092 1.3 oster sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1093 1.3 oster eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1094 1.3 oster eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress); 1095 1.3 oster 1096 1.3 oster /* now generate access stripe maps for each of the above regions of 1097 1.3 oster * the stripe. Use a dummy (NULL) buf ptr for now */ 1098 1.3 oster 1099 1.3 oster new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL; 1100 1.3 oster new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL; 1101 1.3 oster 1102 1.3 oster /* walk through the PDAs and range-restrict each SU to the region of 1103 1.3 oster * the SU touched on the failed PDA. also compute total data buffer 1104 1.3 oster * space requirements in this step. Ignore the parity for now. */ 1105 1.35 oster /* Also count nodes to find out how many bufs need to be xored together */ 1106 1.35 oster (*nXorBufs) = 1; /* in read case, 1 is for parity. In write 1107 1.35 oster * case, 1 is for failed data */ 1108 1.3 oster 1109 1.3 oster if (new_asm_h[0]) { 1110 1.3 oster new_asm_h[0]->next = dag_h->asmList; 1111 1.3 oster dag_h->asmList = new_asm_h[0]; 1112 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) { 1113 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1114 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1115 1.3 oster } 1116 1.35 oster (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1117 1.3 oster } 1118 1.3 oster if (new_asm_h[1]) { 1119 1.3 oster new_asm_h[1]->next = dag_h->asmList; 1120 1.3 oster dag_h->asmList = new_asm_h[1]; 1121 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) { 1122 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1123 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1124 1.3 oster } 1125 1.3 oster (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1126 1.3 oster } 1127 1.45 perry 1128 1.35 oster /* allocate a buffer for parity */ 1129 1.45 perry if (rpBufPtr) 1130 1.44 oster *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector); 1131 1.3 oster 1132 1.3 oster /* the last step is to figure out how many more distinct buffers need 1133 1.3 oster * to get xor'd to produce the missing unit. there's one for each 1134 1.3 oster * user-data read node that overlaps the portion of the failed unit 1135 1.3 oster * being accessed */ 1136 1.3 oster 1137 1.3 oster for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) { 1138 1.3 oster if (pda == failedPDA) { 1139 1.3 oster i--; 1140 1.3 oster foundit = 1; 1141 1.3 oster continue; 1142 1.3 oster } 1143 1.3 oster if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) { 1144 1.3 oster overlappingPDAs[i] = 1; 1145 1.3 oster (*nXorBufs)++; 1146 1.3 oster } 1147 1.3 oster } 1148 1.3 oster if (!foundit) { 1149 1.3 oster RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n"); 1150 1.3 oster RF_ASSERT(0); 1151 1.3 oster } 1152 1.31 oster #if RF_DEBUG_DAG 1153 1.3 oster if (rf_degDagDebug) { 1154 1.3 oster if (new_asm_h[0]) { 1155 1.3 oster printf("First asm:\n"); 1156 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[0], 1); 1157 1.3 oster } 1158 1.3 oster if (new_asm_h[1]) { 1159 1.3 oster printf("Second asm:\n"); 1160 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[1], 1); 1161 1.3 oster } 1162 1.3 oster } 1163 1.31 oster #endif 1164 1.1 oster } 1165 1.1 oster 1166 1.1 oster 1167 1.1 oster /* adjusts the offset and number of sectors in the destination pda so that 1168 1.1 oster * it covers at most the region of the SU covered by the source PDA. This 1169 1.1 oster * is exclusively a restriction: the number of sectors indicated by the 1170 1.1 oster * target PDA can only shrink. 1171 1.1 oster * 1172 1.1 oster * For example: s = sectors within SU indicated by source PDA 1173 1.1 oster * d = sectors within SU indicated by dest PDA 1174 1.1 oster * r = results, stored in dest PDA 1175 1.1 oster * 1176 1.1 oster * |--------------- one stripe unit ---------------------| 1177 1.1 oster * | sssssssssssssssssssssssssssssssss | 1178 1.1 oster * | ddddddddddddddddddddddddddddddddddddddddddddd | 1179 1.1 oster * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr | 1180 1.1 oster * 1181 1.1 oster * Another example: 1182 1.1 oster * 1183 1.1 oster * |--------------- one stripe unit ---------------------| 1184 1.1 oster * | sssssssssssssssssssssssssssssssss | 1185 1.1 oster * | ddddddddddddddddddddddd | 1186 1.1 oster * | rrrrrrrrrrrrrrrr | 1187 1.1 oster * 1188 1.1 oster */ 1189 1.45 perry void 1190 1.23 oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src, 1191 1.23 oster RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr) 1192 1.3 oster { 1193 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1194 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1195 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1196 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we 1197 1.3 oster * stay within SU */ 1198 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1199 1.3 oster RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */ 1200 1.3 oster 1201 1.3 oster dest->startSector = subAddr + RF_MAX(soffs, doffs); 1202 1.3 oster dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector; 1203 1.3 oster 1204 1.3 oster if (dobuffer) 1205 1.51 christos dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0); 1206 1.3 oster if (doraidaddr) { 1207 1.3 oster dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) + 1208 1.3 oster rf_StripeUnitOffset(layoutPtr, dest->startSector); 1209 1.3 oster } 1210 1.1 oster } 1211 1.11 oster 1212 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) 1213 1.11 oster 1214 1.1 oster /* 1215 1.1 oster * Want the highest of these primes to be the largest one 1216 1.1 oster * less than the max expected number of columns (won't hurt 1217 1.1 oster * to be too small or too large, but won't be optimal, either) 1218 1.1 oster * --jimz 1219 1.1 oster */ 1220 1.1 oster #define NLOWPRIMES 8 1221 1.3 oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19}; 1222 1.1 oster /***************************************************************************** 1223 1.1 oster * compute the workload shift factor. (chained declustering) 1224 1.1 oster * 1225 1.1 oster * return nonzero if access should shift to secondary, otherwise, 1226 1.1 oster * access is to primary 1227 1.1 oster *****************************************************************************/ 1228 1.45 perry int 1229 1.23 oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda) 1230 1.3 oster { 1231 1.3 oster /* 1232 1.3 oster * variables: 1233 1.3 oster * d = column of disk containing primary 1234 1.3 oster * f = column of failed disk 1235 1.3 oster * n = number of disks in array 1236 1.3 oster * sd = "shift distance" (number of columns that d is to the right of f) 1237 1.3 oster * v = numerator of redirection ratio 1238 1.3 oster * k = denominator of redirection ratio 1239 1.3 oster */ 1240 1.21 oster RF_RowCol_t d, f, sd, n; 1241 1.3 oster int k, v, ret, i; 1242 1.3 oster 1243 1.3 oster n = raidPtr->numCol; 1244 1.3 oster 1245 1.3 oster /* assign column of primary copy to d */ 1246 1.3 oster d = pda->col; 1247 1.3 oster 1248 1.3 oster /* assign column of dead disk to f */ 1249 1.54 joerg for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++) 1250 1.54 joerg continue; 1251 1.3 oster 1252 1.3 oster RF_ASSERT(f < n); 1253 1.3 oster RF_ASSERT(f != d); 1254 1.3 oster 1255 1.3 oster sd = (f > d) ? (n + d - f) : (d - f); 1256 1.3 oster RF_ASSERT(sd < n); 1257 1.3 oster 1258 1.3 oster /* 1259 1.3 oster * v of every k accesses should be redirected 1260 1.3 oster * 1261 1.3 oster * v/k := (n-1-sd)/(n-1) 1262 1.3 oster */ 1263 1.3 oster v = (n - 1 - sd); 1264 1.3 oster k = (n - 1); 1265 1.1 oster 1266 1.1 oster #if 1 1267 1.3 oster /* 1268 1.3 oster * XXX 1269 1.3 oster * Is this worth it? 1270 1.3 oster * 1271 1.3 oster * Now reduce the fraction, by repeatedly factoring 1272 1.3 oster * out primes (just like they teach in elementary school!) 1273 1.3 oster */ 1274 1.3 oster for (i = 0; i < NLOWPRIMES; i++) { 1275 1.3 oster if (lowprimes[i] > v) 1276 1.3 oster break; 1277 1.3 oster while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) { 1278 1.3 oster v /= lowprimes[i]; 1279 1.3 oster k /= lowprimes[i]; 1280 1.3 oster } 1281 1.3 oster } 1282 1.1 oster #endif 1283 1.1 oster 1284 1.21 oster raidPtr->hist_diskreq[d]++; 1285 1.21 oster if (raidPtr->hist_diskreq[d] > v) { 1286 1.3 oster ret = 0; /* do not redirect */ 1287 1.3 oster } else { 1288 1.3 oster ret = 1; /* redirect */ 1289 1.3 oster } 1290 1.1 oster 1291 1.1 oster #if 0 1292 1.3 oster printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret, 1293 1.21 oster raidPtr->hist_diskreq[d]); 1294 1.1 oster #endif 1295 1.1 oster 1296 1.21 oster if (raidPtr->hist_diskreq[d] >= k) { 1297 1.3 oster /* reset counter */ 1298 1.21 oster raidPtr->hist_diskreq[d] = 0; 1299 1.3 oster } 1300 1.3 oster return (ret); 1301 1.1 oster } 1302 1.11 oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ 1303 1.11 oster 1304 1.1 oster /* 1305 1.1 oster * Disk selection routines 1306 1.1 oster */ 1307 1.1 oster 1308 1.1 oster /* 1309 1.1 oster * Selects the disk with the shortest queue from a mirror pair. 1310 1.1 oster * Both the disk I/Os queued in RAIDframe as well as those at the physical 1311 1.1 oster * disk are counted as members of the "queue" 1312 1.1 oster */ 1313 1.45 perry void 1314 1.3 oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node) 1315 1.1 oster { 1316 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1317 1.21 oster RF_RowCol_t colData, colMirror; 1318 1.3 oster int dataQueueLength, mirrorQueueLength, usemirror; 1319 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1320 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1321 1.3 oster RF_PhysDiskAddr_t *tmp_pda; 1322 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks; 1323 1.21 oster RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue; 1324 1.3 oster 1325 1.3 oster /* return the [row col] of the disk with the shortest queue */ 1326 1.3 oster colData = data_pda->col; 1327 1.3 oster colMirror = mirror_pda->col; 1328 1.21 oster dataQueue = &(dqs[colData]); 1329 1.21 oster mirrorQueue = &(dqs[colMirror]); 1330 1.1 oster 1331 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1332 1.3 oster RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1333 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1334 1.3 oster dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding; 1335 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1336 1.3 oster RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1337 1.3 oster RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1338 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1339 1.3 oster mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding; 1340 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1341 1.3 oster RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1342 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1343 1.1 oster 1344 1.3 oster usemirror = 0; 1345 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) { 1346 1.3 oster usemirror = 0; 1347 1.3 oster } else 1348 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) { 1349 1.3 oster usemirror = 1; 1350 1.3 oster } else 1351 1.5 oster if (raidPtr->parity_good == RF_RAID_DIRTY) { 1352 1.5 oster /* Trust only the main disk */ 1353 1.3 oster usemirror = 0; 1354 1.3 oster } else 1355 1.5 oster if (dataQueueLength < mirrorQueueLength) { 1356 1.5 oster usemirror = 0; 1357 1.5 oster } else 1358 1.5 oster if (mirrorQueueLength < dataQueueLength) { 1359 1.5 oster usemirror = 1; 1360 1.3 oster } else { 1361 1.5 oster /* queues are equal length. attempt 1362 1.5 oster * cleverness. */ 1363 1.5 oster if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector) 1364 1.5 oster <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) { 1365 1.5 oster usemirror = 0; 1366 1.5 oster } else { 1367 1.5 oster usemirror = 1; 1368 1.5 oster } 1369 1.3 oster } 1370 1.3 oster 1371 1.3 oster if (usemirror) { 1372 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */ 1373 1.3 oster tmp_pda = data_pda; 1374 1.3 oster node->params[0].p = mirror_pda; 1375 1.3 oster node->params[4].p = tmp_pda; 1376 1.3 oster } else { 1377 1.3 oster /* use data disk, leave param 0 unchanged */ 1378 1.3 oster } 1379 1.3 oster /* printf("dataQueueLength %d, mirrorQueueLength 1380 1.3 oster * %d\n",dataQueueLength, mirrorQueueLength); */ 1381 1.1 oster } 1382 1.19 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0) 1383 1.1 oster /* 1384 1.1 oster * Do simple partitioning. This assumes that 1385 1.1 oster * the data and parity disks are laid out identically. 1386 1.1 oster */ 1387 1.45 perry void 1388 1.3 oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node) 1389 1.1 oster { 1390 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1391 1.21 oster RF_RowCol_t colData, colMirror; 1392 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1393 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1394 1.3 oster RF_PhysDiskAddr_t *tmp_pda; 1395 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks; 1396 1.3 oster int usemirror; 1397 1.3 oster 1398 1.3 oster /* return the [row col] of the disk with the shortest queue */ 1399 1.3 oster colData = data_pda->col; 1400 1.3 oster colMirror = mirror_pda->col; 1401 1.3 oster 1402 1.3 oster usemirror = 0; 1403 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) { 1404 1.3 oster usemirror = 0; 1405 1.3 oster } else 1406 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) { 1407 1.3 oster usemirror = 1; 1408 1.45 perry } else 1409 1.6 oster if (raidPtr->parity_good == RF_RAID_DIRTY) { 1410 1.6 oster /* Trust only the main disk */ 1411 1.3 oster usemirror = 0; 1412 1.6 oster } else 1413 1.45 perry if (data_pda->startSector < 1414 1.21 oster (disks[colData].numBlocks / 2)) { 1415 1.6 oster usemirror = 0; 1416 1.6 oster } else { 1417 1.6 oster usemirror = 1; 1418 1.6 oster } 1419 1.3 oster 1420 1.3 oster if (usemirror) { 1421 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */ 1422 1.3 oster tmp_pda = data_pda; 1423 1.3 oster node->params[0].p = mirror_pda; 1424 1.3 oster node->params[4].p = tmp_pda; 1425 1.3 oster } else { 1426 1.3 oster /* use data disk, leave param 0 unchanged */ 1427 1.3 oster } 1428 1.1 oster } 1429 1.19 oster #endif 1430