Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.10
      1  1.10      wiz /*	$NetBSD: rf_dagutils.c,v 1.10 2002/03/04 01:38:32 wiz Exp $	*/
      2   1.1    oster /*
      3   1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1    oster  * All rights reserved.
      5   1.1    oster  *
      6   1.1    oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7   1.1    oster  *
      8   1.1    oster  * Permission to use, copy, modify and distribute this software and
      9   1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1    oster  * notice and this permission notice appear in all copies of the
     11   1.1    oster  * software, derivative works or modified versions, and any portions
     12   1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1    oster  *
     14   1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1    oster  *
     18   1.1    oster  * Carnegie Mellon requests users of this software to return to
     19   1.1    oster  *
     20   1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1    oster  *  School of Computer Science
     22   1.1    oster  *  Carnegie Mellon University
     23   1.1    oster  *  Pittsburgh PA 15213-3890
     24   1.1    oster  *
     25   1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1    oster  * rights to redistribute these changes.
     27   1.1    oster  */
     28   1.1    oster 
     29   1.1    oster /******************************************************************************
     30   1.1    oster  *
     31   1.1    oster  * rf_dagutils.c -- utility routines for manipulating dags
     32   1.1    oster  *
     33   1.1    oster  *****************************************************************************/
     34   1.9    lukem 
     35   1.9    lukem #include <sys/cdefs.h>
     36  1.10      wiz __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.10 2002/03/04 01:38:32 wiz Exp $");
     37   1.1    oster 
     38   1.8    oster #include <dev/raidframe/raidframevar.h>
     39   1.8    oster 
     40   1.1    oster #include "rf_archs.h"
     41   1.1    oster #include "rf_threadstuff.h"
     42   1.1    oster #include "rf_raid.h"
     43   1.1    oster #include "rf_dag.h"
     44   1.1    oster #include "rf_dagutils.h"
     45   1.1    oster #include "rf_dagfuncs.h"
     46   1.1    oster #include "rf_general.h"
     47   1.1    oster #include "rf_freelist.h"
     48   1.1    oster #include "rf_map.h"
     49   1.1    oster #include "rf_shutdown.h"
     50   1.1    oster 
     51   1.1    oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     52   1.1    oster 
     53   1.1    oster RF_RedFuncs_t rf_xorFuncs = {
     54   1.1    oster 	rf_RegularXorFunc, "Reg Xr",
     55   1.3    oster rf_SimpleXorFunc, "Simple Xr"};
     56   1.1    oster 
     57   1.1    oster RF_RedFuncs_t rf_xorRecoveryFuncs = {
     58   1.1    oster 	rf_RecoveryXorFunc, "Recovery Xr",
     59   1.3    oster rf_RecoveryXorFunc, "Recovery Xr"};
     60   1.1    oster 
     61   1.1    oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62   1.1    oster static void rf_PrintDAG(RF_DagHeader_t *);
     63   1.3    oster static int
     64   1.3    oster rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     65   1.3    oster     RF_DagNode_t **, int);
     66   1.1    oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     67   1.1    oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     68   1.1    oster 
     69   1.1    oster /******************************************************************************
     70   1.1    oster  *
     71   1.1    oster  * InitNode - initialize a dag node
     72   1.1    oster  *
     73   1.1    oster  * the size of the propList array is always the same as that of the
     74   1.1    oster  * successors array.
     75   1.1    oster  *
     76   1.1    oster  *****************************************************************************/
     77   1.3    oster void
     78   1.3    oster rf_InitNode(
     79   1.3    oster     RF_DagNode_t * node,
     80   1.3    oster     RF_NodeStatus_t initstatus,
     81   1.3    oster     int commit,
     82   1.3    oster     int (*doFunc) (RF_DagNode_t * node),
     83   1.3    oster     int (*undoFunc) (RF_DagNode_t * node),
     84   1.3    oster     int (*wakeFunc) (RF_DagNode_t * node, int status),
     85   1.3    oster     int nSucc,
     86   1.3    oster     int nAnte,
     87   1.3    oster     int nParam,
     88   1.3    oster     int nResult,
     89   1.3    oster     RF_DagHeader_t * hdr,
     90   1.3    oster     char *name,
     91   1.3    oster     RF_AllocListElem_t * alist)
     92   1.3    oster {
     93   1.3    oster 	void  **ptrs;
     94   1.3    oster 	int     nptrs;
     95   1.3    oster 
     96   1.3    oster 	if (nAnte > RF_MAX_ANTECEDENTS)
     97   1.3    oster 		RF_PANIC();
     98   1.3    oster 	node->status = initstatus;
     99   1.3    oster 	node->commitNode = commit;
    100   1.3    oster 	node->doFunc = doFunc;
    101   1.3    oster 	node->undoFunc = undoFunc;
    102   1.3    oster 	node->wakeFunc = wakeFunc;
    103   1.3    oster 	node->numParams = nParam;
    104   1.3    oster 	node->numResults = nResult;
    105   1.3    oster 	node->numAntecedents = nAnte;
    106   1.3    oster 	node->numAntDone = 0;
    107   1.3    oster 	node->next = NULL;
    108   1.3    oster 	node->numSuccedents = nSucc;
    109   1.3    oster 	node->name = name;
    110   1.3    oster 	node->dagHdr = hdr;
    111   1.3    oster 	node->visited = 0;
    112   1.3    oster 
    113   1.3    oster 	/* allocate all the pointers with one call to malloc */
    114   1.3    oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    115   1.3    oster 
    116   1.3    oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    117   1.3    oster 		/*
    118   1.3    oster 	         * The dag_ptrs field of the node is basically some scribble
    119   1.3    oster 	         * space to be used here. We could get rid of it, and always
    120   1.3    oster 	         * allocate the range of pointers, but that's expensive. So,
    121   1.3    oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    122   1.3    oster 	         * we'll find that:
    123   1.3    oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    124   1.3    oster 	         *     only a little bit (least efficient case)
    125   1.3    oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    126   1.3    oster 	         *     (wasted memory)
    127   1.3    oster 	         */
    128   1.3    oster 		ptrs = (void **) node->dag_ptrs;
    129   1.3    oster 	} else {
    130   1.3    oster 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
    131   1.3    oster 	}
    132   1.3    oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    133   1.3    oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    134   1.3    oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    135   1.3    oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    136   1.3    oster 
    137   1.3    oster 	if (nParam) {
    138   1.3    oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    139   1.3    oster 			node->params = (RF_DagParam_t *) node->dag_params;
    140   1.3    oster 		} else {
    141   1.3    oster 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
    142   1.3    oster 		}
    143   1.3    oster 	} else {
    144   1.3    oster 		node->params = NULL;
    145   1.3    oster 	}
    146   1.1    oster }
    147   1.1    oster 
    148   1.1    oster 
    149   1.1    oster 
    150   1.1    oster /******************************************************************************
    151   1.1    oster  *
    152   1.1    oster  * allocation and deallocation routines
    153   1.1    oster  *
    154   1.1    oster  *****************************************************************************/
    155   1.1    oster 
    156   1.3    oster void
    157   1.3    oster rf_FreeDAG(dag_h)
    158   1.3    oster 	RF_DagHeader_t *dag_h;
    159   1.3    oster {
    160   1.3    oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    161   1.3    oster 	RF_DagHeader_t *nextDag;
    162   1.3    oster 	int     i;
    163   1.3    oster 
    164   1.3    oster 	while (dag_h) {
    165   1.3    oster 		nextDag = dag_h->next;
    166   1.3    oster 		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
    167   1.3    oster 			/* release mem chunks */
    168   1.3    oster 			rf_ReleaseMemChunk(dag_h->memChunk[i]);
    169   1.3    oster 			dag_h->memChunk[i] = NULL;
    170   1.3    oster 		}
    171   1.3    oster 
    172   1.3    oster 		RF_ASSERT(i == dag_h->chunkIndex);
    173   1.3    oster 		if (dag_h->xtraChunkCnt > 0) {
    174   1.3    oster 			/* free xtraMemChunks */
    175   1.3    oster 			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
    176   1.3    oster 				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
    177   1.3    oster 				dag_h->xtraMemChunk[i] = NULL;
    178   1.3    oster 			}
    179   1.3    oster 			RF_ASSERT(i == dag_h->xtraChunkIndex);
    180   1.3    oster 			/* free ptrs to xtraMemChunks */
    181   1.3    oster 			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
    182   1.3    oster 		}
    183   1.3    oster 		rf_FreeAllocList(dag_h->allocList);
    184   1.3    oster 		for (asmap = dag_h->asmList; asmap;) {
    185   1.3    oster 			t_asmap = asmap;
    186   1.3    oster 			asmap = asmap->next;
    187   1.3    oster 			rf_FreeAccessStripeMap(t_asmap);
    188   1.3    oster 		}
    189   1.3    oster 		rf_FreeDAGHeader(dag_h);
    190   1.3    oster 		dag_h = nextDag;
    191   1.3    oster 	}
    192   1.3    oster }
    193   1.3    oster 
    194   1.3    oster RF_PropHeader_t *
    195   1.3    oster rf_MakePropListEntry(
    196   1.3    oster     RF_DagHeader_t * dag_h,
    197   1.3    oster     int resultNum,
    198   1.3    oster     int paramNum,
    199   1.3    oster     RF_PropHeader_t * next,
    200   1.3    oster     RF_AllocListElem_t * allocList)
    201   1.3    oster {
    202   1.3    oster 	RF_PropHeader_t *p;
    203   1.3    oster 
    204   1.3    oster 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
    205   1.3    oster 	    (RF_PropHeader_t *), allocList);
    206   1.3    oster 	p->resultNum = resultNum;
    207   1.3    oster 	p->paramNum = paramNum;
    208   1.3    oster 	p->next = next;
    209   1.3    oster 	return (p);
    210   1.1    oster }
    211   1.1    oster 
    212   1.1    oster static RF_FreeList_t *rf_dagh_freelist;
    213   1.1    oster 
    214   1.1    oster #define RF_MAX_FREE_DAGH 128
    215   1.1    oster #define RF_DAGH_INC       16
    216   1.1    oster #define RF_DAGH_INITIAL   32
    217   1.1    oster 
    218   1.1    oster static void rf_ShutdownDAGs(void *);
    219   1.3    oster static void
    220   1.3    oster rf_ShutdownDAGs(ignored)
    221   1.3    oster 	void   *ignored;
    222   1.1    oster {
    223   1.3    oster 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
    224   1.1    oster }
    225   1.1    oster 
    226   1.3    oster int
    227   1.3    oster rf_ConfigureDAGs(listp)
    228   1.3    oster 	RF_ShutdownList_t **listp;
    229   1.1    oster {
    230   1.3    oster 	int     rc;
    231   1.1    oster 
    232   1.1    oster 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
    233   1.3    oster 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
    234   1.1    oster 	if (rf_dagh_freelist == NULL)
    235   1.3    oster 		return (ENOMEM);
    236   1.1    oster 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    237   1.1    oster 	if (rc) {
    238   1.1    oster 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    239   1.3    oster 		    __FILE__, __LINE__, rc);
    240   1.1    oster 		rf_ShutdownDAGs(NULL);
    241   1.3    oster 		return (rc);
    242   1.1    oster 	}
    243   1.3    oster 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
    244   1.3    oster 	    (RF_DagHeader_t *));
    245   1.3    oster 	return (0);
    246   1.1    oster }
    247   1.1    oster 
    248   1.3    oster RF_DagHeader_t *
    249   1.3    oster rf_AllocDAGHeader()
    250   1.1    oster {
    251   1.1    oster 	RF_DagHeader_t *dh;
    252   1.1    oster 
    253   1.3    oster 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
    254   1.1    oster 	if (dh) {
    255   1.7  thorpej 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    256   1.1    oster 	}
    257   1.3    oster 	return (dh);
    258   1.1    oster }
    259   1.1    oster 
    260   1.3    oster void
    261   1.3    oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    262   1.1    oster {
    263   1.3    oster 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
    264   1.1    oster }
    265   1.1    oster /* allocates a buffer big enough to hold the data described by pda */
    266   1.3    oster void   *
    267   1.3    oster rf_AllocBuffer(
    268   1.3    oster     RF_Raid_t * raidPtr,
    269   1.3    oster     RF_DagHeader_t * dag_h,
    270   1.3    oster     RF_PhysDiskAddr_t * pda,
    271   1.3    oster     RF_AllocListElem_t * allocList)
    272   1.3    oster {
    273   1.3    oster 	char   *p;
    274   1.3    oster 
    275   1.3    oster 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    276   1.3    oster 	    (char *), allocList);
    277   1.3    oster 	return ((void *) p);
    278   1.1    oster }
    279   1.1    oster /******************************************************************************
    280   1.1    oster  *
    281   1.1    oster  * debug routines
    282   1.1    oster  *
    283   1.1    oster  *****************************************************************************/
    284   1.1    oster 
    285   1.3    oster char   *
    286   1.3    oster rf_NodeStatusString(RF_DagNode_t * node)
    287   1.1    oster {
    288   1.3    oster 	switch (node->status) {
    289   1.3    oster 		case rf_wait:return ("wait");
    290   1.3    oster 	case rf_fired:
    291   1.3    oster 		return ("fired");
    292   1.3    oster 	case rf_good:
    293   1.3    oster 		return ("good");
    294   1.3    oster 	case rf_bad:
    295   1.3    oster 		return ("bad");
    296   1.3    oster 	default:
    297   1.3    oster 		return ("?");
    298   1.3    oster 	}
    299   1.3    oster }
    300   1.1    oster 
    301   1.3    oster void
    302   1.3    oster rf_PrintNodeInfoString(RF_DagNode_t * node)
    303   1.3    oster {
    304   1.3    oster 	RF_PhysDiskAddr_t *pda;
    305   1.3    oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    306   1.3    oster 	int     i, lk, unlk;
    307   1.3    oster 	void   *bufPtr;
    308   1.3    oster 
    309   1.3    oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    310   1.3    oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    311   1.3    oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    312   1.3    oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    313   1.3    oster 		bufPtr = (void *) node->params[1].p;
    314   1.3    oster 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    315   1.3    oster 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    316   1.3    oster 		RF_ASSERT(!(lk && unlk));
    317   1.3    oster 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
    318   1.3    oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    319   1.3    oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    320   1.3    oster 		return;
    321   1.3    oster 	}
    322   1.3    oster 	if (df == rf_DiskUnlockFunc) {
    323   1.3    oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    324   1.3    oster 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    325   1.3    oster 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    326   1.3    oster 		RF_ASSERT(!(lk && unlk));
    327   1.3    oster 		printf("r %d c %d %s\n", pda->row, pda->col,
    328   1.3    oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    329   1.3    oster 		return;
    330   1.3    oster 	}
    331   1.3    oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    332   1.3    oster 	    || (df == rf_RecoveryXorFunc)) {
    333   1.3    oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    334   1.3    oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    335   1.3    oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    336   1.3    oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    337   1.3    oster 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
    338   1.3    oster 			    (long) bufPtr, pda->row, pda->col,
    339   1.3    oster 			    (long) pda->startSector, (int) pda->numSector);
    340   1.3    oster 		}
    341   1.3    oster 		return;
    342   1.3    oster 	}
    343   1.1    oster #if RF_INCLUDE_PARITYLOGGING > 0
    344   1.3    oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    345   1.3    oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    346   1.3    oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    347   1.3    oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    348   1.3    oster 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
    349   1.3    oster 			    pda->row, pda->col, (long) pda->startSector,
    350   1.3    oster 			    (int) pda->numSector, (long) bufPtr);
    351   1.3    oster 		}
    352   1.3    oster 		return;
    353   1.3    oster 	}
    354   1.3    oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    355   1.3    oster 
    356   1.3    oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    357   1.3    oster 		printf("\n");
    358   1.3    oster 		return;
    359   1.3    oster 	}
    360   1.3    oster 	printf("?\n");
    361   1.3    oster }
    362   1.3    oster 
    363   1.3    oster static void
    364   1.3    oster rf_RecurPrintDAG(node, depth, unvisited)
    365   1.3    oster 	RF_DagNode_t *node;
    366   1.3    oster 	int     depth;
    367   1.3    oster 	int     unvisited;
    368   1.3    oster {
    369   1.3    oster 	char   *anttype;
    370   1.3    oster 	int     i;
    371   1.3    oster 
    372   1.3    oster 	node->visited = (unvisited) ? 0 : 1;
    373   1.3    oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    374   1.3    oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    375   1.3    oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    376   1.3    oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    377   1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    378   1.3    oster 		printf("%d%s", node->succedents[i]->nodeNum,
    379   1.3    oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    380   1.3    oster 	}
    381   1.3    oster 	printf("} A{");
    382   1.3    oster 	for (i = 0; i < node->numAntecedents; i++) {
    383   1.3    oster 		switch (node->antType[i]) {
    384   1.3    oster 		case rf_trueData:
    385   1.3    oster 			anttype = "T";
    386   1.3    oster 			break;
    387   1.3    oster 		case rf_antiData:
    388   1.3    oster 			anttype = "A";
    389   1.3    oster 			break;
    390   1.3    oster 		case rf_outputData:
    391   1.3    oster 			anttype = "O";
    392   1.3    oster 			break;
    393   1.3    oster 		case rf_control:
    394   1.3    oster 			anttype = "C";
    395   1.3    oster 			break;
    396   1.3    oster 		default:
    397   1.3    oster 			anttype = "?";
    398   1.3    oster 			break;
    399   1.3    oster 		}
    400   1.3    oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    401   1.3    oster 	}
    402   1.3    oster 	printf("}; ");
    403   1.3    oster 	rf_PrintNodeInfoString(node);
    404   1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    405   1.3    oster 		if (node->succedents[i]->visited == unvisited)
    406   1.3    oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    407   1.3    oster 	}
    408   1.1    oster }
    409   1.1    oster 
    410   1.3    oster static void
    411   1.3    oster rf_PrintDAG(dag_h)
    412   1.3    oster 	RF_DagHeader_t *dag_h;
    413   1.3    oster {
    414   1.3    oster 	int     unvisited, i;
    415   1.3    oster 	char   *status;
    416   1.3    oster 
    417   1.3    oster 	/* set dag status */
    418   1.3    oster 	switch (dag_h->status) {
    419   1.3    oster 	case rf_enable:
    420   1.3    oster 		status = "enable";
    421   1.3    oster 		break;
    422   1.3    oster 	case rf_rollForward:
    423   1.3    oster 		status = "rollForward";
    424   1.3    oster 		break;
    425   1.3    oster 	case rf_rollBackward:
    426   1.3    oster 		status = "rollBackward";
    427   1.3    oster 		break;
    428   1.3    oster 	default:
    429   1.3    oster 		status = "illegal!";
    430   1.3    oster 		break;
    431   1.3    oster 	}
    432   1.3    oster 	/* find out if visited bits are currently set or clear */
    433   1.3    oster 	unvisited = dag_h->succedents[0]->visited;
    434   1.3    oster 
    435   1.3    oster 	printf("DAG type:  %s\n", dag_h->creator);
    436   1.3    oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    437   1.3    oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    438   1.3    oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    439   1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    440   1.3    oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    441   1.3    oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    442   1.3    oster 	}
    443   1.3    oster 	printf("};\n");
    444   1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    445   1.3    oster 		if (dag_h->succedents[i]->visited == unvisited)
    446   1.3    oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    447   1.3    oster 	}
    448   1.3    oster }
    449   1.1    oster /* assigns node numbers */
    450   1.3    oster int
    451   1.3    oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    452   1.1    oster {
    453   1.3    oster 	int     unvisited, i, nnum;
    454   1.3    oster 	RF_DagNode_t *node;
    455   1.1    oster 
    456   1.3    oster 	nnum = 0;
    457   1.3    oster 	unvisited = dag_h->succedents[0]->visited;
    458   1.3    oster 
    459   1.3    oster 	dag_h->nodeNum = nnum++;
    460   1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    461   1.3    oster 		node = dag_h->succedents[i];
    462   1.3    oster 		if (node->visited == unvisited) {
    463   1.3    oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    464   1.3    oster 		}
    465   1.3    oster 	}
    466   1.3    oster 	return (nnum);
    467   1.1    oster }
    468   1.1    oster 
    469   1.3    oster int
    470   1.3    oster rf_RecurAssignNodeNums(node, num, unvisited)
    471   1.3    oster 	RF_DagNode_t *node;
    472   1.3    oster 	int     num;
    473   1.3    oster 	int     unvisited;
    474   1.3    oster {
    475   1.3    oster 	int     i;
    476   1.3    oster 
    477   1.3    oster 	node->visited = (unvisited) ? 0 : 1;
    478   1.3    oster 
    479   1.3    oster 	node->nodeNum = num++;
    480   1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    481   1.3    oster 		if (node->succedents[i]->visited == unvisited) {
    482   1.3    oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    483   1.3    oster 		}
    484   1.3    oster 	}
    485   1.3    oster 	return (num);
    486   1.3    oster }
    487   1.1    oster /* set the header pointers in each node to "newptr" */
    488   1.3    oster void
    489   1.3    oster rf_ResetDAGHeaderPointers(dag_h, newptr)
    490   1.3    oster 	RF_DagHeader_t *dag_h;
    491   1.3    oster 	RF_DagHeader_t *newptr;
    492   1.3    oster {
    493   1.3    oster 	int     i;
    494   1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    495   1.3    oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    496   1.3    oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    497   1.1    oster }
    498   1.1    oster 
    499   1.3    oster void
    500   1.3    oster rf_RecurResetDAGHeaderPointers(node, newptr)
    501   1.3    oster 	RF_DagNode_t *node;
    502   1.3    oster 	RF_DagHeader_t *newptr;
    503   1.1    oster {
    504   1.3    oster 	int     i;
    505   1.3    oster 	node->dagHdr = newptr;
    506   1.3    oster 	for (i = 0; i < node->numSuccedents; i++)
    507   1.3    oster 		if (node->succedents[i]->dagHdr != newptr)
    508   1.3    oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    509   1.3    oster }
    510   1.1    oster 
    511   1.1    oster 
    512   1.3    oster void
    513   1.3    oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    514   1.3    oster {
    515   1.3    oster 	int     i = 0;
    516   1.3    oster 
    517   1.3    oster 	for (; dag_h; dag_h = dag_h->next) {
    518   1.3    oster 		rf_AssignNodeNums(dag_h);
    519   1.3    oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    520   1.3    oster 		rf_PrintDAG(dag_h);
    521   1.3    oster 	}
    522   1.1    oster }
    523   1.1    oster 
    524   1.3    oster static int
    525   1.3    oster rf_ValidateBranch(node, scount, acount, nodes, unvisited)
    526   1.3    oster 	RF_DagNode_t *node;
    527   1.3    oster 	int    *scount;
    528   1.3    oster 	int    *acount;
    529   1.3    oster 	RF_DagNode_t **nodes;
    530   1.3    oster 	int     unvisited;
    531   1.3    oster {
    532   1.3    oster 	int     i, retcode = 0;
    533   1.3    oster 
    534   1.3    oster 	/* construct an array of node pointers indexed by node num */
    535   1.3    oster 	node->visited = (unvisited) ? 0 : 1;
    536   1.3    oster 	nodes[node->nodeNum] = node;
    537   1.3    oster 
    538   1.3    oster 	if (node->next != NULL) {
    539   1.3    oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    540   1.3    oster 		retcode = 1;
    541   1.3    oster 	}
    542   1.3    oster 	if (node->status != rf_wait) {
    543   1.3    oster 		printf("INVALID DAG: Node status is not wait\n");
    544   1.3    oster 		retcode = 1;
    545   1.3    oster 	}
    546   1.3    oster 	if (node->numAntDone != 0) {
    547   1.3    oster 		printf("INVALID DAG: numAntDone is not zero\n");
    548   1.3    oster 		retcode = 1;
    549   1.3    oster 	}
    550   1.3    oster 	if (node->doFunc == rf_TerminateFunc) {
    551   1.3    oster 		if (node->numSuccedents != 0) {
    552   1.3    oster 			printf("INVALID DAG: Terminator node has succedents\n");
    553   1.3    oster 			retcode = 1;
    554   1.3    oster 		}
    555   1.3    oster 	} else {
    556   1.3    oster 		if (node->numSuccedents == 0) {
    557   1.3    oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    558   1.3    oster 			retcode = 1;
    559   1.3    oster 		}
    560   1.3    oster 	}
    561   1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    562   1.3    oster 		if (!node->succedents[i]) {
    563   1.3    oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    564   1.3    oster 			retcode = 1;
    565   1.3    oster 		}
    566   1.3    oster 		scount[node->succedents[i]->nodeNum]++;
    567   1.3    oster 	}
    568   1.3    oster 	for (i = 0; i < node->numAntecedents; i++) {
    569   1.3    oster 		if (!node->antecedents[i]) {
    570   1.3    oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    571   1.3    oster 			retcode = 1;
    572   1.3    oster 		}
    573   1.3    oster 		acount[node->antecedents[i]->nodeNum]++;
    574   1.3    oster 	}
    575   1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    576   1.3    oster 		if (node->succedents[i]->visited == unvisited) {
    577   1.3    oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    578   1.3    oster 				acount, nodes, unvisited)) {
    579   1.3    oster 				retcode = 1;
    580   1.3    oster 			}
    581   1.3    oster 		}
    582   1.3    oster 	}
    583   1.3    oster 	return (retcode);
    584   1.3    oster }
    585   1.3    oster 
    586   1.3    oster static void
    587   1.3    oster rf_ValidateBranchVisitedBits(node, unvisited, rl)
    588   1.3    oster 	RF_DagNode_t *node;
    589   1.3    oster 	int     unvisited;
    590   1.3    oster 	int     rl;
    591   1.3    oster {
    592   1.3    oster 	int     i;
    593   1.3    oster 
    594   1.3    oster 	RF_ASSERT(node->visited == unvisited);
    595   1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    596   1.3    oster 		if (node->succedents[i] == NULL) {
    597   1.3    oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    598   1.3    oster 			RF_ASSERT(0);
    599   1.3    oster 		}
    600   1.3    oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    601   1.3    oster 	}
    602   1.3    oster }
    603   1.3    oster /* NOTE:  never call this on a big dag, because it is exponential
    604   1.3    oster  * in execution time
    605   1.3    oster  */
    606   1.3    oster static void
    607   1.3    oster rf_ValidateVisitedBits(dag)
    608   1.3    oster 	RF_DagHeader_t *dag;
    609   1.3    oster {
    610   1.3    oster 	int     i, unvisited;
    611   1.3    oster 
    612   1.3    oster 	unvisited = dag->succedents[0]->visited;
    613   1.3    oster 
    614   1.3    oster 	for (i = 0; i < dag->numSuccedents; i++) {
    615   1.3    oster 		if (dag->succedents[i] == NULL) {
    616   1.3    oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    617   1.3    oster 			RF_ASSERT(0);
    618   1.3    oster 		}
    619   1.3    oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    620   1.3    oster 	}
    621   1.3    oster }
    622   1.1    oster /* validate a DAG.  _at entry_ verify that:
    623   1.1    oster  *   -- numNodesCompleted is zero
    624   1.1    oster  *   -- node queue is null
    625   1.1    oster  *   -- dag status is rf_enable
    626   1.1    oster  *   -- next pointer is null on every node
    627   1.1    oster  *   -- all nodes have status wait
    628   1.1    oster  *   -- numAntDone is zero in all nodes
    629   1.1    oster  *   -- terminator node has zero successors
    630   1.1    oster  *   -- no other node besides terminator has zero successors
    631   1.1    oster  *   -- no successor or antecedent pointer in a node is NULL
    632   1.1    oster  *   -- number of times that each node appears as a successor of another node
    633   1.1    oster  *      is equal to the antecedent count on that node
    634   1.1    oster  *   -- number of times that each node appears as an antecedent of another node
    635   1.1    oster  *      is equal to the succedent count on that node
    636   1.1    oster  *   -- what else?
    637   1.1    oster  */
    638   1.3    oster int
    639   1.3    oster rf_ValidateDAG(dag_h)
    640   1.3    oster 	RF_DagHeader_t *dag_h;
    641   1.3    oster {
    642   1.3    oster 	int     i, nodecount;
    643   1.3    oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    644   1.3    oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    645   1.3    oster 	int     retcode = 0;
    646   1.3    oster 	int     unvisited;
    647   1.3    oster 	int     commitNodeCount = 0;
    648   1.3    oster 
    649   1.3    oster 	if (rf_validateVisitedDebug)
    650   1.3    oster 		rf_ValidateVisitedBits(dag_h);
    651   1.3    oster 
    652   1.3    oster 	if (dag_h->numNodesCompleted != 0) {
    653   1.3    oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    654   1.3    oster 		retcode = 1;
    655   1.3    oster 		goto validate_dag_bad;
    656   1.3    oster 	}
    657   1.3    oster 	if (dag_h->status != rf_enable) {
    658   1.3    oster 		printf("INVALID DAG: not enabled\n");
    659   1.3    oster 		retcode = 1;
    660   1.3    oster 		goto validate_dag_bad;
    661   1.3    oster 	}
    662   1.3    oster 	if (dag_h->numCommits != 0) {
    663   1.3    oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    664   1.3    oster 		retcode = 1;
    665   1.3    oster 		goto validate_dag_bad;
    666   1.3    oster 	}
    667   1.3    oster 	if (dag_h->numSuccedents != 1) {
    668   1.3    oster 		/* currently, all dags must have only one succedent */
    669   1.3    oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    670   1.3    oster 		retcode = 1;
    671   1.3    oster 		goto validate_dag_bad;
    672   1.3    oster 	}
    673   1.3    oster 	nodecount = rf_AssignNodeNums(dag_h);
    674   1.3    oster 
    675   1.3    oster 	unvisited = dag_h->succedents[0]->visited;
    676   1.3    oster 
    677   1.3    oster 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
    678   1.3    oster 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
    679   1.3    oster 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
    680   1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    681   1.3    oster 		if ((dag_h->succedents[i]->visited == unvisited)
    682   1.3    oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    683   1.3    oster 			acount, nodes, unvisited)) {
    684   1.3    oster 			retcode = 1;
    685   1.3    oster 		}
    686   1.3    oster 	}
    687   1.3    oster 	/* start at 1 to skip the header node */
    688   1.3    oster 	for (i = 1; i < nodecount; i++) {
    689   1.3    oster 		if (nodes[i]->commitNode)
    690   1.3    oster 			commitNodeCount++;
    691   1.3    oster 		if (nodes[i]->doFunc == NULL) {
    692   1.3    oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    693   1.3    oster 			retcode = 1;
    694   1.3    oster 			goto validate_dag_out;
    695   1.3    oster 		}
    696   1.3    oster 		if (nodes[i]->undoFunc == NULL) {
    697   1.3    oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    698   1.3    oster 			retcode = 1;
    699   1.3    oster 			goto validate_dag_out;
    700   1.3    oster 		}
    701   1.3    oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    702   1.3    oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    703   1.3    oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    704   1.3    oster 			retcode = 1;
    705   1.3    oster 			goto validate_dag_out;
    706   1.3    oster 		}
    707   1.3    oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    708   1.3    oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    709   1.3    oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    710   1.3    oster 			retcode = 1;
    711   1.3    oster 			goto validate_dag_out;
    712   1.3    oster 		}
    713   1.3    oster 	}
    714   1.1    oster 
    715   1.3    oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    716   1.3    oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    717   1.3    oster 		    dag_h->numCommitNodes, commitNodeCount);
    718   1.3    oster 		retcode = 1;
    719   1.3    oster 		goto validate_dag_out;
    720   1.3    oster 	}
    721   1.1    oster validate_dag_out:
    722   1.3    oster 	RF_Free(scount, nodecount * sizeof(int));
    723   1.3    oster 	RF_Free(acount, nodecount * sizeof(int));
    724   1.3    oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    725   1.3    oster 	if (retcode)
    726   1.3    oster 		rf_PrintDAGList(dag_h);
    727   1.3    oster 
    728   1.3    oster 	if (rf_validateVisitedDebug)
    729   1.3    oster 		rf_ValidateVisitedBits(dag_h);
    730   1.3    oster 
    731   1.3    oster 	return (retcode);
    732   1.1    oster 
    733   1.1    oster validate_dag_bad:
    734   1.3    oster 	rf_PrintDAGList(dag_h);
    735   1.3    oster 	return (retcode);
    736   1.1    oster }
    737   1.1    oster 
    738   1.1    oster 
    739   1.1    oster /******************************************************************************
    740   1.1    oster  *
    741   1.1    oster  * misc construction routines
    742   1.1    oster  *
    743   1.1    oster  *****************************************************************************/
    744   1.1    oster 
    745   1.3    oster void
    746   1.3    oster rf_redirect_asm(
    747   1.3    oster     RF_Raid_t * raidPtr,
    748   1.3    oster     RF_AccessStripeMap_t * asmap)
    749   1.3    oster {
    750   1.3    oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    751   1.3    oster 	int     row = asmap->physInfo->row;
    752   1.3    oster 	int     fcol = raidPtr->reconControl[row]->fcol;
    753   1.3    oster 	int     srow = raidPtr->reconControl[row]->spareRow;
    754   1.3    oster 	int     scol = raidPtr->reconControl[row]->spareCol;
    755   1.3    oster 	RF_PhysDiskAddr_t *pda;
    756   1.3    oster 
    757   1.3    oster 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
    758   1.3    oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    759   1.3    oster 		if (pda->col == fcol) {
    760   1.3    oster 			if (rf_dagDebug) {
    761   1.3    oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
    762   1.3    oster 					pda->startSector)) {
    763   1.3    oster 					RF_PANIC();
    764   1.3    oster 				}
    765   1.3    oster 			}
    766   1.3    oster 			/* printf("Remapped data for large write\n"); */
    767   1.3    oster 			if (ds) {
    768   1.3    oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    769   1.3    oster 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    770   1.3    oster 			} else {
    771   1.3    oster 				pda->row = srow;
    772   1.3    oster 				pda->col = scol;
    773   1.3    oster 			}
    774   1.3    oster 		}
    775   1.3    oster 	}
    776   1.3    oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    777   1.3    oster 		if (pda->col == fcol) {
    778   1.3    oster 			if (rf_dagDebug) {
    779   1.3    oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
    780   1.3    oster 					RF_PANIC();
    781   1.3    oster 				}
    782   1.3    oster 			}
    783   1.3    oster 		}
    784   1.3    oster 		if (ds) {
    785   1.3    oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    786   1.3    oster 		} else {
    787   1.3    oster 			pda->row = srow;
    788   1.3    oster 			pda->col = scol;
    789   1.3    oster 		}
    790   1.3    oster 	}
    791   1.1    oster }
    792   1.1    oster 
    793   1.1    oster 
    794   1.1    oster /* this routine allocates read buffers and generates stripe maps for the
    795   1.1    oster  * regions of the array from the start of the stripe to the start of the
    796   1.1    oster  * access, and from the end of the access to the end of the stripe.  It also
    797   1.1    oster  * computes and returns the number of DAG nodes needed to read all this data.
    798   1.1    oster  * Note that this routine does the wrong thing if the access is fully
    799   1.1    oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    800   1.1    oster  * start.
    801   1.1    oster  */
    802   1.3    oster void
    803   1.3    oster rf_MapUnaccessedPortionOfStripe(
    804   1.3    oster     RF_Raid_t * raidPtr,
    805   1.3    oster     RF_RaidLayout_t * layoutPtr,/* in: layout information */
    806   1.3    oster     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    807   1.3    oster     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    808   1.3    oster     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
    809   1.3    oster 						 * headers, to be filled in */
    810   1.3    oster     int *nRodNodes,		/* out: num nodes to be generated to read
    811   1.3    oster 				 * unaccessed data */
    812   1.3    oster     char **sosBuffer,		/* out: pointers to newly allocated buffer */
    813   1.3    oster     char **eosBuffer,
    814   1.3    oster     RF_AllocListElem_t * allocList)
    815   1.3    oster {
    816   1.3    oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    817   1.3    oster 	RF_SectorNum_t sosNumSector, eosNumSector;
    818   1.3    oster 
    819   1.3    oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    820   1.3    oster 	/* generate an access map for the region of the array from start of
    821   1.3    oster 	 * stripe to start of access */
    822   1.3    oster 	new_asm_h[0] = new_asm_h[1] = NULL;
    823   1.3    oster 	*nRodNodes = 0;
    824   1.3    oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    825   1.3    oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    826   1.3    oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    827   1.3    oster 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    828   1.3    oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    829   1.3    oster 		new_asm_h[0]->next = dag_h->asmList;
    830   1.3    oster 		dag_h->asmList = new_asm_h[0];
    831   1.3    oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    832   1.3    oster 
    833   1.3    oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    834   1.3    oster 		/* we're totally within one stripe here */
    835   1.3    oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    836   1.3    oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    837   1.3    oster 	}
    838   1.3    oster 	/* generate an access map for the region of the array from end of
    839   1.3    oster 	 * access to end of stripe */
    840   1.3    oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    841   1.3    oster 		eosRaidAddress = asmap->endRaidAddress;
    842   1.3    oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    843   1.3    oster 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    844   1.3    oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    845   1.3    oster 		new_asm_h[1]->next = dag_h->asmList;
    846   1.3    oster 		dag_h->asmList = new_asm_h[1];
    847   1.3    oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    848   1.3    oster 
    849   1.3    oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    850   1.3    oster 		/* we're totally within one stripe here */
    851   1.3    oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    852   1.3    oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    853   1.3    oster 	}
    854   1.1    oster }
    855   1.1    oster 
    856   1.1    oster 
    857   1.1    oster 
    858   1.1    oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    859   1.3    oster int
    860   1.3    oster rf_PDAOverlap(
    861   1.3    oster     RF_RaidLayout_t * layoutPtr,
    862   1.3    oster     RF_PhysDiskAddr_t * src,
    863   1.3    oster     RF_PhysDiskAddr_t * dest)
    864   1.3    oster {
    865   1.3    oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    866   1.3    oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    867   1.3    oster 	/* use -1 to be sure we stay within SU */
    868   1.3    oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    869   1.3    oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    870   1.3    oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    871   1.1    oster }
    872   1.1    oster 
    873   1.1    oster 
    874   1.1    oster /* GenerateFailedAccessASMs
    875   1.1    oster  *
    876   1.1    oster  * this routine figures out what portion of the stripe needs to be read
    877   1.1    oster  * to effect the degraded read or write operation.  It's primary function
    878   1.1    oster  * is to identify everything required to recover the data, and then
    879   1.1    oster  * eliminate anything that is already being accessed by the user.
    880   1.1    oster  *
    881   1.1    oster  * The main result is two new ASMs, one for the region from the start of the
    882   1.1    oster  * stripe to the start of the access, and one for the region from the end of
    883   1.1    oster  * the access to the end of the stripe.  These ASMs describe everything that
    884   1.1    oster  * needs to be read to effect the degraded access.  Other results are:
    885   1.1    oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
    886   1.1    oster  *                recover the lost data,
    887   1.1    oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    888   1.1    oster  *                at entry, not allocated.
    889   1.1    oster  *    overlappingPDAs --
    890   1.1    oster  *                describes which of the non-failed PDAs in the user access
    891   1.1    oster  *                overlap data that needs to be read to effect recovery.
    892   1.1    oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    893   1.1    oster  *                PDA, the ith pda in the input asm overlaps data that needs
    894   1.1    oster  *                to be read for recovery.
    895   1.1    oster  */
    896   1.1    oster  /* in: asm - ASM for the actual access, one stripe only */
    897  1.10      wiz  /* in: failedPDA - which component of the access has failed */
    898   1.1    oster  /* in: dag_h - header of the DAG we're going to create */
    899   1.1    oster  /* out: new_asm_h - the two new ASMs */
    900   1.1    oster  /* out: nXorBufs - the total number of xor bufs required */
    901   1.1    oster  /* out: rpBufPtr - a buffer for the parity read */
    902   1.3    oster void
    903   1.3    oster rf_GenerateFailedAccessASMs(
    904   1.3    oster     RF_Raid_t * raidPtr,
    905   1.3    oster     RF_AccessStripeMap_t * asmap,
    906   1.3    oster     RF_PhysDiskAddr_t * failedPDA,
    907   1.3    oster     RF_DagHeader_t * dag_h,
    908   1.3    oster     RF_AccessStripeMapHeader_t ** new_asm_h,
    909   1.3    oster     int *nXorBufs,
    910   1.3    oster     char **rpBufPtr,
    911   1.3    oster     char *overlappingPDAs,
    912   1.3    oster     RF_AllocListElem_t * allocList)
    913   1.3    oster {
    914   1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    915   1.3    oster 
    916   1.3    oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    917   1.3    oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    918   1.3    oster 
    919   1.3    oster 	RF_SectorCount_t numSect[2], numParitySect;
    920   1.3    oster 	RF_PhysDiskAddr_t *pda;
    921   1.3    oster 	char   *rdBuf, *bufP;
    922   1.3    oster 	int     foundit, i;
    923   1.3    oster 
    924   1.3    oster 	bufP = NULL;
    925   1.3    oster 	foundit = 0;
    926   1.3    oster 	/* first compute the following raid addresses: start of stripe,
    927   1.3    oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    928   1.3    oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    929   1.3    oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    930   1.3    oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    931   1.3    oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    932   1.3    oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    933   1.3    oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    934   1.3    oster 
    935   1.3    oster 	/* now generate access stripe maps for each of the above regions of
    936   1.3    oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    937   1.3    oster 
    938   1.3    oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    939   1.3    oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    940   1.3    oster 
    941   1.3    oster 	/* walk through the PDAs and range-restrict each SU to the region of
    942   1.3    oster 	 * the SU touched on the failed PDA.  also compute total data buffer
    943   1.3    oster 	 * space requirements in this step.  Ignore the parity for now. */
    944   1.3    oster 
    945   1.3    oster 	numSect[0] = numSect[1] = 0;
    946   1.3    oster 	if (new_asm_h[0]) {
    947   1.3    oster 		new_asm_h[0]->next = dag_h->asmList;
    948   1.3    oster 		dag_h->asmList = new_asm_h[0];
    949   1.3    oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    950   1.3    oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    951   1.3    oster 			numSect[0] += pda->numSector;
    952   1.3    oster 		}
    953   1.3    oster 	}
    954   1.3    oster 	if (new_asm_h[1]) {
    955   1.3    oster 		new_asm_h[1]->next = dag_h->asmList;
    956   1.3    oster 		dag_h->asmList = new_asm_h[1];
    957   1.3    oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    958   1.3    oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    959   1.3    oster 			numSect[1] += pda->numSector;
    960   1.3    oster 		}
    961   1.3    oster 	}
    962   1.3    oster 	numParitySect = failedPDA->numSector;
    963   1.3    oster 
    964   1.3    oster 	/* allocate buffer space for the data & parity we have to read to
    965   1.3    oster 	 * recover from the failure */
    966   1.3    oster 
    967   1.3    oster 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    968   1.3    oster 										 * buf if not needed */
    969   1.3    oster 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    970   1.3    oster 		bufP = rdBuf;
    971   1.3    oster 		if (rf_degDagDebug)
    972   1.3    oster 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    973   1.3    oster 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    974   1.3    oster 	}
    975   1.3    oster 	/* now walk through the pdas one last time and assign buffer pointers
    976   1.3    oster 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    977   1.3    oster 	 * how many bufs need to be xored together */
    978   1.3    oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    979   1.3    oster 				 * case, 1 is for failed data */
    980   1.3    oster 	if (new_asm_h[0]) {
    981   1.3    oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    982   1.3    oster 			pda->bufPtr = bufP;
    983   1.3    oster 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    984   1.3    oster 		}
    985   1.3    oster 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    986   1.3    oster 	}
    987   1.3    oster 	if (new_asm_h[1]) {
    988   1.3    oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    989   1.3    oster 			pda->bufPtr = bufP;
    990   1.3    oster 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    991   1.3    oster 		}
    992   1.3    oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    993   1.3    oster 	}
    994   1.3    oster 	if (rpBufPtr)
    995   1.3    oster 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    996   1.3    oster 					 * parity */
    997   1.3    oster 
    998   1.3    oster 	/* the last step is to figure out how many more distinct buffers need
    999   1.3    oster 	 * to get xor'd to produce the missing unit.  there's one for each
   1000   1.3    oster 	 * user-data read node that overlaps the portion of the failed unit
   1001   1.3    oster 	 * being accessed */
   1002   1.3    oster 
   1003   1.3    oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1004   1.3    oster 		if (pda == failedPDA) {
   1005   1.3    oster 			i--;
   1006   1.3    oster 			foundit = 1;
   1007   1.3    oster 			continue;
   1008   1.3    oster 		}
   1009   1.3    oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1010   1.3    oster 			overlappingPDAs[i] = 1;
   1011   1.3    oster 			(*nXorBufs)++;
   1012   1.3    oster 		}
   1013   1.3    oster 	}
   1014   1.3    oster 	if (!foundit) {
   1015   1.3    oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1016   1.3    oster 		RF_ASSERT(0);
   1017   1.3    oster 	}
   1018   1.3    oster 	if (rf_degDagDebug) {
   1019   1.3    oster 		if (new_asm_h[0]) {
   1020   1.3    oster 			printf("First asm:\n");
   1021   1.3    oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1022   1.3    oster 		}
   1023   1.3    oster 		if (new_asm_h[1]) {
   1024   1.3    oster 			printf("Second asm:\n");
   1025   1.3    oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1026   1.3    oster 		}
   1027   1.3    oster 	}
   1028   1.1    oster }
   1029   1.1    oster 
   1030   1.1    oster 
   1031   1.1    oster /* adjusts the offset and number of sectors in the destination pda so that
   1032   1.1    oster  * it covers at most the region of the SU covered by the source PDA.  This
   1033   1.1    oster  * is exclusively a restriction:  the number of sectors indicated by the
   1034   1.1    oster  * target PDA can only shrink.
   1035   1.1    oster  *
   1036   1.1    oster  * For example:  s = sectors within SU indicated by source PDA
   1037   1.1    oster  *               d = sectors within SU indicated by dest PDA
   1038   1.1    oster  *               r = results, stored in dest PDA
   1039   1.1    oster  *
   1040   1.1    oster  * |--------------- one stripe unit ---------------------|
   1041   1.1    oster  * |           sssssssssssssssssssssssssssssssss         |
   1042   1.1    oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1043   1.1    oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1044   1.1    oster  *
   1045   1.1    oster  * Another example:
   1046   1.1    oster  *
   1047   1.1    oster  * |--------------- one stripe unit ---------------------|
   1048   1.1    oster  * |           sssssssssssssssssssssssssssssssss         |
   1049   1.1    oster  * |    ddddddddddddddddddddddd                          |
   1050   1.1    oster  * |           rrrrrrrrrrrrrrrr                          |
   1051   1.1    oster  *
   1052   1.1    oster  */
   1053   1.3    oster void
   1054   1.3    oster rf_RangeRestrictPDA(
   1055   1.3    oster     RF_Raid_t * raidPtr,
   1056   1.3    oster     RF_PhysDiskAddr_t * src,
   1057   1.3    oster     RF_PhysDiskAddr_t * dest,
   1058   1.3    oster     int dobuffer,
   1059   1.3    oster     int doraidaddr)
   1060   1.3    oster {
   1061   1.3    oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1062   1.3    oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1063   1.3    oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1064   1.3    oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1065   1.3    oster 													 * stay within SU */
   1066   1.3    oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1067   1.3    oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1068   1.3    oster 
   1069   1.3    oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1070   1.3    oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1071   1.3    oster 
   1072   1.3    oster 	if (dobuffer)
   1073   1.3    oster 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1074   1.3    oster 	if (doraidaddr) {
   1075   1.3    oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1076   1.3    oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1077   1.3    oster 	}
   1078   1.1    oster }
   1079   1.1    oster /*
   1080   1.1    oster  * Want the highest of these primes to be the largest one
   1081   1.1    oster  * less than the max expected number of columns (won't hurt
   1082   1.1    oster  * to be too small or too large, but won't be optimal, either)
   1083   1.1    oster  * --jimz
   1084   1.1    oster  */
   1085   1.1    oster #define NLOWPRIMES 8
   1086   1.3    oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1087   1.1    oster /*****************************************************************************
   1088   1.1    oster  * compute the workload shift factor.  (chained declustering)
   1089   1.1    oster  *
   1090   1.1    oster  * return nonzero if access should shift to secondary, otherwise,
   1091   1.1    oster  * access is to primary
   1092   1.1    oster  *****************************************************************************/
   1093   1.3    oster int
   1094   1.3    oster rf_compute_workload_shift(
   1095   1.3    oster     RF_Raid_t * raidPtr,
   1096   1.3    oster     RF_PhysDiskAddr_t * pda)
   1097   1.3    oster {
   1098   1.3    oster 	/*
   1099   1.3    oster          * variables:
   1100   1.3    oster          *  d   = column of disk containing primary
   1101   1.3    oster          *  f   = column of failed disk
   1102   1.3    oster          *  n   = number of disks in array
   1103   1.3    oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1104   1.3    oster          *  row = row of array the access is in
   1105   1.3    oster          *  v   = numerator of redirection ratio
   1106   1.3    oster          *  k   = denominator of redirection ratio
   1107   1.3    oster          */
   1108   1.3    oster 	RF_RowCol_t d, f, sd, row, n;
   1109   1.3    oster 	int     k, v, ret, i;
   1110   1.3    oster 
   1111   1.3    oster 	row = pda->row;
   1112   1.3    oster 	n = raidPtr->numCol;
   1113   1.3    oster 
   1114   1.3    oster 	/* assign column of primary copy to d */
   1115   1.3    oster 	d = pda->col;
   1116   1.3    oster 
   1117   1.3    oster 	/* assign column of dead disk to f */
   1118   1.3    oster 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
   1119   1.3    oster 
   1120   1.3    oster 	RF_ASSERT(f < n);
   1121   1.3    oster 	RF_ASSERT(f != d);
   1122   1.3    oster 
   1123   1.3    oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1124   1.3    oster 	RF_ASSERT(sd < n);
   1125   1.3    oster 
   1126   1.3    oster 	/*
   1127   1.3    oster          * v of every k accesses should be redirected
   1128   1.3    oster          *
   1129   1.3    oster          * v/k := (n-1-sd)/(n-1)
   1130   1.3    oster          */
   1131   1.3    oster 	v = (n - 1 - sd);
   1132   1.3    oster 	k = (n - 1);
   1133   1.1    oster 
   1134   1.1    oster #if 1
   1135   1.3    oster 	/*
   1136   1.3    oster          * XXX
   1137   1.3    oster          * Is this worth it?
   1138   1.3    oster          *
   1139   1.3    oster          * Now reduce the fraction, by repeatedly factoring
   1140   1.3    oster          * out primes (just like they teach in elementary school!)
   1141   1.3    oster          */
   1142   1.3    oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1143   1.3    oster 		if (lowprimes[i] > v)
   1144   1.3    oster 			break;
   1145   1.3    oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1146   1.3    oster 			v /= lowprimes[i];
   1147   1.3    oster 			k /= lowprimes[i];
   1148   1.3    oster 		}
   1149   1.3    oster 	}
   1150   1.1    oster #endif
   1151   1.1    oster 
   1152   1.3    oster 	raidPtr->hist_diskreq[row][d]++;
   1153   1.3    oster 	if (raidPtr->hist_diskreq[row][d] > v) {
   1154   1.3    oster 		ret = 0;	/* do not redirect */
   1155   1.3    oster 	} else {
   1156   1.3    oster 		ret = 1;	/* redirect */
   1157   1.3    oster 	}
   1158   1.1    oster 
   1159   1.1    oster #if 0
   1160   1.3    oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1161   1.3    oster 	    raidPtr->hist_diskreq[row][d]);
   1162   1.1    oster #endif
   1163   1.1    oster 
   1164   1.3    oster 	if (raidPtr->hist_diskreq[row][d] >= k) {
   1165   1.3    oster 		/* reset counter */
   1166   1.3    oster 		raidPtr->hist_diskreq[row][d] = 0;
   1167   1.3    oster 	}
   1168   1.3    oster 	return (ret);
   1169   1.1    oster }
   1170   1.1    oster /*
   1171   1.1    oster  * Disk selection routines
   1172   1.1    oster  */
   1173   1.1    oster 
   1174   1.1    oster /*
   1175   1.1    oster  * Selects the disk with the shortest queue from a mirror pair.
   1176   1.1    oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1177   1.1    oster  * disk are counted as members of the "queue"
   1178   1.1    oster  */
   1179   1.3    oster void
   1180   1.3    oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1181   1.1    oster {
   1182   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1183   1.3    oster 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1184   1.3    oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1185   1.3    oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1186   1.3    oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1187   1.3    oster 	RF_PhysDiskAddr_t *tmp_pda;
   1188   1.3    oster 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1189   1.3    oster 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1190   1.3    oster 
   1191   1.3    oster 	/* return the [row col] of the disk with the shortest queue */
   1192   1.3    oster 	rowData = data_pda->row;
   1193   1.3    oster 	colData = data_pda->col;
   1194   1.3    oster 	rowMirror = mirror_pda->row;
   1195   1.3    oster 	colMirror = mirror_pda->col;
   1196   1.3    oster 	dataQueue = &(dqs[rowData][colData]);
   1197   1.3    oster 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1198   1.1    oster 
   1199   1.1    oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1200   1.3    oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1201   1.3    oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1202   1.3    oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1203   1.1    oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1204   1.3    oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1205   1.3    oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1206   1.3    oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1207   1.3    oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1208   1.1    oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1209   1.3    oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1210   1.3    oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1211   1.1    oster 
   1212   1.3    oster 	usemirror = 0;
   1213   1.3    oster 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1214   1.3    oster 		usemirror = 0;
   1215   1.3    oster 	} else
   1216   1.3    oster 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1217   1.3    oster 			usemirror = 1;
   1218   1.3    oster 		} else
   1219   1.5    oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1220   1.5    oster 				/* Trust only the main disk */
   1221   1.3    oster 				usemirror = 0;
   1222   1.3    oster 			} else
   1223   1.5    oster 				if (dataQueueLength < mirrorQueueLength) {
   1224   1.5    oster 					usemirror = 0;
   1225   1.5    oster 				} else
   1226   1.5    oster 					if (mirrorQueueLength < dataQueueLength) {
   1227   1.5    oster 						usemirror = 1;
   1228   1.3    oster 					} else {
   1229   1.5    oster 						/* queues are equal length. attempt
   1230   1.5    oster 						 * cleverness. */
   1231   1.5    oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1232   1.5    oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1233   1.5    oster 							usemirror = 0;
   1234   1.5    oster 						} else {
   1235   1.5    oster 							usemirror = 1;
   1236   1.5    oster 						}
   1237   1.3    oster 					}
   1238   1.3    oster 
   1239   1.3    oster 	if (usemirror) {
   1240   1.3    oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1241   1.3    oster 		tmp_pda = data_pda;
   1242   1.3    oster 		node->params[0].p = mirror_pda;
   1243   1.3    oster 		node->params[4].p = tmp_pda;
   1244   1.3    oster 	} else {
   1245   1.3    oster 		/* use data disk, leave param 0 unchanged */
   1246   1.3    oster 	}
   1247   1.3    oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1248   1.3    oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1249   1.1    oster }
   1250   1.1    oster /*
   1251   1.1    oster  * Do simple partitioning. This assumes that
   1252   1.1    oster  * the data and parity disks are laid out identically.
   1253   1.1    oster  */
   1254   1.3    oster void
   1255   1.3    oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1256   1.1    oster {
   1257   1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1258   1.3    oster 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1259   1.3    oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1260   1.3    oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1261   1.3    oster 	RF_PhysDiskAddr_t *tmp_pda;
   1262   1.3    oster 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1263   1.3    oster 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1264   1.3    oster 	int     usemirror;
   1265   1.3    oster 
   1266   1.3    oster 	/* return the [row col] of the disk with the shortest queue */
   1267   1.3    oster 	rowData = data_pda->row;
   1268   1.3    oster 	colData = data_pda->col;
   1269   1.3    oster 	rowMirror = mirror_pda->row;
   1270   1.3    oster 	colMirror = mirror_pda->col;
   1271   1.3    oster 	dataQueue = &(dqs[rowData][colData]);
   1272   1.3    oster 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1273   1.3    oster 
   1274   1.3    oster 	usemirror = 0;
   1275   1.3    oster 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1276   1.3    oster 		usemirror = 0;
   1277   1.3    oster 	} else
   1278   1.3    oster 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1279   1.3    oster 			usemirror = 1;
   1280   1.6    oster 		} else
   1281   1.6    oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1282   1.6    oster 				/* Trust only the main disk */
   1283   1.3    oster 				usemirror = 0;
   1284   1.6    oster 			} else
   1285   1.6    oster 				if (data_pda->startSector <
   1286   1.6    oster 				    (disks[rowData][colData].numBlocks / 2)) {
   1287   1.6    oster 					usemirror = 0;
   1288   1.6    oster 				} else {
   1289   1.6    oster 					usemirror = 1;
   1290   1.6    oster 				}
   1291   1.3    oster 
   1292   1.3    oster 	if (usemirror) {
   1293   1.3    oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1294   1.3    oster 		tmp_pda = data_pda;
   1295   1.3    oster 		node->params[0].p = mirror_pda;
   1296   1.3    oster 		node->params[4].p = tmp_pda;
   1297   1.3    oster 	} else {
   1298   1.3    oster 		/* use data disk, leave param 0 unchanged */
   1299   1.3    oster 	}
   1300   1.1    oster }
   1301