Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.10.6.1
      1  1.10.6.1  gehenna /*	$NetBSD: rf_dagutils.c,v 1.10.6.1 2002/07/15 10:35:48 gehenna Exp $	*/
      2       1.1    oster /*
      3       1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4       1.1    oster  * All rights reserved.
      5       1.1    oster  *
      6       1.1    oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7       1.1    oster  *
      8       1.1    oster  * Permission to use, copy, modify and distribute this software and
      9       1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10       1.1    oster  * notice and this permission notice appear in all copies of the
     11       1.1    oster  * software, derivative works or modified versions, and any portions
     12       1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13       1.1    oster  *
     14       1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15       1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16       1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17       1.1    oster  *
     18       1.1    oster  * Carnegie Mellon requests users of this software to return to
     19       1.1    oster  *
     20       1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21       1.1    oster  *  School of Computer Science
     22       1.1    oster  *  Carnegie Mellon University
     23       1.1    oster  *  Pittsburgh PA 15213-3890
     24       1.1    oster  *
     25       1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26       1.1    oster  * rights to redistribute these changes.
     27       1.1    oster  */
     28       1.1    oster 
     29       1.1    oster /******************************************************************************
     30       1.1    oster  *
     31       1.1    oster  * rf_dagutils.c -- utility routines for manipulating dags
     32       1.1    oster  *
     33       1.1    oster  *****************************************************************************/
     34       1.9    lukem 
     35       1.9    lukem #include <sys/cdefs.h>
     36  1.10.6.1  gehenna __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.10.6.1 2002/07/15 10:35:48 gehenna Exp $");
     37       1.1    oster 
     38       1.8    oster #include <dev/raidframe/raidframevar.h>
     39       1.8    oster 
     40       1.1    oster #include "rf_archs.h"
     41       1.1    oster #include "rf_threadstuff.h"
     42       1.1    oster #include "rf_raid.h"
     43       1.1    oster #include "rf_dag.h"
     44       1.1    oster #include "rf_dagutils.h"
     45       1.1    oster #include "rf_dagfuncs.h"
     46       1.1    oster #include "rf_general.h"
     47       1.1    oster #include "rf_freelist.h"
     48       1.1    oster #include "rf_map.h"
     49       1.1    oster #include "rf_shutdown.h"
     50       1.1    oster 
     51       1.1    oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     52       1.1    oster 
     53       1.1    oster RF_RedFuncs_t rf_xorFuncs = {
     54       1.1    oster 	rf_RegularXorFunc, "Reg Xr",
     55       1.3    oster rf_SimpleXorFunc, "Simple Xr"};
     56       1.1    oster 
     57       1.1    oster RF_RedFuncs_t rf_xorRecoveryFuncs = {
     58       1.1    oster 	rf_RecoveryXorFunc, "Recovery Xr",
     59       1.3    oster rf_RecoveryXorFunc, "Recovery Xr"};
     60       1.1    oster 
     61  1.10.6.1  gehenna #if RF_DEBUG_VALIDATE_DAG
     62       1.1    oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     63       1.1    oster static void rf_PrintDAG(RF_DagHeader_t *);
     64  1.10.6.1  gehenna static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     65  1.10.6.1  gehenna 			     RF_DagNode_t **, int);
     66       1.1    oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     67       1.1    oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     68  1.10.6.1  gehenna #endif /* RF_DEBUG_VALIDATE_DAG */
     69       1.1    oster 
     70       1.1    oster /******************************************************************************
     71       1.1    oster  *
     72       1.1    oster  * InitNode - initialize a dag node
     73       1.1    oster  *
     74       1.1    oster  * the size of the propList array is always the same as that of the
     75       1.1    oster  * successors array.
     76       1.1    oster  *
     77       1.1    oster  *****************************************************************************/
     78       1.3    oster void
     79       1.3    oster rf_InitNode(
     80       1.3    oster     RF_DagNode_t * node,
     81       1.3    oster     RF_NodeStatus_t initstatus,
     82       1.3    oster     int commit,
     83       1.3    oster     int (*doFunc) (RF_DagNode_t * node),
     84       1.3    oster     int (*undoFunc) (RF_DagNode_t * node),
     85       1.3    oster     int (*wakeFunc) (RF_DagNode_t * node, int status),
     86       1.3    oster     int nSucc,
     87       1.3    oster     int nAnte,
     88       1.3    oster     int nParam,
     89       1.3    oster     int nResult,
     90       1.3    oster     RF_DagHeader_t * hdr,
     91       1.3    oster     char *name,
     92       1.3    oster     RF_AllocListElem_t * alist)
     93       1.3    oster {
     94       1.3    oster 	void  **ptrs;
     95       1.3    oster 	int     nptrs;
     96       1.3    oster 
     97       1.3    oster 	if (nAnte > RF_MAX_ANTECEDENTS)
     98       1.3    oster 		RF_PANIC();
     99       1.3    oster 	node->status = initstatus;
    100       1.3    oster 	node->commitNode = commit;
    101       1.3    oster 	node->doFunc = doFunc;
    102       1.3    oster 	node->undoFunc = undoFunc;
    103       1.3    oster 	node->wakeFunc = wakeFunc;
    104       1.3    oster 	node->numParams = nParam;
    105       1.3    oster 	node->numResults = nResult;
    106       1.3    oster 	node->numAntecedents = nAnte;
    107       1.3    oster 	node->numAntDone = 0;
    108       1.3    oster 	node->next = NULL;
    109       1.3    oster 	node->numSuccedents = nSucc;
    110       1.3    oster 	node->name = name;
    111       1.3    oster 	node->dagHdr = hdr;
    112       1.3    oster 	node->visited = 0;
    113       1.3    oster 
    114       1.3    oster 	/* allocate all the pointers with one call to malloc */
    115       1.3    oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    116       1.3    oster 
    117       1.3    oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    118       1.3    oster 		/*
    119       1.3    oster 	         * The dag_ptrs field of the node is basically some scribble
    120       1.3    oster 	         * space to be used here. We could get rid of it, and always
    121       1.3    oster 	         * allocate the range of pointers, but that's expensive. So,
    122       1.3    oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    123       1.3    oster 	         * we'll find that:
    124       1.3    oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    125       1.3    oster 	         *     only a little bit (least efficient case)
    126       1.3    oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    127       1.3    oster 	         *     (wasted memory)
    128       1.3    oster 	         */
    129       1.3    oster 		ptrs = (void **) node->dag_ptrs;
    130       1.3    oster 	} else {
    131       1.3    oster 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
    132       1.3    oster 	}
    133       1.3    oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    134       1.3    oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    135       1.3    oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    136       1.3    oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    137       1.3    oster 
    138       1.3    oster 	if (nParam) {
    139       1.3    oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    140       1.3    oster 			node->params = (RF_DagParam_t *) node->dag_params;
    141       1.3    oster 		} else {
    142       1.3    oster 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
    143       1.3    oster 		}
    144       1.3    oster 	} else {
    145       1.3    oster 		node->params = NULL;
    146       1.3    oster 	}
    147       1.1    oster }
    148       1.1    oster 
    149       1.1    oster 
    150       1.1    oster 
    151       1.1    oster /******************************************************************************
    152       1.1    oster  *
    153       1.1    oster  * allocation and deallocation routines
    154       1.1    oster  *
    155       1.1    oster  *****************************************************************************/
    156       1.1    oster 
    157       1.3    oster void
    158       1.3    oster rf_FreeDAG(dag_h)
    159       1.3    oster 	RF_DagHeader_t *dag_h;
    160       1.3    oster {
    161       1.3    oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    162       1.3    oster 	RF_DagHeader_t *nextDag;
    163       1.3    oster 	int     i;
    164       1.3    oster 
    165       1.3    oster 	while (dag_h) {
    166       1.3    oster 		nextDag = dag_h->next;
    167       1.3    oster 		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
    168       1.3    oster 			/* release mem chunks */
    169       1.3    oster 			rf_ReleaseMemChunk(dag_h->memChunk[i]);
    170       1.3    oster 			dag_h->memChunk[i] = NULL;
    171       1.3    oster 		}
    172       1.3    oster 
    173       1.3    oster 		RF_ASSERT(i == dag_h->chunkIndex);
    174       1.3    oster 		if (dag_h->xtraChunkCnt > 0) {
    175       1.3    oster 			/* free xtraMemChunks */
    176       1.3    oster 			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
    177       1.3    oster 				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
    178       1.3    oster 				dag_h->xtraMemChunk[i] = NULL;
    179       1.3    oster 			}
    180       1.3    oster 			RF_ASSERT(i == dag_h->xtraChunkIndex);
    181       1.3    oster 			/* free ptrs to xtraMemChunks */
    182       1.3    oster 			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
    183       1.3    oster 		}
    184       1.3    oster 		rf_FreeAllocList(dag_h->allocList);
    185       1.3    oster 		for (asmap = dag_h->asmList; asmap;) {
    186       1.3    oster 			t_asmap = asmap;
    187       1.3    oster 			asmap = asmap->next;
    188       1.3    oster 			rf_FreeAccessStripeMap(t_asmap);
    189       1.3    oster 		}
    190       1.3    oster 		rf_FreeDAGHeader(dag_h);
    191       1.3    oster 		dag_h = nextDag;
    192       1.3    oster 	}
    193       1.3    oster }
    194       1.3    oster 
    195       1.3    oster RF_PropHeader_t *
    196       1.3    oster rf_MakePropListEntry(
    197       1.3    oster     RF_DagHeader_t * dag_h,
    198       1.3    oster     int resultNum,
    199       1.3    oster     int paramNum,
    200       1.3    oster     RF_PropHeader_t * next,
    201       1.3    oster     RF_AllocListElem_t * allocList)
    202       1.3    oster {
    203       1.3    oster 	RF_PropHeader_t *p;
    204       1.3    oster 
    205       1.3    oster 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
    206       1.3    oster 	    (RF_PropHeader_t *), allocList);
    207       1.3    oster 	p->resultNum = resultNum;
    208       1.3    oster 	p->paramNum = paramNum;
    209       1.3    oster 	p->next = next;
    210       1.3    oster 	return (p);
    211       1.1    oster }
    212       1.1    oster 
    213       1.1    oster static RF_FreeList_t *rf_dagh_freelist;
    214       1.1    oster 
    215       1.1    oster #define RF_MAX_FREE_DAGH 128
    216       1.1    oster #define RF_DAGH_INC       16
    217       1.1    oster #define RF_DAGH_INITIAL   32
    218       1.1    oster 
    219       1.1    oster static void rf_ShutdownDAGs(void *);
    220       1.3    oster static void
    221       1.3    oster rf_ShutdownDAGs(ignored)
    222       1.3    oster 	void   *ignored;
    223       1.1    oster {
    224       1.3    oster 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
    225       1.1    oster }
    226       1.1    oster 
    227       1.3    oster int
    228       1.3    oster rf_ConfigureDAGs(listp)
    229       1.3    oster 	RF_ShutdownList_t **listp;
    230       1.1    oster {
    231       1.3    oster 	int     rc;
    232       1.1    oster 
    233       1.1    oster 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
    234       1.3    oster 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
    235       1.1    oster 	if (rf_dagh_freelist == NULL)
    236       1.3    oster 		return (ENOMEM);
    237       1.1    oster 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    238       1.1    oster 	if (rc) {
    239       1.1    oster 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    240       1.3    oster 		    __FILE__, __LINE__, rc);
    241       1.1    oster 		rf_ShutdownDAGs(NULL);
    242       1.3    oster 		return (rc);
    243       1.1    oster 	}
    244       1.3    oster 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
    245       1.3    oster 	    (RF_DagHeader_t *));
    246       1.3    oster 	return (0);
    247       1.1    oster }
    248       1.1    oster 
    249       1.3    oster RF_DagHeader_t *
    250       1.3    oster rf_AllocDAGHeader()
    251       1.1    oster {
    252       1.1    oster 	RF_DagHeader_t *dh;
    253       1.1    oster 
    254       1.3    oster 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
    255       1.1    oster 	if (dh) {
    256       1.7  thorpej 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    257       1.1    oster 	}
    258       1.3    oster 	return (dh);
    259       1.1    oster }
    260       1.1    oster 
    261       1.3    oster void
    262       1.3    oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    263       1.1    oster {
    264       1.3    oster 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
    265       1.1    oster }
    266       1.1    oster /* allocates a buffer big enough to hold the data described by pda */
    267       1.3    oster void   *
    268       1.3    oster rf_AllocBuffer(
    269       1.3    oster     RF_Raid_t * raidPtr,
    270       1.3    oster     RF_DagHeader_t * dag_h,
    271       1.3    oster     RF_PhysDiskAddr_t * pda,
    272       1.3    oster     RF_AllocListElem_t * allocList)
    273       1.3    oster {
    274       1.3    oster 	char   *p;
    275       1.3    oster 
    276       1.3    oster 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    277       1.3    oster 	    (char *), allocList);
    278       1.3    oster 	return ((void *) p);
    279       1.1    oster }
    280  1.10.6.1  gehenna #if RF_DEBUG_VALIDATE_DAG
    281       1.1    oster /******************************************************************************
    282       1.1    oster  *
    283       1.1    oster  * debug routines
    284       1.1    oster  *
    285       1.1    oster  *****************************************************************************/
    286       1.1    oster 
    287       1.3    oster char   *
    288       1.3    oster rf_NodeStatusString(RF_DagNode_t * node)
    289       1.1    oster {
    290       1.3    oster 	switch (node->status) {
    291       1.3    oster 		case rf_wait:return ("wait");
    292       1.3    oster 	case rf_fired:
    293       1.3    oster 		return ("fired");
    294       1.3    oster 	case rf_good:
    295       1.3    oster 		return ("good");
    296       1.3    oster 	case rf_bad:
    297       1.3    oster 		return ("bad");
    298       1.3    oster 	default:
    299       1.3    oster 		return ("?");
    300       1.3    oster 	}
    301       1.3    oster }
    302       1.1    oster 
    303       1.3    oster void
    304       1.3    oster rf_PrintNodeInfoString(RF_DagNode_t * node)
    305       1.3    oster {
    306       1.3    oster 	RF_PhysDiskAddr_t *pda;
    307       1.3    oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    308       1.3    oster 	int     i, lk, unlk;
    309       1.3    oster 	void   *bufPtr;
    310       1.3    oster 
    311       1.3    oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    312       1.3    oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    313       1.3    oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    314       1.3    oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    315       1.3    oster 		bufPtr = (void *) node->params[1].p;
    316       1.3    oster 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    317       1.3    oster 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    318       1.3    oster 		RF_ASSERT(!(lk && unlk));
    319       1.3    oster 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
    320       1.3    oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    321       1.3    oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    322       1.3    oster 		return;
    323       1.3    oster 	}
    324       1.3    oster 	if (df == rf_DiskUnlockFunc) {
    325       1.3    oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    326       1.3    oster 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    327       1.3    oster 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    328       1.3    oster 		RF_ASSERT(!(lk && unlk));
    329       1.3    oster 		printf("r %d c %d %s\n", pda->row, pda->col,
    330       1.3    oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    331       1.3    oster 		return;
    332       1.3    oster 	}
    333       1.3    oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    334       1.3    oster 	    || (df == rf_RecoveryXorFunc)) {
    335       1.3    oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    336       1.3    oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    337       1.3    oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    338       1.3    oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    339       1.3    oster 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
    340       1.3    oster 			    (long) bufPtr, pda->row, pda->col,
    341       1.3    oster 			    (long) pda->startSector, (int) pda->numSector);
    342       1.3    oster 		}
    343       1.3    oster 		return;
    344       1.3    oster 	}
    345       1.1    oster #if RF_INCLUDE_PARITYLOGGING > 0
    346       1.3    oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    347       1.3    oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    348       1.3    oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    349       1.3    oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    350       1.3    oster 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
    351       1.3    oster 			    pda->row, pda->col, (long) pda->startSector,
    352       1.3    oster 			    (int) pda->numSector, (long) bufPtr);
    353       1.3    oster 		}
    354       1.3    oster 		return;
    355       1.3    oster 	}
    356       1.3    oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    357       1.3    oster 
    358       1.3    oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    359       1.3    oster 		printf("\n");
    360       1.3    oster 		return;
    361       1.3    oster 	}
    362       1.3    oster 	printf("?\n");
    363       1.3    oster }
    364       1.3    oster 
    365       1.3    oster static void
    366       1.3    oster rf_RecurPrintDAG(node, depth, unvisited)
    367       1.3    oster 	RF_DagNode_t *node;
    368       1.3    oster 	int     depth;
    369       1.3    oster 	int     unvisited;
    370       1.3    oster {
    371       1.3    oster 	char   *anttype;
    372       1.3    oster 	int     i;
    373       1.3    oster 
    374       1.3    oster 	node->visited = (unvisited) ? 0 : 1;
    375       1.3    oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    376       1.3    oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    377       1.3    oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    378       1.3    oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    379       1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    380       1.3    oster 		printf("%d%s", node->succedents[i]->nodeNum,
    381       1.3    oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    382       1.3    oster 	}
    383       1.3    oster 	printf("} A{");
    384       1.3    oster 	for (i = 0; i < node->numAntecedents; i++) {
    385       1.3    oster 		switch (node->antType[i]) {
    386       1.3    oster 		case rf_trueData:
    387       1.3    oster 			anttype = "T";
    388       1.3    oster 			break;
    389       1.3    oster 		case rf_antiData:
    390       1.3    oster 			anttype = "A";
    391       1.3    oster 			break;
    392       1.3    oster 		case rf_outputData:
    393       1.3    oster 			anttype = "O";
    394       1.3    oster 			break;
    395       1.3    oster 		case rf_control:
    396       1.3    oster 			anttype = "C";
    397       1.3    oster 			break;
    398       1.3    oster 		default:
    399       1.3    oster 			anttype = "?";
    400       1.3    oster 			break;
    401       1.3    oster 		}
    402       1.3    oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    403       1.3    oster 	}
    404       1.3    oster 	printf("}; ");
    405       1.3    oster 	rf_PrintNodeInfoString(node);
    406       1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    407       1.3    oster 		if (node->succedents[i]->visited == unvisited)
    408       1.3    oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    409       1.3    oster 	}
    410       1.1    oster }
    411       1.1    oster 
    412       1.3    oster static void
    413       1.3    oster rf_PrintDAG(dag_h)
    414       1.3    oster 	RF_DagHeader_t *dag_h;
    415       1.3    oster {
    416       1.3    oster 	int     unvisited, i;
    417       1.3    oster 	char   *status;
    418       1.3    oster 
    419       1.3    oster 	/* set dag status */
    420       1.3    oster 	switch (dag_h->status) {
    421       1.3    oster 	case rf_enable:
    422       1.3    oster 		status = "enable";
    423       1.3    oster 		break;
    424       1.3    oster 	case rf_rollForward:
    425       1.3    oster 		status = "rollForward";
    426       1.3    oster 		break;
    427       1.3    oster 	case rf_rollBackward:
    428       1.3    oster 		status = "rollBackward";
    429       1.3    oster 		break;
    430       1.3    oster 	default:
    431       1.3    oster 		status = "illegal!";
    432       1.3    oster 		break;
    433       1.3    oster 	}
    434       1.3    oster 	/* find out if visited bits are currently set or clear */
    435       1.3    oster 	unvisited = dag_h->succedents[0]->visited;
    436       1.3    oster 
    437       1.3    oster 	printf("DAG type:  %s\n", dag_h->creator);
    438       1.3    oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    439       1.3    oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    440       1.3    oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    441       1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    442       1.3    oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    443       1.3    oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    444       1.3    oster 	}
    445       1.3    oster 	printf("};\n");
    446       1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    447       1.3    oster 		if (dag_h->succedents[i]->visited == unvisited)
    448       1.3    oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    449       1.3    oster 	}
    450       1.3    oster }
    451       1.1    oster /* assigns node numbers */
    452       1.3    oster int
    453       1.3    oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    454       1.1    oster {
    455       1.3    oster 	int     unvisited, i, nnum;
    456       1.3    oster 	RF_DagNode_t *node;
    457       1.1    oster 
    458       1.3    oster 	nnum = 0;
    459       1.3    oster 	unvisited = dag_h->succedents[0]->visited;
    460       1.3    oster 
    461       1.3    oster 	dag_h->nodeNum = nnum++;
    462       1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    463       1.3    oster 		node = dag_h->succedents[i];
    464       1.3    oster 		if (node->visited == unvisited) {
    465       1.3    oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    466       1.3    oster 		}
    467       1.3    oster 	}
    468       1.3    oster 	return (nnum);
    469       1.1    oster }
    470       1.1    oster 
    471       1.3    oster int
    472       1.3    oster rf_RecurAssignNodeNums(node, num, unvisited)
    473       1.3    oster 	RF_DagNode_t *node;
    474       1.3    oster 	int     num;
    475       1.3    oster 	int     unvisited;
    476       1.3    oster {
    477       1.3    oster 	int     i;
    478       1.3    oster 
    479       1.3    oster 	node->visited = (unvisited) ? 0 : 1;
    480       1.3    oster 
    481       1.3    oster 	node->nodeNum = num++;
    482       1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    483       1.3    oster 		if (node->succedents[i]->visited == unvisited) {
    484       1.3    oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    485       1.3    oster 		}
    486       1.3    oster 	}
    487       1.3    oster 	return (num);
    488       1.3    oster }
    489       1.1    oster /* set the header pointers in each node to "newptr" */
    490       1.3    oster void
    491       1.3    oster rf_ResetDAGHeaderPointers(dag_h, newptr)
    492       1.3    oster 	RF_DagHeader_t *dag_h;
    493       1.3    oster 	RF_DagHeader_t *newptr;
    494       1.3    oster {
    495       1.3    oster 	int     i;
    496       1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    497       1.3    oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    498       1.3    oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    499       1.1    oster }
    500       1.1    oster 
    501       1.3    oster void
    502       1.3    oster rf_RecurResetDAGHeaderPointers(node, newptr)
    503       1.3    oster 	RF_DagNode_t *node;
    504       1.3    oster 	RF_DagHeader_t *newptr;
    505       1.1    oster {
    506       1.3    oster 	int     i;
    507       1.3    oster 	node->dagHdr = newptr;
    508       1.3    oster 	for (i = 0; i < node->numSuccedents; i++)
    509       1.3    oster 		if (node->succedents[i]->dagHdr != newptr)
    510       1.3    oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    511       1.3    oster }
    512       1.1    oster 
    513       1.1    oster 
    514       1.3    oster void
    515       1.3    oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    516       1.3    oster {
    517       1.3    oster 	int     i = 0;
    518       1.3    oster 
    519       1.3    oster 	for (; dag_h; dag_h = dag_h->next) {
    520       1.3    oster 		rf_AssignNodeNums(dag_h);
    521       1.3    oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    522       1.3    oster 		rf_PrintDAG(dag_h);
    523       1.3    oster 	}
    524       1.1    oster }
    525       1.1    oster 
    526       1.3    oster static int
    527       1.3    oster rf_ValidateBranch(node, scount, acount, nodes, unvisited)
    528       1.3    oster 	RF_DagNode_t *node;
    529       1.3    oster 	int    *scount;
    530       1.3    oster 	int    *acount;
    531       1.3    oster 	RF_DagNode_t **nodes;
    532       1.3    oster 	int     unvisited;
    533       1.3    oster {
    534       1.3    oster 	int     i, retcode = 0;
    535       1.3    oster 
    536       1.3    oster 	/* construct an array of node pointers indexed by node num */
    537       1.3    oster 	node->visited = (unvisited) ? 0 : 1;
    538       1.3    oster 	nodes[node->nodeNum] = node;
    539       1.3    oster 
    540       1.3    oster 	if (node->next != NULL) {
    541       1.3    oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    542       1.3    oster 		retcode = 1;
    543       1.3    oster 	}
    544       1.3    oster 	if (node->status != rf_wait) {
    545       1.3    oster 		printf("INVALID DAG: Node status is not wait\n");
    546       1.3    oster 		retcode = 1;
    547       1.3    oster 	}
    548       1.3    oster 	if (node->numAntDone != 0) {
    549       1.3    oster 		printf("INVALID DAG: numAntDone is not zero\n");
    550       1.3    oster 		retcode = 1;
    551       1.3    oster 	}
    552       1.3    oster 	if (node->doFunc == rf_TerminateFunc) {
    553       1.3    oster 		if (node->numSuccedents != 0) {
    554       1.3    oster 			printf("INVALID DAG: Terminator node has succedents\n");
    555       1.3    oster 			retcode = 1;
    556       1.3    oster 		}
    557       1.3    oster 	} else {
    558       1.3    oster 		if (node->numSuccedents == 0) {
    559       1.3    oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    560       1.3    oster 			retcode = 1;
    561       1.3    oster 		}
    562       1.3    oster 	}
    563       1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    564       1.3    oster 		if (!node->succedents[i]) {
    565       1.3    oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    566       1.3    oster 			retcode = 1;
    567       1.3    oster 		}
    568       1.3    oster 		scount[node->succedents[i]->nodeNum]++;
    569       1.3    oster 	}
    570       1.3    oster 	for (i = 0; i < node->numAntecedents; i++) {
    571       1.3    oster 		if (!node->antecedents[i]) {
    572       1.3    oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    573       1.3    oster 			retcode = 1;
    574       1.3    oster 		}
    575       1.3    oster 		acount[node->antecedents[i]->nodeNum]++;
    576       1.3    oster 	}
    577       1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    578       1.3    oster 		if (node->succedents[i]->visited == unvisited) {
    579       1.3    oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    580       1.3    oster 				acount, nodes, unvisited)) {
    581       1.3    oster 				retcode = 1;
    582       1.3    oster 			}
    583       1.3    oster 		}
    584       1.3    oster 	}
    585       1.3    oster 	return (retcode);
    586       1.3    oster }
    587       1.3    oster 
    588       1.3    oster static void
    589       1.3    oster rf_ValidateBranchVisitedBits(node, unvisited, rl)
    590       1.3    oster 	RF_DagNode_t *node;
    591       1.3    oster 	int     unvisited;
    592       1.3    oster 	int     rl;
    593       1.3    oster {
    594       1.3    oster 	int     i;
    595       1.3    oster 
    596       1.3    oster 	RF_ASSERT(node->visited == unvisited);
    597       1.3    oster 	for (i = 0; i < node->numSuccedents; i++) {
    598       1.3    oster 		if (node->succedents[i] == NULL) {
    599       1.3    oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    600       1.3    oster 			RF_ASSERT(0);
    601       1.3    oster 		}
    602       1.3    oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    603       1.3    oster 	}
    604       1.3    oster }
    605       1.3    oster /* NOTE:  never call this on a big dag, because it is exponential
    606       1.3    oster  * in execution time
    607       1.3    oster  */
    608       1.3    oster static void
    609       1.3    oster rf_ValidateVisitedBits(dag)
    610       1.3    oster 	RF_DagHeader_t *dag;
    611       1.3    oster {
    612       1.3    oster 	int     i, unvisited;
    613       1.3    oster 
    614       1.3    oster 	unvisited = dag->succedents[0]->visited;
    615       1.3    oster 
    616       1.3    oster 	for (i = 0; i < dag->numSuccedents; i++) {
    617       1.3    oster 		if (dag->succedents[i] == NULL) {
    618       1.3    oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    619       1.3    oster 			RF_ASSERT(0);
    620       1.3    oster 		}
    621       1.3    oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    622       1.3    oster 	}
    623       1.3    oster }
    624       1.1    oster /* validate a DAG.  _at entry_ verify that:
    625       1.1    oster  *   -- numNodesCompleted is zero
    626       1.1    oster  *   -- node queue is null
    627       1.1    oster  *   -- dag status is rf_enable
    628       1.1    oster  *   -- next pointer is null on every node
    629       1.1    oster  *   -- all nodes have status wait
    630       1.1    oster  *   -- numAntDone is zero in all nodes
    631       1.1    oster  *   -- terminator node has zero successors
    632       1.1    oster  *   -- no other node besides terminator has zero successors
    633       1.1    oster  *   -- no successor or antecedent pointer in a node is NULL
    634       1.1    oster  *   -- number of times that each node appears as a successor of another node
    635       1.1    oster  *      is equal to the antecedent count on that node
    636       1.1    oster  *   -- number of times that each node appears as an antecedent of another node
    637       1.1    oster  *      is equal to the succedent count on that node
    638       1.1    oster  *   -- what else?
    639       1.1    oster  */
    640       1.3    oster int
    641       1.3    oster rf_ValidateDAG(dag_h)
    642       1.3    oster 	RF_DagHeader_t *dag_h;
    643       1.3    oster {
    644       1.3    oster 	int     i, nodecount;
    645       1.3    oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    646       1.3    oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    647       1.3    oster 	int     retcode = 0;
    648       1.3    oster 	int     unvisited;
    649       1.3    oster 	int     commitNodeCount = 0;
    650       1.3    oster 
    651       1.3    oster 	if (rf_validateVisitedDebug)
    652       1.3    oster 		rf_ValidateVisitedBits(dag_h);
    653       1.3    oster 
    654       1.3    oster 	if (dag_h->numNodesCompleted != 0) {
    655       1.3    oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    656       1.3    oster 		retcode = 1;
    657       1.3    oster 		goto validate_dag_bad;
    658       1.3    oster 	}
    659       1.3    oster 	if (dag_h->status != rf_enable) {
    660       1.3    oster 		printf("INVALID DAG: not enabled\n");
    661       1.3    oster 		retcode = 1;
    662       1.3    oster 		goto validate_dag_bad;
    663       1.3    oster 	}
    664       1.3    oster 	if (dag_h->numCommits != 0) {
    665       1.3    oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    666       1.3    oster 		retcode = 1;
    667       1.3    oster 		goto validate_dag_bad;
    668       1.3    oster 	}
    669       1.3    oster 	if (dag_h->numSuccedents != 1) {
    670       1.3    oster 		/* currently, all dags must have only one succedent */
    671       1.3    oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    672       1.3    oster 		retcode = 1;
    673       1.3    oster 		goto validate_dag_bad;
    674       1.3    oster 	}
    675       1.3    oster 	nodecount = rf_AssignNodeNums(dag_h);
    676       1.3    oster 
    677       1.3    oster 	unvisited = dag_h->succedents[0]->visited;
    678       1.3    oster 
    679       1.3    oster 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
    680       1.3    oster 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
    681       1.3    oster 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
    682       1.3    oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    683       1.3    oster 		if ((dag_h->succedents[i]->visited == unvisited)
    684       1.3    oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    685       1.3    oster 			acount, nodes, unvisited)) {
    686       1.3    oster 			retcode = 1;
    687       1.3    oster 		}
    688       1.3    oster 	}
    689       1.3    oster 	/* start at 1 to skip the header node */
    690       1.3    oster 	for (i = 1; i < nodecount; i++) {
    691       1.3    oster 		if (nodes[i]->commitNode)
    692       1.3    oster 			commitNodeCount++;
    693       1.3    oster 		if (nodes[i]->doFunc == NULL) {
    694       1.3    oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    695       1.3    oster 			retcode = 1;
    696       1.3    oster 			goto validate_dag_out;
    697       1.3    oster 		}
    698       1.3    oster 		if (nodes[i]->undoFunc == NULL) {
    699       1.3    oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    700       1.3    oster 			retcode = 1;
    701       1.3    oster 			goto validate_dag_out;
    702       1.3    oster 		}
    703       1.3    oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    704       1.3    oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    705       1.3    oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    706       1.3    oster 			retcode = 1;
    707       1.3    oster 			goto validate_dag_out;
    708       1.3    oster 		}
    709       1.3    oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    710       1.3    oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    711       1.3    oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    712       1.3    oster 			retcode = 1;
    713       1.3    oster 			goto validate_dag_out;
    714       1.3    oster 		}
    715       1.3    oster 	}
    716       1.1    oster 
    717       1.3    oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    718       1.3    oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    719       1.3    oster 		    dag_h->numCommitNodes, commitNodeCount);
    720       1.3    oster 		retcode = 1;
    721       1.3    oster 		goto validate_dag_out;
    722       1.3    oster 	}
    723       1.1    oster validate_dag_out:
    724       1.3    oster 	RF_Free(scount, nodecount * sizeof(int));
    725       1.3    oster 	RF_Free(acount, nodecount * sizeof(int));
    726       1.3    oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    727       1.3    oster 	if (retcode)
    728       1.3    oster 		rf_PrintDAGList(dag_h);
    729       1.3    oster 
    730       1.3    oster 	if (rf_validateVisitedDebug)
    731       1.3    oster 		rf_ValidateVisitedBits(dag_h);
    732       1.3    oster 
    733       1.3    oster 	return (retcode);
    734       1.1    oster 
    735       1.1    oster validate_dag_bad:
    736       1.3    oster 	rf_PrintDAGList(dag_h);
    737       1.3    oster 	return (retcode);
    738       1.1    oster }
    739       1.1    oster 
    740  1.10.6.1  gehenna #endif /* RF_DEBUG_VALIDATE_DAG */
    741       1.1    oster 
    742       1.1    oster /******************************************************************************
    743       1.1    oster  *
    744       1.1    oster  * misc construction routines
    745       1.1    oster  *
    746       1.1    oster  *****************************************************************************/
    747       1.1    oster 
    748       1.3    oster void
    749       1.3    oster rf_redirect_asm(
    750       1.3    oster     RF_Raid_t * raidPtr,
    751       1.3    oster     RF_AccessStripeMap_t * asmap)
    752       1.3    oster {
    753       1.3    oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    754       1.3    oster 	int     row = asmap->physInfo->row;
    755       1.3    oster 	int     fcol = raidPtr->reconControl[row]->fcol;
    756       1.3    oster 	int     srow = raidPtr->reconControl[row]->spareRow;
    757       1.3    oster 	int     scol = raidPtr->reconControl[row]->spareCol;
    758       1.3    oster 	RF_PhysDiskAddr_t *pda;
    759       1.3    oster 
    760       1.3    oster 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
    761       1.3    oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    762       1.3    oster 		if (pda->col == fcol) {
    763       1.3    oster 			if (rf_dagDebug) {
    764       1.3    oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
    765       1.3    oster 					pda->startSector)) {
    766       1.3    oster 					RF_PANIC();
    767       1.3    oster 				}
    768       1.3    oster 			}
    769       1.3    oster 			/* printf("Remapped data for large write\n"); */
    770       1.3    oster 			if (ds) {
    771       1.3    oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    772       1.3    oster 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    773       1.3    oster 			} else {
    774       1.3    oster 				pda->row = srow;
    775       1.3    oster 				pda->col = scol;
    776       1.3    oster 			}
    777       1.3    oster 		}
    778       1.3    oster 	}
    779       1.3    oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    780       1.3    oster 		if (pda->col == fcol) {
    781       1.3    oster 			if (rf_dagDebug) {
    782       1.3    oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
    783       1.3    oster 					RF_PANIC();
    784       1.3    oster 				}
    785       1.3    oster 			}
    786       1.3    oster 		}
    787       1.3    oster 		if (ds) {
    788       1.3    oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    789       1.3    oster 		} else {
    790       1.3    oster 			pda->row = srow;
    791       1.3    oster 			pda->col = scol;
    792       1.3    oster 		}
    793       1.3    oster 	}
    794       1.1    oster }
    795       1.1    oster 
    796       1.1    oster 
    797       1.1    oster /* this routine allocates read buffers and generates stripe maps for the
    798       1.1    oster  * regions of the array from the start of the stripe to the start of the
    799       1.1    oster  * access, and from the end of the access to the end of the stripe.  It also
    800       1.1    oster  * computes and returns the number of DAG nodes needed to read all this data.
    801       1.1    oster  * Note that this routine does the wrong thing if the access is fully
    802       1.1    oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    803       1.1    oster  * start.
    804       1.1    oster  */
    805       1.3    oster void
    806       1.3    oster rf_MapUnaccessedPortionOfStripe(
    807       1.3    oster     RF_Raid_t * raidPtr,
    808       1.3    oster     RF_RaidLayout_t * layoutPtr,/* in: layout information */
    809       1.3    oster     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    810       1.3    oster     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    811       1.3    oster     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
    812       1.3    oster 						 * headers, to be filled in */
    813       1.3    oster     int *nRodNodes,		/* out: num nodes to be generated to read
    814       1.3    oster 				 * unaccessed data */
    815       1.3    oster     char **sosBuffer,		/* out: pointers to newly allocated buffer */
    816       1.3    oster     char **eosBuffer,
    817       1.3    oster     RF_AllocListElem_t * allocList)
    818       1.3    oster {
    819       1.3    oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    820       1.3    oster 	RF_SectorNum_t sosNumSector, eosNumSector;
    821       1.3    oster 
    822       1.3    oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    823       1.3    oster 	/* generate an access map for the region of the array from start of
    824       1.3    oster 	 * stripe to start of access */
    825       1.3    oster 	new_asm_h[0] = new_asm_h[1] = NULL;
    826       1.3    oster 	*nRodNodes = 0;
    827       1.3    oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    828       1.3    oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    829       1.3    oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    830       1.3    oster 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    831       1.3    oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    832       1.3    oster 		new_asm_h[0]->next = dag_h->asmList;
    833       1.3    oster 		dag_h->asmList = new_asm_h[0];
    834       1.3    oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    835       1.3    oster 
    836       1.3    oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    837       1.3    oster 		/* we're totally within one stripe here */
    838       1.3    oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    839       1.3    oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    840       1.3    oster 	}
    841       1.3    oster 	/* generate an access map for the region of the array from end of
    842       1.3    oster 	 * access to end of stripe */
    843       1.3    oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    844       1.3    oster 		eosRaidAddress = asmap->endRaidAddress;
    845       1.3    oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    846       1.3    oster 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    847       1.3    oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    848       1.3    oster 		new_asm_h[1]->next = dag_h->asmList;
    849       1.3    oster 		dag_h->asmList = new_asm_h[1];
    850       1.3    oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    851       1.3    oster 
    852       1.3    oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    853       1.3    oster 		/* we're totally within one stripe here */
    854       1.3    oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    855       1.3    oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    856       1.3    oster 	}
    857       1.1    oster }
    858       1.1    oster 
    859       1.1    oster 
    860       1.1    oster 
    861       1.1    oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    862       1.3    oster int
    863       1.3    oster rf_PDAOverlap(
    864       1.3    oster     RF_RaidLayout_t * layoutPtr,
    865       1.3    oster     RF_PhysDiskAddr_t * src,
    866       1.3    oster     RF_PhysDiskAddr_t * dest)
    867       1.3    oster {
    868       1.3    oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    869       1.3    oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    870       1.3    oster 	/* use -1 to be sure we stay within SU */
    871       1.3    oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    872       1.3    oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    873       1.3    oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    874       1.1    oster }
    875       1.1    oster 
    876       1.1    oster 
    877       1.1    oster /* GenerateFailedAccessASMs
    878       1.1    oster  *
    879       1.1    oster  * this routine figures out what portion of the stripe needs to be read
    880       1.1    oster  * to effect the degraded read or write operation.  It's primary function
    881       1.1    oster  * is to identify everything required to recover the data, and then
    882       1.1    oster  * eliminate anything that is already being accessed by the user.
    883       1.1    oster  *
    884       1.1    oster  * The main result is two new ASMs, one for the region from the start of the
    885       1.1    oster  * stripe to the start of the access, and one for the region from the end of
    886       1.1    oster  * the access to the end of the stripe.  These ASMs describe everything that
    887       1.1    oster  * needs to be read to effect the degraded access.  Other results are:
    888       1.1    oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
    889       1.1    oster  *                recover the lost data,
    890       1.1    oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    891       1.1    oster  *                at entry, not allocated.
    892       1.1    oster  *    overlappingPDAs --
    893       1.1    oster  *                describes which of the non-failed PDAs in the user access
    894       1.1    oster  *                overlap data that needs to be read to effect recovery.
    895       1.1    oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    896       1.1    oster  *                PDA, the ith pda in the input asm overlaps data that needs
    897       1.1    oster  *                to be read for recovery.
    898       1.1    oster  */
    899       1.1    oster  /* in: asm - ASM for the actual access, one stripe only */
    900      1.10      wiz  /* in: failedPDA - which component of the access has failed */
    901       1.1    oster  /* in: dag_h - header of the DAG we're going to create */
    902       1.1    oster  /* out: new_asm_h - the two new ASMs */
    903       1.1    oster  /* out: nXorBufs - the total number of xor bufs required */
    904       1.1    oster  /* out: rpBufPtr - a buffer for the parity read */
    905       1.3    oster void
    906       1.3    oster rf_GenerateFailedAccessASMs(
    907       1.3    oster     RF_Raid_t * raidPtr,
    908       1.3    oster     RF_AccessStripeMap_t * asmap,
    909       1.3    oster     RF_PhysDiskAddr_t * failedPDA,
    910       1.3    oster     RF_DagHeader_t * dag_h,
    911       1.3    oster     RF_AccessStripeMapHeader_t ** new_asm_h,
    912       1.3    oster     int *nXorBufs,
    913       1.3    oster     char **rpBufPtr,
    914       1.3    oster     char *overlappingPDAs,
    915       1.3    oster     RF_AllocListElem_t * allocList)
    916       1.3    oster {
    917       1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    918       1.3    oster 
    919       1.3    oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    920       1.3    oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    921       1.3    oster 
    922       1.3    oster 	RF_SectorCount_t numSect[2], numParitySect;
    923       1.3    oster 	RF_PhysDiskAddr_t *pda;
    924       1.3    oster 	char   *rdBuf, *bufP;
    925       1.3    oster 	int     foundit, i;
    926       1.3    oster 
    927       1.3    oster 	bufP = NULL;
    928       1.3    oster 	foundit = 0;
    929       1.3    oster 	/* first compute the following raid addresses: start of stripe,
    930       1.3    oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    931       1.3    oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    932       1.3    oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    933       1.3    oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    934       1.3    oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    935       1.3    oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    936       1.3    oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    937       1.3    oster 
    938       1.3    oster 	/* now generate access stripe maps for each of the above regions of
    939       1.3    oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    940       1.3    oster 
    941       1.3    oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    942       1.3    oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    943       1.3    oster 
    944       1.3    oster 	/* walk through the PDAs and range-restrict each SU to the region of
    945       1.3    oster 	 * the SU touched on the failed PDA.  also compute total data buffer
    946       1.3    oster 	 * space requirements in this step.  Ignore the parity for now. */
    947       1.3    oster 
    948       1.3    oster 	numSect[0] = numSect[1] = 0;
    949       1.3    oster 	if (new_asm_h[0]) {
    950       1.3    oster 		new_asm_h[0]->next = dag_h->asmList;
    951       1.3    oster 		dag_h->asmList = new_asm_h[0];
    952       1.3    oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    953       1.3    oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    954       1.3    oster 			numSect[0] += pda->numSector;
    955       1.3    oster 		}
    956       1.3    oster 	}
    957       1.3    oster 	if (new_asm_h[1]) {
    958       1.3    oster 		new_asm_h[1]->next = dag_h->asmList;
    959       1.3    oster 		dag_h->asmList = new_asm_h[1];
    960       1.3    oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    961       1.3    oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    962       1.3    oster 			numSect[1] += pda->numSector;
    963       1.3    oster 		}
    964       1.3    oster 	}
    965       1.3    oster 	numParitySect = failedPDA->numSector;
    966       1.3    oster 
    967       1.3    oster 	/* allocate buffer space for the data & parity we have to read to
    968       1.3    oster 	 * recover from the failure */
    969       1.3    oster 
    970       1.3    oster 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    971       1.3    oster 										 * buf if not needed */
    972       1.3    oster 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    973       1.3    oster 		bufP = rdBuf;
    974       1.3    oster 		if (rf_degDagDebug)
    975       1.3    oster 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    976       1.3    oster 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    977       1.3    oster 	}
    978       1.3    oster 	/* now walk through the pdas one last time and assign buffer pointers
    979       1.3    oster 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    980       1.3    oster 	 * how many bufs need to be xored together */
    981       1.3    oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    982       1.3    oster 				 * case, 1 is for failed data */
    983       1.3    oster 	if (new_asm_h[0]) {
    984       1.3    oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    985       1.3    oster 			pda->bufPtr = bufP;
    986       1.3    oster 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    987       1.3    oster 		}
    988       1.3    oster 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    989       1.3    oster 	}
    990       1.3    oster 	if (new_asm_h[1]) {
    991       1.3    oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    992       1.3    oster 			pda->bufPtr = bufP;
    993       1.3    oster 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    994       1.3    oster 		}
    995       1.3    oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    996       1.3    oster 	}
    997       1.3    oster 	if (rpBufPtr)
    998       1.3    oster 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    999       1.3    oster 					 * parity */
   1000       1.3    oster 
   1001       1.3    oster 	/* the last step is to figure out how many more distinct buffers need
   1002       1.3    oster 	 * to get xor'd to produce the missing unit.  there's one for each
   1003       1.3    oster 	 * user-data read node that overlaps the portion of the failed unit
   1004       1.3    oster 	 * being accessed */
   1005       1.3    oster 
   1006       1.3    oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1007       1.3    oster 		if (pda == failedPDA) {
   1008       1.3    oster 			i--;
   1009       1.3    oster 			foundit = 1;
   1010       1.3    oster 			continue;
   1011       1.3    oster 		}
   1012       1.3    oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1013       1.3    oster 			overlappingPDAs[i] = 1;
   1014       1.3    oster 			(*nXorBufs)++;
   1015       1.3    oster 		}
   1016       1.3    oster 	}
   1017       1.3    oster 	if (!foundit) {
   1018       1.3    oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1019       1.3    oster 		RF_ASSERT(0);
   1020       1.3    oster 	}
   1021       1.3    oster 	if (rf_degDagDebug) {
   1022       1.3    oster 		if (new_asm_h[0]) {
   1023       1.3    oster 			printf("First asm:\n");
   1024       1.3    oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1025       1.3    oster 		}
   1026       1.3    oster 		if (new_asm_h[1]) {
   1027       1.3    oster 			printf("Second asm:\n");
   1028       1.3    oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1029       1.3    oster 		}
   1030       1.3    oster 	}
   1031       1.1    oster }
   1032       1.1    oster 
   1033       1.1    oster 
   1034       1.1    oster /* adjusts the offset and number of sectors in the destination pda so that
   1035       1.1    oster  * it covers at most the region of the SU covered by the source PDA.  This
   1036       1.1    oster  * is exclusively a restriction:  the number of sectors indicated by the
   1037       1.1    oster  * target PDA can only shrink.
   1038       1.1    oster  *
   1039       1.1    oster  * For example:  s = sectors within SU indicated by source PDA
   1040       1.1    oster  *               d = sectors within SU indicated by dest PDA
   1041       1.1    oster  *               r = results, stored in dest PDA
   1042       1.1    oster  *
   1043       1.1    oster  * |--------------- one stripe unit ---------------------|
   1044       1.1    oster  * |           sssssssssssssssssssssssssssssssss         |
   1045       1.1    oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1046       1.1    oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1047       1.1    oster  *
   1048       1.1    oster  * Another example:
   1049       1.1    oster  *
   1050       1.1    oster  * |--------------- one stripe unit ---------------------|
   1051       1.1    oster  * |           sssssssssssssssssssssssssssssssss         |
   1052       1.1    oster  * |    ddddddddddddddddddddddd                          |
   1053       1.1    oster  * |           rrrrrrrrrrrrrrrr                          |
   1054       1.1    oster  *
   1055       1.1    oster  */
   1056       1.3    oster void
   1057       1.3    oster rf_RangeRestrictPDA(
   1058       1.3    oster     RF_Raid_t * raidPtr,
   1059       1.3    oster     RF_PhysDiskAddr_t * src,
   1060       1.3    oster     RF_PhysDiskAddr_t * dest,
   1061       1.3    oster     int dobuffer,
   1062       1.3    oster     int doraidaddr)
   1063       1.3    oster {
   1064       1.3    oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1065       1.3    oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1066       1.3    oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1067       1.3    oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1068       1.3    oster 													 * stay within SU */
   1069       1.3    oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1070       1.3    oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1071       1.3    oster 
   1072       1.3    oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1073       1.3    oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1074       1.3    oster 
   1075       1.3    oster 	if (dobuffer)
   1076       1.3    oster 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1077       1.3    oster 	if (doraidaddr) {
   1078       1.3    oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1079       1.3    oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1080       1.3    oster 	}
   1081       1.1    oster }
   1082  1.10.6.1  gehenna 
   1083  1.10.6.1  gehenna #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1084  1.10.6.1  gehenna 
   1085       1.1    oster /*
   1086       1.1    oster  * Want the highest of these primes to be the largest one
   1087       1.1    oster  * less than the max expected number of columns (won't hurt
   1088       1.1    oster  * to be too small or too large, but won't be optimal, either)
   1089       1.1    oster  * --jimz
   1090       1.1    oster  */
   1091       1.1    oster #define NLOWPRIMES 8
   1092       1.3    oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1093       1.1    oster /*****************************************************************************
   1094       1.1    oster  * compute the workload shift factor.  (chained declustering)
   1095       1.1    oster  *
   1096       1.1    oster  * return nonzero if access should shift to secondary, otherwise,
   1097       1.1    oster  * access is to primary
   1098       1.1    oster  *****************************************************************************/
   1099       1.3    oster int
   1100       1.3    oster rf_compute_workload_shift(
   1101       1.3    oster     RF_Raid_t * raidPtr,
   1102       1.3    oster     RF_PhysDiskAddr_t * pda)
   1103       1.3    oster {
   1104       1.3    oster 	/*
   1105       1.3    oster          * variables:
   1106       1.3    oster          *  d   = column of disk containing primary
   1107       1.3    oster          *  f   = column of failed disk
   1108       1.3    oster          *  n   = number of disks in array
   1109       1.3    oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1110       1.3    oster          *  row = row of array the access is in
   1111       1.3    oster          *  v   = numerator of redirection ratio
   1112       1.3    oster          *  k   = denominator of redirection ratio
   1113       1.3    oster          */
   1114       1.3    oster 	RF_RowCol_t d, f, sd, row, n;
   1115       1.3    oster 	int     k, v, ret, i;
   1116       1.3    oster 
   1117       1.3    oster 	row = pda->row;
   1118       1.3    oster 	n = raidPtr->numCol;
   1119       1.3    oster 
   1120       1.3    oster 	/* assign column of primary copy to d */
   1121       1.3    oster 	d = pda->col;
   1122       1.3    oster 
   1123       1.3    oster 	/* assign column of dead disk to f */
   1124       1.3    oster 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
   1125       1.3    oster 
   1126       1.3    oster 	RF_ASSERT(f < n);
   1127       1.3    oster 	RF_ASSERT(f != d);
   1128       1.3    oster 
   1129       1.3    oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1130       1.3    oster 	RF_ASSERT(sd < n);
   1131       1.3    oster 
   1132       1.3    oster 	/*
   1133       1.3    oster          * v of every k accesses should be redirected
   1134       1.3    oster          *
   1135       1.3    oster          * v/k := (n-1-sd)/(n-1)
   1136       1.3    oster          */
   1137       1.3    oster 	v = (n - 1 - sd);
   1138       1.3    oster 	k = (n - 1);
   1139       1.1    oster 
   1140       1.1    oster #if 1
   1141       1.3    oster 	/*
   1142       1.3    oster          * XXX
   1143       1.3    oster          * Is this worth it?
   1144       1.3    oster          *
   1145       1.3    oster          * Now reduce the fraction, by repeatedly factoring
   1146       1.3    oster          * out primes (just like they teach in elementary school!)
   1147       1.3    oster          */
   1148       1.3    oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1149       1.3    oster 		if (lowprimes[i] > v)
   1150       1.3    oster 			break;
   1151       1.3    oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1152       1.3    oster 			v /= lowprimes[i];
   1153       1.3    oster 			k /= lowprimes[i];
   1154       1.3    oster 		}
   1155       1.3    oster 	}
   1156       1.1    oster #endif
   1157       1.1    oster 
   1158       1.3    oster 	raidPtr->hist_diskreq[row][d]++;
   1159       1.3    oster 	if (raidPtr->hist_diskreq[row][d] > v) {
   1160       1.3    oster 		ret = 0;	/* do not redirect */
   1161       1.3    oster 	} else {
   1162       1.3    oster 		ret = 1;	/* redirect */
   1163       1.3    oster 	}
   1164       1.1    oster 
   1165       1.1    oster #if 0
   1166       1.3    oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1167       1.3    oster 	    raidPtr->hist_diskreq[row][d]);
   1168       1.1    oster #endif
   1169       1.1    oster 
   1170       1.3    oster 	if (raidPtr->hist_diskreq[row][d] >= k) {
   1171       1.3    oster 		/* reset counter */
   1172       1.3    oster 		raidPtr->hist_diskreq[row][d] = 0;
   1173       1.3    oster 	}
   1174       1.3    oster 	return (ret);
   1175       1.1    oster }
   1176  1.10.6.1  gehenna #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1177  1.10.6.1  gehenna 
   1178       1.1    oster /*
   1179       1.1    oster  * Disk selection routines
   1180       1.1    oster  */
   1181       1.1    oster 
   1182       1.1    oster /*
   1183       1.1    oster  * Selects the disk with the shortest queue from a mirror pair.
   1184       1.1    oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1185       1.1    oster  * disk are counted as members of the "queue"
   1186       1.1    oster  */
   1187       1.3    oster void
   1188       1.3    oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1189       1.1    oster {
   1190       1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1191       1.3    oster 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1192       1.3    oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1193       1.3    oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1194       1.3    oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1195       1.3    oster 	RF_PhysDiskAddr_t *tmp_pda;
   1196       1.3    oster 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1197       1.3    oster 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1198       1.3    oster 
   1199       1.3    oster 	/* return the [row col] of the disk with the shortest queue */
   1200       1.3    oster 	rowData = data_pda->row;
   1201       1.3    oster 	colData = data_pda->col;
   1202       1.3    oster 	rowMirror = mirror_pda->row;
   1203       1.3    oster 	colMirror = mirror_pda->col;
   1204       1.3    oster 	dataQueue = &(dqs[rowData][colData]);
   1205       1.3    oster 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1206       1.1    oster 
   1207       1.1    oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1208       1.3    oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1209       1.3    oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1210       1.3    oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1211       1.1    oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1212       1.3    oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1213       1.3    oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1214       1.3    oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1215       1.3    oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1216       1.1    oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1217       1.3    oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1218       1.3    oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1219       1.1    oster 
   1220       1.3    oster 	usemirror = 0;
   1221       1.3    oster 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1222       1.3    oster 		usemirror = 0;
   1223       1.3    oster 	} else
   1224       1.3    oster 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1225       1.3    oster 			usemirror = 1;
   1226       1.3    oster 		} else
   1227       1.5    oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1228       1.5    oster 				/* Trust only the main disk */
   1229       1.3    oster 				usemirror = 0;
   1230       1.3    oster 			} else
   1231       1.5    oster 				if (dataQueueLength < mirrorQueueLength) {
   1232       1.5    oster 					usemirror = 0;
   1233       1.5    oster 				} else
   1234       1.5    oster 					if (mirrorQueueLength < dataQueueLength) {
   1235       1.5    oster 						usemirror = 1;
   1236       1.3    oster 					} else {
   1237       1.5    oster 						/* queues are equal length. attempt
   1238       1.5    oster 						 * cleverness. */
   1239       1.5    oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1240       1.5    oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1241       1.5    oster 							usemirror = 0;
   1242       1.5    oster 						} else {
   1243       1.5    oster 							usemirror = 1;
   1244       1.5    oster 						}
   1245       1.3    oster 					}
   1246       1.3    oster 
   1247       1.3    oster 	if (usemirror) {
   1248       1.3    oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1249       1.3    oster 		tmp_pda = data_pda;
   1250       1.3    oster 		node->params[0].p = mirror_pda;
   1251       1.3    oster 		node->params[4].p = tmp_pda;
   1252       1.3    oster 	} else {
   1253       1.3    oster 		/* use data disk, leave param 0 unchanged */
   1254       1.3    oster 	}
   1255       1.3    oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1256       1.3    oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1257       1.1    oster }
   1258       1.1    oster /*
   1259       1.1    oster  * Do simple partitioning. This assumes that
   1260       1.1    oster  * the data and parity disks are laid out identically.
   1261       1.1    oster  */
   1262       1.3    oster void
   1263       1.3    oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1264       1.1    oster {
   1265       1.3    oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1266       1.3    oster 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1267       1.3    oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1268       1.3    oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1269       1.3    oster 	RF_PhysDiskAddr_t *tmp_pda;
   1270       1.3    oster 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1271       1.3    oster 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1272       1.3    oster 	int     usemirror;
   1273       1.3    oster 
   1274       1.3    oster 	/* return the [row col] of the disk with the shortest queue */
   1275       1.3    oster 	rowData = data_pda->row;
   1276       1.3    oster 	colData = data_pda->col;
   1277       1.3    oster 	rowMirror = mirror_pda->row;
   1278       1.3    oster 	colMirror = mirror_pda->col;
   1279       1.3    oster 	dataQueue = &(dqs[rowData][colData]);
   1280       1.3    oster 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1281       1.3    oster 
   1282       1.3    oster 	usemirror = 0;
   1283       1.3    oster 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1284       1.3    oster 		usemirror = 0;
   1285       1.3    oster 	} else
   1286       1.3    oster 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1287       1.3    oster 			usemirror = 1;
   1288       1.6    oster 		} else
   1289       1.6    oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1290       1.6    oster 				/* Trust only the main disk */
   1291       1.3    oster 				usemirror = 0;
   1292       1.6    oster 			} else
   1293       1.6    oster 				if (data_pda->startSector <
   1294       1.6    oster 				    (disks[rowData][colData].numBlocks / 2)) {
   1295       1.6    oster 					usemirror = 0;
   1296       1.6    oster 				} else {
   1297       1.6    oster 					usemirror = 1;
   1298       1.6    oster 				}
   1299       1.3    oster 
   1300       1.3    oster 	if (usemirror) {
   1301       1.3    oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1302       1.3    oster 		tmp_pda = data_pda;
   1303       1.3    oster 		node->params[0].p = mirror_pda;
   1304       1.3    oster 		node->params[4].p = tmp_pda;
   1305       1.3    oster 	} else {
   1306       1.3    oster 		/* use data disk, leave param 0 unchanged */
   1307       1.3    oster 	}
   1308       1.1    oster }
   1309