Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.23
      1  1.23     oster /*	$NetBSD: rf_dagutils.c,v 1.23 2003/12/30 21:59:03 oster Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /******************************************************************************
     30   1.1     oster  *
     31   1.1     oster  * rf_dagutils.c -- utility routines for manipulating dags
     32   1.1     oster  *
     33   1.1     oster  *****************************************************************************/
     34   1.9     lukem 
     35   1.9     lukem #include <sys/cdefs.h>
     36  1.23     oster __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.23 2003/12/30 21:59:03 oster Exp $");
     37   1.1     oster 
     38   1.8     oster #include <dev/raidframe/raidframevar.h>
     39   1.8     oster 
     40   1.1     oster #include "rf_archs.h"
     41   1.1     oster #include "rf_threadstuff.h"
     42   1.1     oster #include "rf_raid.h"
     43   1.1     oster #include "rf_dag.h"
     44   1.1     oster #include "rf_dagutils.h"
     45   1.1     oster #include "rf_dagfuncs.h"
     46   1.1     oster #include "rf_general.h"
     47   1.1     oster #include "rf_map.h"
     48   1.1     oster #include "rf_shutdown.h"
     49   1.1     oster 
     50   1.1     oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51   1.1     oster 
     52  1.20  jdolecek const RF_RedFuncs_t rf_xorFuncs = {
     53   1.1     oster 	rf_RegularXorFunc, "Reg Xr",
     54   1.3     oster rf_SimpleXorFunc, "Simple Xr"};
     55   1.1     oster 
     56  1.20  jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57   1.1     oster 	rf_RecoveryXorFunc, "Recovery Xr",
     58   1.3     oster rf_RecoveryXorFunc, "Recovery Xr"};
     59   1.1     oster 
     60  1.13     oster #if RF_DEBUG_VALIDATE_DAG
     61   1.1     oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62   1.1     oster static void rf_PrintDAG(RF_DagHeader_t *);
     63  1.12     oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64  1.12     oster 			     RF_DagNode_t **, int);
     65   1.1     oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66   1.1     oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
     68   1.1     oster 
     69   1.1     oster /******************************************************************************
     70   1.1     oster  *
     71   1.1     oster  * InitNode - initialize a dag node
     72   1.1     oster  *
     73   1.1     oster  * the size of the propList array is always the same as that of the
     74   1.1     oster  * successors array.
     75   1.1     oster  *
     76   1.1     oster  *****************************************************************************/
     77   1.3     oster void
     78  1.23     oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     79  1.23     oster     int (*doFunc) (RF_DagNode_t *node),
     80  1.23     oster     int (*undoFunc) (RF_DagNode_t *node),
     81  1.23     oster     int (*wakeFunc) (RF_DagNode_t *node, int status),
     82  1.23     oster     int nSucc, int nAnte, int nParam, int nResult,
     83  1.23     oster     RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
     84   1.3     oster {
     85   1.3     oster 	void  **ptrs;
     86   1.3     oster 	int     nptrs;
     87   1.3     oster 
     88   1.3     oster 	if (nAnte > RF_MAX_ANTECEDENTS)
     89   1.3     oster 		RF_PANIC();
     90   1.3     oster 	node->status = initstatus;
     91   1.3     oster 	node->commitNode = commit;
     92   1.3     oster 	node->doFunc = doFunc;
     93   1.3     oster 	node->undoFunc = undoFunc;
     94   1.3     oster 	node->wakeFunc = wakeFunc;
     95   1.3     oster 	node->numParams = nParam;
     96   1.3     oster 	node->numResults = nResult;
     97   1.3     oster 	node->numAntecedents = nAnte;
     98   1.3     oster 	node->numAntDone = 0;
     99   1.3     oster 	node->next = NULL;
    100   1.3     oster 	node->numSuccedents = nSucc;
    101   1.3     oster 	node->name = name;
    102   1.3     oster 	node->dagHdr = hdr;
    103   1.3     oster 	node->visited = 0;
    104   1.3     oster 
    105   1.3     oster 	/* allocate all the pointers with one call to malloc */
    106   1.3     oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    107   1.3     oster 
    108   1.3     oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    109   1.3     oster 		/*
    110   1.3     oster 	         * The dag_ptrs field of the node is basically some scribble
    111   1.3     oster 	         * space to be used here. We could get rid of it, and always
    112   1.3     oster 	         * allocate the range of pointers, but that's expensive. So,
    113   1.3     oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    114   1.3     oster 	         * we'll find that:
    115   1.3     oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    116   1.3     oster 	         *     only a little bit (least efficient case)
    117   1.3     oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    118   1.3     oster 	         *     (wasted memory)
    119   1.3     oster 	         */
    120   1.3     oster 		ptrs = (void **) node->dag_ptrs;
    121   1.3     oster 	} else {
    122  1.22     oster 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    123  1.22     oster 				(void **), alist);
    124   1.3     oster 	}
    125   1.3     oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    126   1.3     oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    127   1.3     oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    128   1.3     oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    129   1.3     oster 
    130   1.3     oster 	if (nParam) {
    131   1.3     oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    132   1.3     oster 			node->params = (RF_DagParam_t *) node->dag_params;
    133   1.3     oster 		} else {
    134  1.22     oster 			RF_MallocAndAdd(node->params,
    135  1.22     oster 					nParam * sizeof(RF_DagParam_t),
    136  1.22     oster 					(RF_DagParam_t *), alist);
    137   1.3     oster 		}
    138   1.3     oster 	} else {
    139   1.3     oster 		node->params = NULL;
    140   1.3     oster 	}
    141   1.1     oster }
    142   1.1     oster 
    143   1.1     oster 
    144   1.1     oster 
    145   1.1     oster /******************************************************************************
    146   1.1     oster  *
    147   1.1     oster  * allocation and deallocation routines
    148   1.1     oster  *
    149   1.1     oster  *****************************************************************************/
    150   1.1     oster 
    151   1.3     oster void
    152  1.23     oster rf_FreeDAG(RF_DagHeader_t *dag_h)
    153   1.3     oster {
    154   1.3     oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    155   1.3     oster 	RF_DagHeader_t *nextDag;
    156   1.3     oster 
    157   1.3     oster 	while (dag_h) {
    158   1.3     oster 		nextDag = dag_h->next;
    159   1.3     oster 		rf_FreeAllocList(dag_h->allocList);
    160   1.3     oster 		for (asmap = dag_h->asmList; asmap;) {
    161   1.3     oster 			t_asmap = asmap;
    162   1.3     oster 			asmap = asmap->next;
    163   1.3     oster 			rf_FreeAccessStripeMap(t_asmap);
    164   1.3     oster 		}
    165   1.3     oster 		rf_FreeDAGHeader(dag_h);
    166   1.3     oster 		dag_h = nextDag;
    167   1.3     oster 	}
    168   1.3     oster }
    169   1.3     oster 
    170  1.22     oster static struct pool rf_dagh_pool;
    171   1.1     oster #define RF_MAX_FREE_DAGH 128
    172   1.1     oster #define RF_DAGH_INC       16
    173   1.1     oster #define RF_DAGH_INITIAL   32
    174   1.1     oster 
    175   1.1     oster static void rf_ShutdownDAGs(void *);
    176   1.3     oster static void
    177  1.23     oster rf_ShutdownDAGs(void *ignored)
    178   1.1     oster {
    179  1.22     oster 	pool_destroy(&rf_dagh_pool);
    180   1.1     oster }
    181   1.1     oster 
    182   1.3     oster int
    183  1.23     oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    184   1.1     oster {
    185   1.3     oster 	int     rc;
    186   1.1     oster 
    187  1.22     oster 	pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
    188  1.22     oster 		  "rf_dagh_pl", NULL);
    189  1.22     oster 	pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
    190  1.22     oster 	pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
    191   1.1     oster 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    192   1.1     oster 	if (rc) {
    193  1.15     oster 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    194   1.1     oster 		rf_ShutdownDAGs(NULL);
    195   1.3     oster 		return (rc);
    196   1.1     oster 	}
    197   1.3     oster 	return (0);
    198   1.1     oster }
    199   1.1     oster 
    200   1.3     oster RF_DagHeader_t *
    201   1.3     oster rf_AllocDAGHeader()
    202   1.1     oster {
    203   1.1     oster 	RF_DagHeader_t *dh;
    204   1.1     oster 
    205  1.22     oster 	dh = pool_get(&rf_dagh_pool, PR_WAITOK);
    206   1.1     oster 	if (dh) {
    207   1.7   thorpej 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    208   1.1     oster 	}
    209   1.3     oster 	return (dh);
    210   1.1     oster }
    211   1.1     oster 
    212   1.3     oster void
    213   1.3     oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    214   1.1     oster {
    215  1.22     oster 	pool_put(&rf_dagh_pool, dh);
    216   1.1     oster }
    217   1.1     oster /* allocates a buffer big enough to hold the data described by pda */
    218   1.3     oster void   *
    219  1.23     oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    220  1.23     oster 	       RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
    221   1.3     oster {
    222   1.3     oster 	char   *p;
    223   1.3     oster 
    224   1.3     oster 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    225   1.3     oster 	    (char *), allocList);
    226   1.3     oster 	return ((void *) p);
    227   1.1     oster }
    228  1.13     oster #if RF_DEBUG_VALIDATE_DAG
    229   1.1     oster /******************************************************************************
    230   1.1     oster  *
    231   1.1     oster  * debug routines
    232   1.1     oster  *
    233   1.1     oster  *****************************************************************************/
    234   1.1     oster 
    235   1.3     oster char   *
    236  1.23     oster rf_NodeStatusString(RF_DagNode_t *node)
    237   1.1     oster {
    238   1.3     oster 	switch (node->status) {
    239   1.3     oster 		case rf_wait:return ("wait");
    240   1.3     oster 	case rf_fired:
    241   1.3     oster 		return ("fired");
    242   1.3     oster 	case rf_good:
    243   1.3     oster 		return ("good");
    244   1.3     oster 	case rf_bad:
    245   1.3     oster 		return ("bad");
    246   1.3     oster 	default:
    247   1.3     oster 		return ("?");
    248   1.3     oster 	}
    249   1.3     oster }
    250   1.1     oster 
    251   1.3     oster void
    252  1.23     oster rf_PrintNodeInfoString(RF_DagNode_t *node)
    253   1.3     oster {
    254   1.3     oster 	RF_PhysDiskAddr_t *pda;
    255   1.3     oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    256   1.3     oster 	int     i, lk, unlk;
    257   1.3     oster 	void   *bufPtr;
    258   1.3     oster 
    259   1.3     oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    260   1.3     oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    261   1.3     oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    262   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    263   1.3     oster 		bufPtr = (void *) node->params[1].p;
    264   1.3     oster 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    265   1.3     oster 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    266   1.3     oster 		RF_ASSERT(!(lk && unlk));
    267  1.21     oster 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    268   1.3     oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    269   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    270   1.3     oster 		return;
    271   1.3     oster 	}
    272   1.3     oster 	if (df == rf_DiskUnlockFunc) {
    273   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    274   1.3     oster 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    275   1.3     oster 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    276   1.3     oster 		RF_ASSERT(!(lk && unlk));
    277  1.21     oster 		printf("c %d %s\n", pda->col,
    278   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    279   1.3     oster 		return;
    280   1.3     oster 	}
    281   1.3     oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    282   1.3     oster 	    || (df == rf_RecoveryXorFunc)) {
    283   1.3     oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    284   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    285   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    286   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    287  1.21     oster 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    288  1.21     oster 			    (long) bufPtr, pda->col,
    289   1.3     oster 			    (long) pda->startSector, (int) pda->numSector);
    290   1.3     oster 		}
    291   1.3     oster 		return;
    292   1.3     oster 	}
    293   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    294   1.3     oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    295   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    296   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    297   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    298  1.21     oster 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    299  1.21     oster 			    pda->col, (long) pda->startSector,
    300   1.3     oster 			    (int) pda->numSector, (long) bufPtr);
    301   1.3     oster 		}
    302   1.3     oster 		return;
    303   1.3     oster 	}
    304   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    305   1.3     oster 
    306   1.3     oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    307   1.3     oster 		printf("\n");
    308   1.3     oster 		return;
    309   1.3     oster 	}
    310   1.3     oster 	printf("?\n");
    311   1.3     oster }
    312  1.16     oster #ifdef DEBUG
    313   1.3     oster static void
    314  1.23     oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    315   1.3     oster {
    316   1.3     oster 	char   *anttype;
    317   1.3     oster 	int     i;
    318   1.3     oster 
    319   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    320   1.3     oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    321   1.3     oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    322   1.3     oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    323   1.3     oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    324   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    325   1.3     oster 		printf("%d%s", node->succedents[i]->nodeNum,
    326   1.3     oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    327   1.3     oster 	}
    328   1.3     oster 	printf("} A{");
    329   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    330   1.3     oster 		switch (node->antType[i]) {
    331   1.3     oster 		case rf_trueData:
    332   1.3     oster 			anttype = "T";
    333   1.3     oster 			break;
    334   1.3     oster 		case rf_antiData:
    335   1.3     oster 			anttype = "A";
    336   1.3     oster 			break;
    337   1.3     oster 		case rf_outputData:
    338   1.3     oster 			anttype = "O";
    339   1.3     oster 			break;
    340   1.3     oster 		case rf_control:
    341   1.3     oster 			anttype = "C";
    342   1.3     oster 			break;
    343   1.3     oster 		default:
    344   1.3     oster 			anttype = "?";
    345   1.3     oster 			break;
    346   1.3     oster 		}
    347   1.3     oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    348   1.3     oster 	}
    349   1.3     oster 	printf("}; ");
    350   1.3     oster 	rf_PrintNodeInfoString(node);
    351   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    352   1.3     oster 		if (node->succedents[i]->visited == unvisited)
    353   1.3     oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    354   1.3     oster 	}
    355   1.1     oster }
    356   1.1     oster 
    357   1.3     oster static void
    358  1.23     oster rf_PrintDAG(RF_DagHeader_t *dag_h)
    359   1.3     oster {
    360   1.3     oster 	int     unvisited, i;
    361   1.3     oster 	char   *status;
    362   1.3     oster 
    363   1.3     oster 	/* set dag status */
    364   1.3     oster 	switch (dag_h->status) {
    365   1.3     oster 	case rf_enable:
    366   1.3     oster 		status = "enable";
    367   1.3     oster 		break;
    368   1.3     oster 	case rf_rollForward:
    369   1.3     oster 		status = "rollForward";
    370   1.3     oster 		break;
    371   1.3     oster 	case rf_rollBackward:
    372   1.3     oster 		status = "rollBackward";
    373   1.3     oster 		break;
    374   1.3     oster 	default:
    375   1.3     oster 		status = "illegal!";
    376   1.3     oster 		break;
    377   1.3     oster 	}
    378   1.3     oster 	/* find out if visited bits are currently set or clear */
    379   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    380   1.3     oster 
    381   1.3     oster 	printf("DAG type:  %s\n", dag_h->creator);
    382   1.3     oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    383   1.3     oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    384   1.3     oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    385   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    386   1.3     oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    387   1.3     oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    388   1.3     oster 	}
    389   1.3     oster 	printf("};\n");
    390   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    391   1.3     oster 		if (dag_h->succedents[i]->visited == unvisited)
    392   1.3     oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    393   1.3     oster 	}
    394   1.3     oster }
    395  1.16     oster #endif
    396   1.1     oster /* assigns node numbers */
    397   1.3     oster int
    398   1.3     oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    399   1.1     oster {
    400   1.3     oster 	int     unvisited, i, nnum;
    401   1.3     oster 	RF_DagNode_t *node;
    402   1.1     oster 
    403   1.3     oster 	nnum = 0;
    404   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    405   1.3     oster 
    406   1.3     oster 	dag_h->nodeNum = nnum++;
    407   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    408   1.3     oster 		node = dag_h->succedents[i];
    409   1.3     oster 		if (node->visited == unvisited) {
    410   1.3     oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    411   1.3     oster 		}
    412   1.3     oster 	}
    413   1.3     oster 	return (nnum);
    414   1.1     oster }
    415   1.1     oster 
    416   1.3     oster int
    417  1.23     oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    418   1.3     oster {
    419   1.3     oster 	int     i;
    420   1.3     oster 
    421   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    422   1.3     oster 
    423   1.3     oster 	node->nodeNum = num++;
    424   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    425   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    426   1.3     oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    427   1.3     oster 		}
    428   1.3     oster 	}
    429   1.3     oster 	return (num);
    430   1.3     oster }
    431   1.1     oster /* set the header pointers in each node to "newptr" */
    432   1.3     oster void
    433  1.23     oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    434   1.3     oster {
    435   1.3     oster 	int     i;
    436   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    437   1.3     oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    438   1.3     oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    439   1.1     oster }
    440   1.1     oster 
    441   1.3     oster void
    442  1.23     oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    443   1.1     oster {
    444   1.3     oster 	int     i;
    445   1.3     oster 	node->dagHdr = newptr;
    446   1.3     oster 	for (i = 0; i < node->numSuccedents; i++)
    447   1.3     oster 		if (node->succedents[i]->dagHdr != newptr)
    448   1.3     oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    449   1.3     oster }
    450   1.1     oster 
    451   1.1     oster 
    452   1.3     oster void
    453   1.3     oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    454   1.3     oster {
    455   1.3     oster 	int     i = 0;
    456   1.3     oster 
    457   1.3     oster 	for (; dag_h; dag_h = dag_h->next) {
    458   1.3     oster 		rf_AssignNodeNums(dag_h);
    459   1.3     oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    460   1.3     oster 		rf_PrintDAG(dag_h);
    461   1.3     oster 	}
    462   1.1     oster }
    463   1.1     oster 
    464   1.3     oster static int
    465  1.23     oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    466  1.23     oster 		  RF_DagNode_t **nodes, int unvisited)
    467   1.3     oster {
    468   1.3     oster 	int     i, retcode = 0;
    469   1.3     oster 
    470   1.3     oster 	/* construct an array of node pointers indexed by node num */
    471   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    472   1.3     oster 	nodes[node->nodeNum] = node;
    473   1.3     oster 
    474   1.3     oster 	if (node->next != NULL) {
    475   1.3     oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    476   1.3     oster 		retcode = 1;
    477   1.3     oster 	}
    478   1.3     oster 	if (node->status != rf_wait) {
    479   1.3     oster 		printf("INVALID DAG: Node status is not wait\n");
    480   1.3     oster 		retcode = 1;
    481   1.3     oster 	}
    482   1.3     oster 	if (node->numAntDone != 0) {
    483   1.3     oster 		printf("INVALID DAG: numAntDone is not zero\n");
    484   1.3     oster 		retcode = 1;
    485   1.3     oster 	}
    486   1.3     oster 	if (node->doFunc == rf_TerminateFunc) {
    487   1.3     oster 		if (node->numSuccedents != 0) {
    488   1.3     oster 			printf("INVALID DAG: Terminator node has succedents\n");
    489   1.3     oster 			retcode = 1;
    490   1.3     oster 		}
    491   1.3     oster 	} else {
    492   1.3     oster 		if (node->numSuccedents == 0) {
    493   1.3     oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    494   1.3     oster 			retcode = 1;
    495   1.3     oster 		}
    496   1.3     oster 	}
    497   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    498   1.3     oster 		if (!node->succedents[i]) {
    499   1.3     oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    500   1.3     oster 			retcode = 1;
    501   1.3     oster 		}
    502   1.3     oster 		scount[node->succedents[i]->nodeNum]++;
    503   1.3     oster 	}
    504   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    505   1.3     oster 		if (!node->antecedents[i]) {
    506   1.3     oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    507   1.3     oster 			retcode = 1;
    508   1.3     oster 		}
    509   1.3     oster 		acount[node->antecedents[i]->nodeNum]++;
    510   1.3     oster 	}
    511   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    512   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    513   1.3     oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    514   1.3     oster 				acount, nodes, unvisited)) {
    515   1.3     oster 				retcode = 1;
    516   1.3     oster 			}
    517   1.3     oster 		}
    518   1.3     oster 	}
    519   1.3     oster 	return (retcode);
    520   1.3     oster }
    521   1.3     oster 
    522   1.3     oster static void
    523  1.23     oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    524   1.3     oster {
    525   1.3     oster 	int     i;
    526   1.3     oster 
    527   1.3     oster 	RF_ASSERT(node->visited == unvisited);
    528   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    529   1.3     oster 		if (node->succedents[i] == NULL) {
    530   1.3     oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    531   1.3     oster 			RF_ASSERT(0);
    532   1.3     oster 		}
    533   1.3     oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    534   1.3     oster 	}
    535   1.3     oster }
    536   1.3     oster /* NOTE:  never call this on a big dag, because it is exponential
    537   1.3     oster  * in execution time
    538   1.3     oster  */
    539   1.3     oster static void
    540  1.23     oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    541   1.3     oster {
    542   1.3     oster 	int     i, unvisited;
    543   1.3     oster 
    544   1.3     oster 	unvisited = dag->succedents[0]->visited;
    545   1.3     oster 
    546   1.3     oster 	for (i = 0; i < dag->numSuccedents; i++) {
    547   1.3     oster 		if (dag->succedents[i] == NULL) {
    548   1.3     oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    549   1.3     oster 			RF_ASSERT(0);
    550   1.3     oster 		}
    551   1.3     oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    552   1.3     oster 	}
    553   1.3     oster }
    554   1.1     oster /* validate a DAG.  _at entry_ verify that:
    555   1.1     oster  *   -- numNodesCompleted is zero
    556   1.1     oster  *   -- node queue is null
    557   1.1     oster  *   -- dag status is rf_enable
    558   1.1     oster  *   -- next pointer is null on every node
    559   1.1     oster  *   -- all nodes have status wait
    560   1.1     oster  *   -- numAntDone is zero in all nodes
    561   1.1     oster  *   -- terminator node has zero successors
    562   1.1     oster  *   -- no other node besides terminator has zero successors
    563   1.1     oster  *   -- no successor or antecedent pointer in a node is NULL
    564   1.1     oster  *   -- number of times that each node appears as a successor of another node
    565   1.1     oster  *      is equal to the antecedent count on that node
    566   1.1     oster  *   -- number of times that each node appears as an antecedent of another node
    567   1.1     oster  *      is equal to the succedent count on that node
    568   1.1     oster  *   -- what else?
    569   1.1     oster  */
    570   1.3     oster int
    571  1.23     oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
    572   1.3     oster {
    573   1.3     oster 	int     i, nodecount;
    574   1.3     oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    575   1.3     oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    576   1.3     oster 	int     retcode = 0;
    577   1.3     oster 	int     unvisited;
    578   1.3     oster 	int     commitNodeCount = 0;
    579   1.3     oster 
    580   1.3     oster 	if (rf_validateVisitedDebug)
    581   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    582   1.3     oster 
    583   1.3     oster 	if (dag_h->numNodesCompleted != 0) {
    584   1.3     oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    585   1.3     oster 		retcode = 1;
    586   1.3     oster 		goto validate_dag_bad;
    587   1.3     oster 	}
    588   1.3     oster 	if (dag_h->status != rf_enable) {
    589   1.3     oster 		printf("INVALID DAG: not enabled\n");
    590   1.3     oster 		retcode = 1;
    591   1.3     oster 		goto validate_dag_bad;
    592   1.3     oster 	}
    593   1.3     oster 	if (dag_h->numCommits != 0) {
    594   1.3     oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    595   1.3     oster 		retcode = 1;
    596   1.3     oster 		goto validate_dag_bad;
    597   1.3     oster 	}
    598   1.3     oster 	if (dag_h->numSuccedents != 1) {
    599   1.3     oster 		/* currently, all dags must have only one succedent */
    600   1.3     oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    601   1.3     oster 		retcode = 1;
    602   1.3     oster 		goto validate_dag_bad;
    603   1.3     oster 	}
    604   1.3     oster 	nodecount = rf_AssignNodeNums(dag_h);
    605   1.3     oster 
    606   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    607   1.3     oster 
    608  1.22     oster 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    609  1.22     oster 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    610  1.22     oster 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    611  1.22     oster 		  (RF_DagNode_t **));
    612   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    613   1.3     oster 		if ((dag_h->succedents[i]->visited == unvisited)
    614   1.3     oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    615   1.3     oster 			acount, nodes, unvisited)) {
    616   1.3     oster 			retcode = 1;
    617   1.3     oster 		}
    618   1.3     oster 	}
    619   1.3     oster 	/* start at 1 to skip the header node */
    620   1.3     oster 	for (i = 1; i < nodecount; i++) {
    621   1.3     oster 		if (nodes[i]->commitNode)
    622   1.3     oster 			commitNodeCount++;
    623   1.3     oster 		if (nodes[i]->doFunc == NULL) {
    624   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    625   1.3     oster 			retcode = 1;
    626   1.3     oster 			goto validate_dag_out;
    627   1.3     oster 		}
    628   1.3     oster 		if (nodes[i]->undoFunc == NULL) {
    629   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    630   1.3     oster 			retcode = 1;
    631   1.3     oster 			goto validate_dag_out;
    632   1.3     oster 		}
    633   1.3     oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    634   1.3     oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    635   1.3     oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    636   1.3     oster 			retcode = 1;
    637   1.3     oster 			goto validate_dag_out;
    638   1.3     oster 		}
    639   1.3     oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    640   1.3     oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    641   1.3     oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    642   1.3     oster 			retcode = 1;
    643   1.3     oster 			goto validate_dag_out;
    644   1.3     oster 		}
    645   1.3     oster 	}
    646   1.1     oster 
    647   1.3     oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    648   1.3     oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    649   1.3     oster 		    dag_h->numCommitNodes, commitNodeCount);
    650   1.3     oster 		retcode = 1;
    651   1.3     oster 		goto validate_dag_out;
    652   1.3     oster 	}
    653   1.1     oster validate_dag_out:
    654   1.3     oster 	RF_Free(scount, nodecount * sizeof(int));
    655   1.3     oster 	RF_Free(acount, nodecount * sizeof(int));
    656   1.3     oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    657   1.3     oster 	if (retcode)
    658   1.3     oster 		rf_PrintDAGList(dag_h);
    659   1.3     oster 
    660   1.3     oster 	if (rf_validateVisitedDebug)
    661   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    662   1.3     oster 
    663   1.3     oster 	return (retcode);
    664   1.1     oster 
    665   1.1     oster validate_dag_bad:
    666   1.3     oster 	rf_PrintDAGList(dag_h);
    667   1.3     oster 	return (retcode);
    668   1.1     oster }
    669   1.1     oster 
    670  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
    671   1.1     oster 
    672   1.1     oster /******************************************************************************
    673   1.1     oster  *
    674   1.1     oster  * misc construction routines
    675   1.1     oster  *
    676   1.1     oster  *****************************************************************************/
    677   1.1     oster 
    678   1.3     oster void
    679  1.23     oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    680   1.3     oster {
    681   1.3     oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    682  1.21     oster 	int     fcol = raidPtr->reconControl->fcol;
    683  1.21     oster 	int     scol = raidPtr->reconControl->spareCol;
    684   1.3     oster 	RF_PhysDiskAddr_t *pda;
    685   1.3     oster 
    686  1.21     oster 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    687   1.3     oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    688   1.3     oster 		if (pda->col == fcol) {
    689   1.3     oster 			if (rf_dagDebug) {
    690  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    691   1.3     oster 					pda->startSector)) {
    692   1.3     oster 					RF_PANIC();
    693   1.3     oster 				}
    694   1.3     oster 			}
    695   1.3     oster 			/* printf("Remapped data for large write\n"); */
    696   1.3     oster 			if (ds) {
    697   1.3     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    698  1.21     oster 				    &pda->col, &pda->startSector, RF_REMAP);
    699   1.3     oster 			} else {
    700   1.3     oster 				pda->col = scol;
    701   1.3     oster 			}
    702   1.3     oster 		}
    703   1.3     oster 	}
    704   1.3     oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    705   1.3     oster 		if (pda->col == fcol) {
    706   1.3     oster 			if (rf_dagDebug) {
    707  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    708   1.3     oster 					RF_PANIC();
    709   1.3     oster 				}
    710   1.3     oster 			}
    711   1.3     oster 		}
    712   1.3     oster 		if (ds) {
    713  1.21     oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    714   1.3     oster 		} else {
    715   1.3     oster 			pda->col = scol;
    716   1.3     oster 		}
    717   1.3     oster 	}
    718   1.1     oster }
    719   1.1     oster 
    720   1.1     oster 
    721   1.1     oster /* this routine allocates read buffers and generates stripe maps for the
    722   1.1     oster  * regions of the array from the start of the stripe to the start of the
    723   1.1     oster  * access, and from the end of the access to the end of the stripe.  It also
    724   1.1     oster  * computes and returns the number of DAG nodes needed to read all this data.
    725   1.1     oster  * Note that this routine does the wrong thing if the access is fully
    726   1.1     oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    727   1.1     oster  * start.
    728  1.23     oster  *
    729  1.23     oster  * layoutPtr - in: layout information
    730  1.23     oster  * asmap     - in: access stripe map
    731  1.23     oster  * dag_h     - in: header of the dag to create
    732  1.23     oster  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    733  1.23     oster  * nRodNodes - out: num nodes to be generated to read unaccessed data
    734  1.23     oster  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    735   1.1     oster  */
    736   1.3     oster void
    737  1.23     oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    738  1.23     oster 				RF_RaidLayout_t *layoutPtr,
    739  1.23     oster 				RF_AccessStripeMap_t *asmap,
    740  1.23     oster 				RF_DagHeader_t *dag_h,
    741  1.23     oster 				RF_AccessStripeMapHeader_t **new_asm_h,
    742  1.23     oster 				int *nRodNodes,
    743  1.23     oster 				char **sosBuffer, char **eosBuffer,
    744  1.23     oster 				RF_AllocListElem_t *allocList)
    745   1.3     oster {
    746   1.3     oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    747   1.3     oster 	RF_SectorNum_t sosNumSector, eosNumSector;
    748   1.3     oster 
    749   1.3     oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    750   1.3     oster 	/* generate an access map for the region of the array from start of
    751   1.3     oster 	 * stripe to start of access */
    752   1.3     oster 	new_asm_h[0] = new_asm_h[1] = NULL;
    753   1.3     oster 	*nRodNodes = 0;
    754   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    755   1.3     oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    756   1.3     oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    757   1.3     oster 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    758   1.3     oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    759   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
    760   1.3     oster 		dag_h->asmList = new_asm_h[0];
    761   1.3     oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    762   1.3     oster 
    763   1.3     oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    764   1.3     oster 		/* we're totally within one stripe here */
    765   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    766   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    767   1.3     oster 	}
    768   1.3     oster 	/* generate an access map for the region of the array from end of
    769   1.3     oster 	 * access to end of stripe */
    770   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    771   1.3     oster 		eosRaidAddress = asmap->endRaidAddress;
    772   1.3     oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    773   1.3     oster 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    774   1.3     oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    775   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
    776   1.3     oster 		dag_h->asmList = new_asm_h[1];
    777   1.3     oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    778   1.3     oster 
    779   1.3     oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    780   1.3     oster 		/* we're totally within one stripe here */
    781   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    782   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    783   1.3     oster 	}
    784   1.1     oster }
    785   1.1     oster 
    786   1.1     oster 
    787   1.1     oster 
    788   1.1     oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    789   1.3     oster int
    790  1.23     oster rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
    791  1.23     oster 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
    792   1.3     oster {
    793   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    794   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    795   1.3     oster 	/* use -1 to be sure we stay within SU */
    796   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    797   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    798   1.3     oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    799   1.1     oster }
    800   1.1     oster 
    801   1.1     oster 
    802   1.1     oster /* GenerateFailedAccessASMs
    803   1.1     oster  *
    804   1.1     oster  * this routine figures out what portion of the stripe needs to be read
    805   1.1     oster  * to effect the degraded read or write operation.  It's primary function
    806   1.1     oster  * is to identify everything required to recover the data, and then
    807   1.1     oster  * eliminate anything that is already being accessed by the user.
    808   1.1     oster  *
    809   1.1     oster  * The main result is two new ASMs, one for the region from the start of the
    810   1.1     oster  * stripe to the start of the access, and one for the region from the end of
    811   1.1     oster  * the access to the end of the stripe.  These ASMs describe everything that
    812   1.1     oster  * needs to be read to effect the degraded access.  Other results are:
    813   1.1     oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
    814   1.1     oster  *                recover the lost data,
    815   1.1     oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    816   1.1     oster  *                at entry, not allocated.
    817   1.1     oster  *    overlappingPDAs --
    818   1.1     oster  *                describes which of the non-failed PDAs in the user access
    819   1.1     oster  *                overlap data that needs to be read to effect recovery.
    820   1.1     oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    821   1.1     oster  *                PDA, the ith pda in the input asm overlaps data that needs
    822   1.1     oster  *                to be read for recovery.
    823   1.1     oster  */
    824   1.1     oster  /* in: asm - ASM for the actual access, one stripe only */
    825  1.10       wiz  /* in: failedPDA - which component of the access has failed */
    826   1.1     oster  /* in: dag_h - header of the DAG we're going to create */
    827   1.1     oster  /* out: new_asm_h - the two new ASMs */
    828   1.1     oster  /* out: nXorBufs - the total number of xor bufs required */
    829   1.1     oster  /* out: rpBufPtr - a buffer for the parity read */
    830   1.3     oster void
    831  1.23     oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    832  1.23     oster 			    RF_PhysDiskAddr_t *failedPDA,
    833  1.23     oster 			    RF_DagHeader_t *dag_h,
    834  1.23     oster 			    RF_AccessStripeMapHeader_t **new_asm_h,
    835  1.23     oster 			    int *nXorBufs, char **rpBufPtr,
    836  1.23     oster 			    char *overlappingPDAs,
    837  1.23     oster 			    RF_AllocListElem_t *allocList)
    838   1.3     oster {
    839   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    840   1.3     oster 
    841   1.3     oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    842   1.3     oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    843   1.3     oster 
    844   1.3     oster 	RF_SectorCount_t numSect[2], numParitySect;
    845   1.3     oster 	RF_PhysDiskAddr_t *pda;
    846   1.3     oster 	char   *rdBuf, *bufP;
    847   1.3     oster 	int     foundit, i;
    848   1.3     oster 
    849   1.3     oster 	bufP = NULL;
    850   1.3     oster 	foundit = 0;
    851   1.3     oster 	/* first compute the following raid addresses: start of stripe,
    852   1.3     oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    853   1.3     oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    854   1.3     oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    855   1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    856   1.3     oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    857   1.3     oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    858   1.3     oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    859   1.3     oster 
    860   1.3     oster 	/* now generate access stripe maps for each of the above regions of
    861   1.3     oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    862   1.3     oster 
    863   1.3     oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    864   1.3     oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    865   1.3     oster 
    866   1.3     oster 	/* walk through the PDAs and range-restrict each SU to the region of
    867   1.3     oster 	 * the SU touched on the failed PDA.  also compute total data buffer
    868   1.3     oster 	 * space requirements in this step.  Ignore the parity for now. */
    869   1.3     oster 
    870   1.3     oster 	numSect[0] = numSect[1] = 0;
    871   1.3     oster 	if (new_asm_h[0]) {
    872   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
    873   1.3     oster 		dag_h->asmList = new_asm_h[0];
    874   1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    875   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    876   1.3     oster 			numSect[0] += pda->numSector;
    877   1.3     oster 		}
    878   1.3     oster 	}
    879   1.3     oster 	if (new_asm_h[1]) {
    880   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
    881   1.3     oster 		dag_h->asmList = new_asm_h[1];
    882   1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    883   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    884   1.3     oster 			numSect[1] += pda->numSector;
    885   1.3     oster 		}
    886   1.3     oster 	}
    887   1.3     oster 	numParitySect = failedPDA->numSector;
    888   1.3     oster 
    889   1.3     oster 	/* allocate buffer space for the data & parity we have to read to
    890   1.3     oster 	 * recover from the failure */
    891   1.3     oster 
    892   1.3     oster 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    893   1.3     oster 										 * buf if not needed */
    894   1.3     oster 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    895   1.3     oster 		bufP = rdBuf;
    896   1.3     oster 		if (rf_degDagDebug)
    897   1.3     oster 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    898   1.3     oster 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    899   1.3     oster 	}
    900   1.3     oster 	/* now walk through the pdas one last time and assign buffer pointers
    901   1.3     oster 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    902   1.3     oster 	 * how many bufs need to be xored together */
    903   1.3     oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    904   1.3     oster 				 * case, 1 is for failed data */
    905   1.3     oster 	if (new_asm_h[0]) {
    906   1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    907   1.3     oster 			pda->bufPtr = bufP;
    908   1.3     oster 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    909   1.3     oster 		}
    910   1.3     oster 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    911   1.3     oster 	}
    912   1.3     oster 	if (new_asm_h[1]) {
    913   1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    914   1.3     oster 			pda->bufPtr = bufP;
    915   1.3     oster 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    916   1.3     oster 		}
    917   1.3     oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    918   1.3     oster 	}
    919   1.3     oster 	if (rpBufPtr)
    920   1.3     oster 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    921   1.3     oster 					 * parity */
    922   1.3     oster 
    923   1.3     oster 	/* the last step is to figure out how many more distinct buffers need
    924   1.3     oster 	 * to get xor'd to produce the missing unit.  there's one for each
    925   1.3     oster 	 * user-data read node that overlaps the portion of the failed unit
    926   1.3     oster 	 * being accessed */
    927   1.3     oster 
    928   1.3     oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
    929   1.3     oster 		if (pda == failedPDA) {
    930   1.3     oster 			i--;
    931   1.3     oster 			foundit = 1;
    932   1.3     oster 			continue;
    933   1.3     oster 		}
    934   1.3     oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
    935   1.3     oster 			overlappingPDAs[i] = 1;
    936   1.3     oster 			(*nXorBufs)++;
    937   1.3     oster 		}
    938   1.3     oster 	}
    939   1.3     oster 	if (!foundit) {
    940   1.3     oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
    941   1.3     oster 		RF_ASSERT(0);
    942   1.3     oster 	}
    943   1.3     oster 	if (rf_degDagDebug) {
    944   1.3     oster 		if (new_asm_h[0]) {
    945   1.3     oster 			printf("First asm:\n");
    946   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
    947   1.3     oster 		}
    948   1.3     oster 		if (new_asm_h[1]) {
    949   1.3     oster 			printf("Second asm:\n");
    950   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
    951   1.3     oster 		}
    952   1.3     oster 	}
    953   1.1     oster }
    954   1.1     oster 
    955   1.1     oster 
    956   1.1     oster /* adjusts the offset and number of sectors in the destination pda so that
    957   1.1     oster  * it covers at most the region of the SU covered by the source PDA.  This
    958   1.1     oster  * is exclusively a restriction:  the number of sectors indicated by the
    959   1.1     oster  * target PDA can only shrink.
    960   1.1     oster  *
    961   1.1     oster  * For example:  s = sectors within SU indicated by source PDA
    962   1.1     oster  *               d = sectors within SU indicated by dest PDA
    963   1.1     oster  *               r = results, stored in dest PDA
    964   1.1     oster  *
    965   1.1     oster  * |--------------- one stripe unit ---------------------|
    966   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
    967   1.1     oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
    968   1.1     oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
    969   1.1     oster  *
    970   1.1     oster  * Another example:
    971   1.1     oster  *
    972   1.1     oster  * |--------------- one stripe unit ---------------------|
    973   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
    974   1.1     oster  * |    ddddddddddddddddddddddd                          |
    975   1.1     oster  * |           rrrrrrrrrrrrrrrr                          |
    976   1.1     oster  *
    977   1.1     oster  */
    978   1.3     oster void
    979  1.23     oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
    980  1.23     oster 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
    981   1.3     oster {
    982   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    983   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    984   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    985   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
    986   1.3     oster 													 * stay within SU */
    987   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    988   1.3     oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
    989   1.3     oster 
    990   1.3     oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
    991   1.3     oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
    992   1.3     oster 
    993   1.3     oster 	if (dobuffer)
    994   1.3     oster 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
    995   1.3     oster 	if (doraidaddr) {
    996   1.3     oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
    997   1.3     oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
    998   1.3     oster 	}
    999   1.1     oster }
   1000  1.11     oster 
   1001  1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1002  1.11     oster 
   1003   1.1     oster /*
   1004   1.1     oster  * Want the highest of these primes to be the largest one
   1005   1.1     oster  * less than the max expected number of columns (won't hurt
   1006   1.1     oster  * to be too small or too large, but won't be optimal, either)
   1007   1.1     oster  * --jimz
   1008   1.1     oster  */
   1009   1.1     oster #define NLOWPRIMES 8
   1010   1.3     oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1011   1.1     oster /*****************************************************************************
   1012   1.1     oster  * compute the workload shift factor.  (chained declustering)
   1013   1.1     oster  *
   1014   1.1     oster  * return nonzero if access should shift to secondary, otherwise,
   1015   1.1     oster  * access is to primary
   1016   1.1     oster  *****************************************************************************/
   1017   1.3     oster int
   1018  1.23     oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1019   1.3     oster {
   1020   1.3     oster 	/*
   1021   1.3     oster          * variables:
   1022   1.3     oster          *  d   = column of disk containing primary
   1023   1.3     oster          *  f   = column of failed disk
   1024   1.3     oster          *  n   = number of disks in array
   1025   1.3     oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1026   1.3     oster          *  v   = numerator of redirection ratio
   1027   1.3     oster          *  k   = denominator of redirection ratio
   1028   1.3     oster          */
   1029  1.21     oster 	RF_RowCol_t d, f, sd, n;
   1030   1.3     oster 	int     k, v, ret, i;
   1031   1.3     oster 
   1032   1.3     oster 	n = raidPtr->numCol;
   1033   1.3     oster 
   1034   1.3     oster 	/* assign column of primary copy to d */
   1035   1.3     oster 	d = pda->col;
   1036   1.3     oster 
   1037   1.3     oster 	/* assign column of dead disk to f */
   1038  1.21     oster 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1039   1.3     oster 
   1040   1.3     oster 	RF_ASSERT(f < n);
   1041   1.3     oster 	RF_ASSERT(f != d);
   1042   1.3     oster 
   1043   1.3     oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1044   1.3     oster 	RF_ASSERT(sd < n);
   1045   1.3     oster 
   1046   1.3     oster 	/*
   1047   1.3     oster          * v of every k accesses should be redirected
   1048   1.3     oster          *
   1049   1.3     oster          * v/k := (n-1-sd)/(n-1)
   1050   1.3     oster          */
   1051   1.3     oster 	v = (n - 1 - sd);
   1052   1.3     oster 	k = (n - 1);
   1053   1.1     oster 
   1054   1.1     oster #if 1
   1055   1.3     oster 	/*
   1056   1.3     oster          * XXX
   1057   1.3     oster          * Is this worth it?
   1058   1.3     oster          *
   1059   1.3     oster          * Now reduce the fraction, by repeatedly factoring
   1060   1.3     oster          * out primes (just like they teach in elementary school!)
   1061   1.3     oster          */
   1062   1.3     oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1063   1.3     oster 		if (lowprimes[i] > v)
   1064   1.3     oster 			break;
   1065   1.3     oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1066   1.3     oster 			v /= lowprimes[i];
   1067   1.3     oster 			k /= lowprimes[i];
   1068   1.3     oster 		}
   1069   1.3     oster 	}
   1070   1.1     oster #endif
   1071   1.1     oster 
   1072  1.21     oster 	raidPtr->hist_diskreq[d]++;
   1073  1.21     oster 	if (raidPtr->hist_diskreq[d] > v) {
   1074   1.3     oster 		ret = 0;	/* do not redirect */
   1075   1.3     oster 	} else {
   1076   1.3     oster 		ret = 1;	/* redirect */
   1077   1.3     oster 	}
   1078   1.1     oster 
   1079   1.1     oster #if 0
   1080   1.3     oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1081  1.21     oster 	    raidPtr->hist_diskreq[d]);
   1082   1.1     oster #endif
   1083   1.1     oster 
   1084  1.21     oster 	if (raidPtr->hist_diskreq[d] >= k) {
   1085   1.3     oster 		/* reset counter */
   1086  1.21     oster 		raidPtr->hist_diskreq[d] = 0;
   1087   1.3     oster 	}
   1088   1.3     oster 	return (ret);
   1089   1.1     oster }
   1090  1.11     oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1091  1.11     oster 
   1092   1.1     oster /*
   1093   1.1     oster  * Disk selection routines
   1094   1.1     oster  */
   1095   1.1     oster 
   1096   1.1     oster /*
   1097   1.1     oster  * Selects the disk with the shortest queue from a mirror pair.
   1098   1.1     oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1099   1.1     oster  * disk are counted as members of the "queue"
   1100   1.1     oster  */
   1101   1.3     oster void
   1102   1.3     oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1103   1.1     oster {
   1104   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1105  1.21     oster 	RF_RowCol_t colData, colMirror;
   1106   1.3     oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1107   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1108   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1109   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1110  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1111  1.21     oster 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1112   1.3     oster 
   1113   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1114   1.3     oster 	colData = data_pda->col;
   1115   1.3     oster 	colMirror = mirror_pda->col;
   1116  1.21     oster 	dataQueue = &(dqs[colData]);
   1117  1.21     oster 	mirrorQueue = &(dqs[colMirror]);
   1118   1.1     oster 
   1119   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1120   1.3     oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1121   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1122   1.3     oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1123   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1124   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1125   1.3     oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1126   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1127   1.3     oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1128   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1129   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1130   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1131   1.1     oster 
   1132   1.3     oster 	usemirror = 0;
   1133  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1134   1.3     oster 		usemirror = 0;
   1135   1.3     oster 	} else
   1136  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1137   1.3     oster 			usemirror = 1;
   1138   1.3     oster 		} else
   1139   1.5     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1140   1.5     oster 				/* Trust only the main disk */
   1141   1.3     oster 				usemirror = 0;
   1142   1.3     oster 			} else
   1143   1.5     oster 				if (dataQueueLength < mirrorQueueLength) {
   1144   1.5     oster 					usemirror = 0;
   1145   1.5     oster 				} else
   1146   1.5     oster 					if (mirrorQueueLength < dataQueueLength) {
   1147   1.5     oster 						usemirror = 1;
   1148   1.3     oster 					} else {
   1149   1.5     oster 						/* queues are equal length. attempt
   1150   1.5     oster 						 * cleverness. */
   1151   1.5     oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1152   1.5     oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1153   1.5     oster 							usemirror = 0;
   1154   1.5     oster 						} else {
   1155   1.5     oster 							usemirror = 1;
   1156   1.5     oster 						}
   1157   1.3     oster 					}
   1158   1.3     oster 
   1159   1.3     oster 	if (usemirror) {
   1160   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1161   1.3     oster 		tmp_pda = data_pda;
   1162   1.3     oster 		node->params[0].p = mirror_pda;
   1163   1.3     oster 		node->params[4].p = tmp_pda;
   1164   1.3     oster 	} else {
   1165   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1166   1.3     oster 	}
   1167   1.3     oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1168   1.3     oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1169   1.1     oster }
   1170  1.19     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1171   1.1     oster /*
   1172   1.1     oster  * Do simple partitioning. This assumes that
   1173   1.1     oster  * the data and parity disks are laid out identically.
   1174   1.1     oster  */
   1175   1.3     oster void
   1176   1.3     oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1177   1.1     oster {
   1178   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1179  1.21     oster 	RF_RowCol_t colData, colMirror;
   1180   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1181   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1182   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1183  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1184   1.3     oster 	int     usemirror;
   1185   1.3     oster 
   1186   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1187   1.3     oster 	colData = data_pda->col;
   1188   1.3     oster 	colMirror = mirror_pda->col;
   1189   1.3     oster 
   1190   1.3     oster 	usemirror = 0;
   1191  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1192   1.3     oster 		usemirror = 0;
   1193   1.3     oster 	} else
   1194  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1195   1.3     oster 			usemirror = 1;
   1196   1.6     oster 		} else
   1197   1.6     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1198   1.6     oster 				/* Trust only the main disk */
   1199   1.3     oster 				usemirror = 0;
   1200   1.6     oster 			} else
   1201   1.6     oster 				if (data_pda->startSector <
   1202  1.21     oster 				    (disks[colData].numBlocks / 2)) {
   1203   1.6     oster 					usemirror = 0;
   1204   1.6     oster 				} else {
   1205   1.6     oster 					usemirror = 1;
   1206   1.6     oster 				}
   1207   1.3     oster 
   1208   1.3     oster 	if (usemirror) {
   1209   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1210   1.3     oster 		tmp_pda = data_pda;
   1211   1.3     oster 		node->params[0].p = mirror_pda;
   1212   1.3     oster 		node->params[4].p = tmp_pda;
   1213   1.3     oster 	} else {
   1214   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1215   1.3     oster 	}
   1216   1.1     oster }
   1217  1.19     oster #endif
   1218