Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.36
      1  1.36     oster /*	$NetBSD: rf_dagutils.c,v 1.36 2004/03/07 21:57:44 oster Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /******************************************************************************
     30   1.1     oster  *
     31   1.1     oster  * rf_dagutils.c -- utility routines for manipulating dags
     32   1.1     oster  *
     33   1.1     oster  *****************************************************************************/
     34   1.9     lukem 
     35   1.9     lukem #include <sys/cdefs.h>
     36  1.36     oster __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.36 2004/03/07 21:57:44 oster Exp $");
     37   1.1     oster 
     38   1.8     oster #include <dev/raidframe/raidframevar.h>
     39   1.8     oster 
     40   1.1     oster #include "rf_archs.h"
     41   1.1     oster #include "rf_threadstuff.h"
     42   1.1     oster #include "rf_raid.h"
     43   1.1     oster #include "rf_dag.h"
     44   1.1     oster #include "rf_dagutils.h"
     45   1.1     oster #include "rf_dagfuncs.h"
     46   1.1     oster #include "rf_general.h"
     47   1.1     oster #include "rf_map.h"
     48   1.1     oster #include "rf_shutdown.h"
     49   1.1     oster 
     50   1.1     oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51   1.1     oster 
     52  1.20  jdolecek const RF_RedFuncs_t rf_xorFuncs = {
     53   1.1     oster 	rf_RegularXorFunc, "Reg Xr",
     54  1.32     oster 	rf_SimpleXorFunc, "Simple Xr"};
     55   1.1     oster 
     56  1.20  jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57   1.1     oster 	rf_RecoveryXorFunc, "Recovery Xr",
     58  1.32     oster 	rf_RecoveryXorFunc, "Recovery Xr"};
     59   1.1     oster 
     60  1.13     oster #if RF_DEBUG_VALIDATE_DAG
     61   1.1     oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62   1.1     oster static void rf_PrintDAG(RF_DagHeader_t *);
     63  1.12     oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64  1.12     oster 			     RF_DagNode_t **, int);
     65   1.1     oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66   1.1     oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
     68   1.1     oster 
     69   1.1     oster /******************************************************************************
     70   1.1     oster  *
     71   1.1     oster  * InitNode - initialize a dag node
     72   1.1     oster  *
     73   1.1     oster  * the size of the propList array is always the same as that of the
     74   1.1     oster  * successors array.
     75   1.1     oster  *
     76   1.1     oster  *****************************************************************************/
     77   1.3     oster void
     78  1.23     oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     79  1.23     oster     int (*doFunc) (RF_DagNode_t *node),
     80  1.23     oster     int (*undoFunc) (RF_DagNode_t *node),
     81  1.23     oster     int (*wakeFunc) (RF_DagNode_t *node, int status),
     82  1.23     oster     int nSucc, int nAnte, int nParam, int nResult,
     83  1.23     oster     RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
     84   1.3     oster {
     85   1.3     oster 	void  **ptrs;
     86   1.3     oster 	int     nptrs;
     87   1.3     oster 
     88   1.3     oster 	if (nAnte > RF_MAX_ANTECEDENTS)
     89   1.3     oster 		RF_PANIC();
     90   1.3     oster 	node->status = initstatus;
     91   1.3     oster 	node->commitNode = commit;
     92   1.3     oster 	node->doFunc = doFunc;
     93   1.3     oster 	node->undoFunc = undoFunc;
     94   1.3     oster 	node->wakeFunc = wakeFunc;
     95   1.3     oster 	node->numParams = nParam;
     96   1.3     oster 	node->numResults = nResult;
     97   1.3     oster 	node->numAntecedents = nAnte;
     98   1.3     oster 	node->numAntDone = 0;
     99   1.3     oster 	node->next = NULL;
    100   1.3     oster 	node->numSuccedents = nSucc;
    101   1.3     oster 	node->name = name;
    102   1.3     oster 	node->dagHdr = hdr;
    103   1.3     oster 	node->visited = 0;
    104   1.3     oster 
    105   1.3     oster 	/* allocate all the pointers with one call to malloc */
    106   1.3     oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    107   1.3     oster 
    108   1.3     oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    109   1.3     oster 		/*
    110   1.3     oster 	         * The dag_ptrs field of the node is basically some scribble
    111   1.3     oster 	         * space to be used here. We could get rid of it, and always
    112   1.3     oster 	         * allocate the range of pointers, but that's expensive. So,
    113   1.3     oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    114   1.3     oster 	         * we'll find that:
    115   1.3     oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    116   1.3     oster 	         *     only a little bit (least efficient case)
    117   1.3     oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    118   1.3     oster 	         *     (wasted memory)
    119   1.3     oster 	         */
    120   1.3     oster 		ptrs = (void **) node->dag_ptrs;
    121   1.3     oster 	} else {
    122  1.22     oster 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    123  1.22     oster 				(void **), alist);
    124   1.3     oster 	}
    125   1.3     oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    126   1.3     oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    127   1.3     oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    128   1.3     oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    129   1.3     oster 
    130   1.3     oster 	if (nParam) {
    131   1.3     oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    132   1.3     oster 			node->params = (RF_DagParam_t *) node->dag_params;
    133   1.3     oster 		} else {
    134  1.22     oster 			RF_MallocAndAdd(node->params,
    135  1.22     oster 					nParam * sizeof(RF_DagParam_t),
    136  1.22     oster 					(RF_DagParam_t *), alist);
    137   1.3     oster 		}
    138   1.3     oster 	} else {
    139   1.3     oster 		node->params = NULL;
    140   1.3     oster 	}
    141   1.1     oster }
    142   1.1     oster 
    143   1.1     oster 
    144   1.1     oster 
    145   1.1     oster /******************************************************************************
    146   1.1     oster  *
    147   1.1     oster  * allocation and deallocation routines
    148   1.1     oster  *
    149   1.1     oster  *****************************************************************************/
    150   1.1     oster 
    151   1.3     oster void
    152  1.23     oster rf_FreeDAG(RF_DagHeader_t *dag_h)
    153   1.3     oster {
    154   1.3     oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    155   1.3     oster 	RF_DagHeader_t *nextDag;
    156   1.3     oster 
    157   1.3     oster 	while (dag_h) {
    158   1.3     oster 		nextDag = dag_h->next;
    159   1.3     oster 		rf_FreeAllocList(dag_h->allocList);
    160   1.3     oster 		for (asmap = dag_h->asmList; asmap;) {
    161   1.3     oster 			t_asmap = asmap;
    162   1.3     oster 			asmap = asmap->next;
    163   1.3     oster 			rf_FreeAccessStripeMap(t_asmap);
    164   1.3     oster 		}
    165   1.3     oster 		rf_FreeDAGHeader(dag_h);
    166   1.3     oster 		dag_h = nextDag;
    167   1.3     oster 	}
    168   1.3     oster }
    169   1.3     oster 
    170   1.1     oster #define RF_MAX_FREE_DAGH 128
    171  1.30     oster #define RF_MIN_FREE_DAGH  32
    172   1.1     oster 
    173  1.25     oster #define RF_MAX_FREE_DAGLIST 128
    174  1.30     oster #define RF_MIN_FREE_DAGLIST  32
    175  1.25     oster 
    176  1.27     oster #define RF_MAX_FREE_FUNCLIST 128
    177  1.30     oster #define RF_MIN_FREE_FUNCLIST  32
    178  1.25     oster 
    179   1.1     oster static void rf_ShutdownDAGs(void *);
    180   1.3     oster static void
    181  1.23     oster rf_ShutdownDAGs(void *ignored)
    182   1.1     oster {
    183  1.36     oster 	pool_destroy(&rf_pools.dagh);
    184  1.36     oster 	pool_destroy(&rf_pools.daglist);
    185  1.36     oster 	pool_destroy(&rf_pools.funclist);
    186   1.1     oster }
    187   1.1     oster 
    188   1.3     oster int
    189  1.23     oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    190   1.1     oster {
    191   1.1     oster 
    192  1.36     oster 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    193  1.36     oster 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    194  1.36     oster 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    195  1.36     oster 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    196  1.36     oster 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    197  1.36     oster 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    198  1.29     oster 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    199  1.29     oster 
    200   1.3     oster 	return (0);
    201   1.1     oster }
    202   1.1     oster 
    203   1.3     oster RF_DagHeader_t *
    204   1.3     oster rf_AllocDAGHeader()
    205   1.1     oster {
    206   1.1     oster 	RF_DagHeader_t *dh;
    207   1.1     oster 
    208  1.36     oster 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    209  1.28     oster 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    210   1.3     oster 	return (dh);
    211   1.1     oster }
    212   1.1     oster 
    213   1.3     oster void
    214   1.3     oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    215   1.1     oster {
    216  1.36     oster 	pool_put(&rf_pools.dagh, dh);
    217   1.1     oster }
    218  1.25     oster 
    219  1.25     oster RF_DagList_t *
    220  1.25     oster rf_AllocDAGList()
    221  1.25     oster {
    222  1.25     oster 	RF_DagList_t *dagList;
    223  1.25     oster 
    224  1.36     oster 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    225  1.25     oster 	memset(dagList, 0, sizeof(RF_DagList_t));
    226  1.25     oster 
    227  1.25     oster 	return (dagList);
    228  1.25     oster }
    229  1.25     oster 
    230  1.25     oster void
    231  1.25     oster rf_FreeDAGList(RF_DagList_t *dagList)
    232  1.25     oster {
    233  1.36     oster 	pool_put(&rf_pools.daglist, dagList);
    234  1.25     oster }
    235  1.25     oster 
    236  1.27     oster RF_FuncList_t *
    237  1.27     oster rf_AllocFuncList()
    238  1.27     oster {
    239  1.27     oster 	RF_FuncList_t *funcList;
    240  1.27     oster 
    241  1.36     oster 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    242  1.27     oster 	memset(funcList, 0, sizeof(RF_FuncList_t));
    243  1.27     oster 
    244  1.27     oster 	return (funcList);
    245  1.27     oster }
    246  1.27     oster 
    247  1.27     oster void
    248  1.27     oster rf_FreeFuncList(RF_FuncList_t *funcList)
    249  1.27     oster {
    250  1.36     oster 	pool_put(&rf_pools.funclist, funcList);
    251  1.27     oster }
    252  1.25     oster 
    253  1.25     oster 
    254  1.25     oster 
    255   1.1     oster /* allocates a buffer big enough to hold the data described by pda */
    256   1.3     oster void   *
    257  1.33     oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    258  1.33     oster 	       RF_AllocListElem_t *allocList)
    259   1.3     oster {
    260   1.3     oster 	char   *p;
    261   1.3     oster 
    262   1.3     oster 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    263   1.3     oster 	    (char *), allocList);
    264   1.3     oster 	return ((void *) p);
    265   1.1     oster }
    266  1.13     oster #if RF_DEBUG_VALIDATE_DAG
    267   1.1     oster /******************************************************************************
    268   1.1     oster  *
    269   1.1     oster  * debug routines
    270   1.1     oster  *
    271   1.1     oster  *****************************************************************************/
    272   1.1     oster 
    273   1.3     oster char   *
    274  1.23     oster rf_NodeStatusString(RF_DagNode_t *node)
    275   1.1     oster {
    276   1.3     oster 	switch (node->status) {
    277  1.34     oster 	case rf_wait:
    278  1.34     oster 		return ("wait");
    279   1.3     oster 	case rf_fired:
    280   1.3     oster 		return ("fired");
    281   1.3     oster 	case rf_good:
    282   1.3     oster 		return ("good");
    283   1.3     oster 	case rf_bad:
    284   1.3     oster 		return ("bad");
    285   1.3     oster 	default:
    286   1.3     oster 		return ("?");
    287   1.3     oster 	}
    288   1.3     oster }
    289   1.1     oster 
    290   1.3     oster void
    291  1.23     oster rf_PrintNodeInfoString(RF_DagNode_t *node)
    292   1.3     oster {
    293   1.3     oster 	RF_PhysDiskAddr_t *pda;
    294   1.3     oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    295   1.3     oster 	int     i, lk, unlk;
    296   1.3     oster 	void   *bufPtr;
    297   1.3     oster 
    298   1.3     oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    299   1.3     oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    300   1.3     oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    301   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    302   1.3     oster 		bufPtr = (void *) node->params[1].p;
    303  1.24     oster 		lk = 0;
    304  1.24     oster 		unlk = 0;
    305   1.3     oster 		RF_ASSERT(!(lk && unlk));
    306  1.21     oster 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    307   1.3     oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    308   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    309   1.3     oster 		return;
    310   1.3     oster 	}
    311   1.3     oster 	if (df == rf_DiskUnlockFunc) {
    312   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    313  1.24     oster 		lk = 0;
    314  1.24     oster 		unlk = 0;
    315   1.3     oster 		RF_ASSERT(!(lk && unlk));
    316  1.21     oster 		printf("c %d %s\n", pda->col,
    317   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    318   1.3     oster 		return;
    319   1.3     oster 	}
    320   1.3     oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    321   1.3     oster 	    || (df == rf_RecoveryXorFunc)) {
    322   1.3     oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    323   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    324   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    325   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    326  1.21     oster 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    327  1.21     oster 			    (long) bufPtr, pda->col,
    328   1.3     oster 			    (long) pda->startSector, (int) pda->numSector);
    329   1.3     oster 		}
    330   1.3     oster 		return;
    331   1.3     oster 	}
    332   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    333   1.3     oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    334   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    335   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    336   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    337  1.21     oster 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    338  1.21     oster 			    pda->col, (long) pda->startSector,
    339   1.3     oster 			    (int) pda->numSector, (long) bufPtr);
    340   1.3     oster 		}
    341   1.3     oster 		return;
    342   1.3     oster 	}
    343   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    344   1.3     oster 
    345   1.3     oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    346   1.3     oster 		printf("\n");
    347   1.3     oster 		return;
    348   1.3     oster 	}
    349   1.3     oster 	printf("?\n");
    350   1.3     oster }
    351  1.16     oster #ifdef DEBUG
    352   1.3     oster static void
    353  1.23     oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    354   1.3     oster {
    355   1.3     oster 	char   *anttype;
    356   1.3     oster 	int     i;
    357   1.3     oster 
    358   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    359   1.3     oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    360   1.3     oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    361   1.3     oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    362   1.3     oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    363   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    364   1.3     oster 		printf("%d%s", node->succedents[i]->nodeNum,
    365   1.3     oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    366   1.3     oster 	}
    367   1.3     oster 	printf("} A{");
    368   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    369   1.3     oster 		switch (node->antType[i]) {
    370   1.3     oster 		case rf_trueData:
    371   1.3     oster 			anttype = "T";
    372   1.3     oster 			break;
    373   1.3     oster 		case rf_antiData:
    374   1.3     oster 			anttype = "A";
    375   1.3     oster 			break;
    376   1.3     oster 		case rf_outputData:
    377   1.3     oster 			anttype = "O";
    378   1.3     oster 			break;
    379   1.3     oster 		case rf_control:
    380   1.3     oster 			anttype = "C";
    381   1.3     oster 			break;
    382   1.3     oster 		default:
    383   1.3     oster 			anttype = "?";
    384   1.3     oster 			break;
    385   1.3     oster 		}
    386   1.3     oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    387   1.3     oster 	}
    388   1.3     oster 	printf("}; ");
    389   1.3     oster 	rf_PrintNodeInfoString(node);
    390   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    391   1.3     oster 		if (node->succedents[i]->visited == unvisited)
    392   1.3     oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    393   1.3     oster 	}
    394   1.1     oster }
    395   1.1     oster 
    396   1.3     oster static void
    397  1.23     oster rf_PrintDAG(RF_DagHeader_t *dag_h)
    398   1.3     oster {
    399   1.3     oster 	int     unvisited, i;
    400   1.3     oster 	char   *status;
    401   1.3     oster 
    402   1.3     oster 	/* set dag status */
    403   1.3     oster 	switch (dag_h->status) {
    404   1.3     oster 	case rf_enable:
    405   1.3     oster 		status = "enable";
    406   1.3     oster 		break;
    407   1.3     oster 	case rf_rollForward:
    408   1.3     oster 		status = "rollForward";
    409   1.3     oster 		break;
    410   1.3     oster 	case rf_rollBackward:
    411   1.3     oster 		status = "rollBackward";
    412   1.3     oster 		break;
    413   1.3     oster 	default:
    414   1.3     oster 		status = "illegal!";
    415   1.3     oster 		break;
    416   1.3     oster 	}
    417   1.3     oster 	/* find out if visited bits are currently set or clear */
    418   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    419   1.3     oster 
    420   1.3     oster 	printf("DAG type:  %s\n", dag_h->creator);
    421   1.3     oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    422   1.3     oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    423   1.3     oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    424   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    425   1.3     oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    426   1.3     oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    427   1.3     oster 	}
    428   1.3     oster 	printf("};\n");
    429   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    430   1.3     oster 		if (dag_h->succedents[i]->visited == unvisited)
    431   1.3     oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    432   1.3     oster 	}
    433   1.3     oster }
    434  1.16     oster #endif
    435   1.1     oster /* assigns node numbers */
    436   1.3     oster int
    437   1.3     oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    438   1.1     oster {
    439   1.3     oster 	int     unvisited, i, nnum;
    440   1.3     oster 	RF_DagNode_t *node;
    441   1.1     oster 
    442   1.3     oster 	nnum = 0;
    443   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    444   1.3     oster 
    445   1.3     oster 	dag_h->nodeNum = nnum++;
    446   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    447   1.3     oster 		node = dag_h->succedents[i];
    448   1.3     oster 		if (node->visited == unvisited) {
    449   1.3     oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    450   1.3     oster 		}
    451   1.3     oster 	}
    452   1.3     oster 	return (nnum);
    453   1.1     oster }
    454   1.1     oster 
    455   1.3     oster int
    456  1.23     oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    457   1.3     oster {
    458   1.3     oster 	int     i;
    459   1.3     oster 
    460   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    461   1.3     oster 
    462   1.3     oster 	node->nodeNum = num++;
    463   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    464   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    465   1.3     oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    466   1.3     oster 		}
    467   1.3     oster 	}
    468   1.3     oster 	return (num);
    469   1.3     oster }
    470   1.1     oster /* set the header pointers in each node to "newptr" */
    471   1.3     oster void
    472  1.23     oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    473   1.3     oster {
    474   1.3     oster 	int     i;
    475   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    476   1.3     oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    477   1.3     oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    478   1.1     oster }
    479   1.1     oster 
    480   1.3     oster void
    481  1.23     oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    482   1.1     oster {
    483   1.3     oster 	int     i;
    484   1.3     oster 	node->dagHdr = newptr;
    485   1.3     oster 	for (i = 0; i < node->numSuccedents; i++)
    486   1.3     oster 		if (node->succedents[i]->dagHdr != newptr)
    487   1.3     oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    488   1.3     oster }
    489   1.1     oster 
    490   1.1     oster 
    491   1.3     oster void
    492   1.3     oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    493   1.3     oster {
    494   1.3     oster 	int     i = 0;
    495   1.3     oster 
    496   1.3     oster 	for (; dag_h; dag_h = dag_h->next) {
    497   1.3     oster 		rf_AssignNodeNums(dag_h);
    498   1.3     oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    499   1.3     oster 		rf_PrintDAG(dag_h);
    500   1.3     oster 	}
    501   1.1     oster }
    502   1.1     oster 
    503   1.3     oster static int
    504  1.23     oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    505  1.23     oster 		  RF_DagNode_t **nodes, int unvisited)
    506   1.3     oster {
    507   1.3     oster 	int     i, retcode = 0;
    508   1.3     oster 
    509   1.3     oster 	/* construct an array of node pointers indexed by node num */
    510   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    511   1.3     oster 	nodes[node->nodeNum] = node;
    512   1.3     oster 
    513   1.3     oster 	if (node->next != NULL) {
    514   1.3     oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    515   1.3     oster 		retcode = 1;
    516   1.3     oster 	}
    517   1.3     oster 	if (node->status != rf_wait) {
    518   1.3     oster 		printf("INVALID DAG: Node status is not wait\n");
    519   1.3     oster 		retcode = 1;
    520   1.3     oster 	}
    521   1.3     oster 	if (node->numAntDone != 0) {
    522   1.3     oster 		printf("INVALID DAG: numAntDone is not zero\n");
    523   1.3     oster 		retcode = 1;
    524   1.3     oster 	}
    525   1.3     oster 	if (node->doFunc == rf_TerminateFunc) {
    526   1.3     oster 		if (node->numSuccedents != 0) {
    527   1.3     oster 			printf("INVALID DAG: Terminator node has succedents\n");
    528   1.3     oster 			retcode = 1;
    529   1.3     oster 		}
    530   1.3     oster 	} else {
    531   1.3     oster 		if (node->numSuccedents == 0) {
    532   1.3     oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    533   1.3     oster 			retcode = 1;
    534   1.3     oster 		}
    535   1.3     oster 	}
    536   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    537   1.3     oster 		if (!node->succedents[i]) {
    538   1.3     oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    539   1.3     oster 			retcode = 1;
    540   1.3     oster 		}
    541   1.3     oster 		scount[node->succedents[i]->nodeNum]++;
    542   1.3     oster 	}
    543   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    544   1.3     oster 		if (!node->antecedents[i]) {
    545   1.3     oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    546   1.3     oster 			retcode = 1;
    547   1.3     oster 		}
    548   1.3     oster 		acount[node->antecedents[i]->nodeNum]++;
    549   1.3     oster 	}
    550   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    551   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    552   1.3     oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    553   1.3     oster 				acount, nodes, unvisited)) {
    554   1.3     oster 				retcode = 1;
    555   1.3     oster 			}
    556   1.3     oster 		}
    557   1.3     oster 	}
    558   1.3     oster 	return (retcode);
    559   1.3     oster }
    560   1.3     oster 
    561   1.3     oster static void
    562  1.23     oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    563   1.3     oster {
    564   1.3     oster 	int     i;
    565   1.3     oster 
    566   1.3     oster 	RF_ASSERT(node->visited == unvisited);
    567   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    568   1.3     oster 		if (node->succedents[i] == NULL) {
    569   1.3     oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    570   1.3     oster 			RF_ASSERT(0);
    571   1.3     oster 		}
    572   1.3     oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    573   1.3     oster 	}
    574   1.3     oster }
    575   1.3     oster /* NOTE:  never call this on a big dag, because it is exponential
    576   1.3     oster  * in execution time
    577   1.3     oster  */
    578   1.3     oster static void
    579  1.23     oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    580   1.3     oster {
    581   1.3     oster 	int     i, unvisited;
    582   1.3     oster 
    583   1.3     oster 	unvisited = dag->succedents[0]->visited;
    584   1.3     oster 
    585   1.3     oster 	for (i = 0; i < dag->numSuccedents; i++) {
    586   1.3     oster 		if (dag->succedents[i] == NULL) {
    587   1.3     oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    588   1.3     oster 			RF_ASSERT(0);
    589   1.3     oster 		}
    590   1.3     oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    591   1.3     oster 	}
    592   1.3     oster }
    593   1.1     oster /* validate a DAG.  _at entry_ verify that:
    594   1.1     oster  *   -- numNodesCompleted is zero
    595   1.1     oster  *   -- node queue is null
    596   1.1     oster  *   -- dag status is rf_enable
    597   1.1     oster  *   -- next pointer is null on every node
    598   1.1     oster  *   -- all nodes have status wait
    599   1.1     oster  *   -- numAntDone is zero in all nodes
    600   1.1     oster  *   -- terminator node has zero successors
    601   1.1     oster  *   -- no other node besides terminator has zero successors
    602   1.1     oster  *   -- no successor or antecedent pointer in a node is NULL
    603   1.1     oster  *   -- number of times that each node appears as a successor of another node
    604   1.1     oster  *      is equal to the antecedent count on that node
    605   1.1     oster  *   -- number of times that each node appears as an antecedent of another node
    606   1.1     oster  *      is equal to the succedent count on that node
    607   1.1     oster  *   -- what else?
    608   1.1     oster  */
    609   1.3     oster int
    610  1.23     oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
    611   1.3     oster {
    612   1.3     oster 	int     i, nodecount;
    613   1.3     oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    614   1.3     oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    615   1.3     oster 	int     retcode = 0;
    616   1.3     oster 	int     unvisited;
    617   1.3     oster 	int     commitNodeCount = 0;
    618   1.3     oster 
    619   1.3     oster 	if (rf_validateVisitedDebug)
    620   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    621   1.3     oster 
    622   1.3     oster 	if (dag_h->numNodesCompleted != 0) {
    623   1.3     oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    624   1.3     oster 		retcode = 1;
    625   1.3     oster 		goto validate_dag_bad;
    626   1.3     oster 	}
    627   1.3     oster 	if (dag_h->status != rf_enable) {
    628   1.3     oster 		printf("INVALID DAG: not enabled\n");
    629   1.3     oster 		retcode = 1;
    630   1.3     oster 		goto validate_dag_bad;
    631   1.3     oster 	}
    632   1.3     oster 	if (dag_h->numCommits != 0) {
    633   1.3     oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    634   1.3     oster 		retcode = 1;
    635   1.3     oster 		goto validate_dag_bad;
    636   1.3     oster 	}
    637   1.3     oster 	if (dag_h->numSuccedents != 1) {
    638   1.3     oster 		/* currently, all dags must have only one succedent */
    639   1.3     oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    640   1.3     oster 		retcode = 1;
    641   1.3     oster 		goto validate_dag_bad;
    642   1.3     oster 	}
    643   1.3     oster 	nodecount = rf_AssignNodeNums(dag_h);
    644   1.3     oster 
    645   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    646   1.3     oster 
    647  1.22     oster 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    648  1.22     oster 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    649  1.22     oster 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    650  1.22     oster 		  (RF_DagNode_t **));
    651   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    652   1.3     oster 		if ((dag_h->succedents[i]->visited == unvisited)
    653   1.3     oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    654   1.3     oster 			acount, nodes, unvisited)) {
    655   1.3     oster 			retcode = 1;
    656   1.3     oster 		}
    657   1.3     oster 	}
    658   1.3     oster 	/* start at 1 to skip the header node */
    659   1.3     oster 	for (i = 1; i < nodecount; i++) {
    660   1.3     oster 		if (nodes[i]->commitNode)
    661   1.3     oster 			commitNodeCount++;
    662   1.3     oster 		if (nodes[i]->doFunc == NULL) {
    663   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    664   1.3     oster 			retcode = 1;
    665   1.3     oster 			goto validate_dag_out;
    666   1.3     oster 		}
    667   1.3     oster 		if (nodes[i]->undoFunc == NULL) {
    668   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    669   1.3     oster 			retcode = 1;
    670   1.3     oster 			goto validate_dag_out;
    671   1.3     oster 		}
    672   1.3     oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    673   1.3     oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    674   1.3     oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    675   1.3     oster 			retcode = 1;
    676   1.3     oster 			goto validate_dag_out;
    677   1.3     oster 		}
    678   1.3     oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    679   1.3     oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    680   1.3     oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    681   1.3     oster 			retcode = 1;
    682   1.3     oster 			goto validate_dag_out;
    683   1.3     oster 		}
    684   1.3     oster 	}
    685   1.1     oster 
    686   1.3     oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    687   1.3     oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    688   1.3     oster 		    dag_h->numCommitNodes, commitNodeCount);
    689   1.3     oster 		retcode = 1;
    690   1.3     oster 		goto validate_dag_out;
    691   1.3     oster 	}
    692   1.1     oster validate_dag_out:
    693   1.3     oster 	RF_Free(scount, nodecount * sizeof(int));
    694   1.3     oster 	RF_Free(acount, nodecount * sizeof(int));
    695   1.3     oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    696   1.3     oster 	if (retcode)
    697   1.3     oster 		rf_PrintDAGList(dag_h);
    698   1.3     oster 
    699   1.3     oster 	if (rf_validateVisitedDebug)
    700   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    701   1.3     oster 
    702   1.3     oster 	return (retcode);
    703   1.1     oster 
    704   1.1     oster validate_dag_bad:
    705   1.3     oster 	rf_PrintDAGList(dag_h);
    706   1.3     oster 	return (retcode);
    707   1.1     oster }
    708   1.1     oster 
    709  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
    710   1.1     oster 
    711   1.1     oster /******************************************************************************
    712   1.1     oster  *
    713   1.1     oster  * misc construction routines
    714   1.1     oster  *
    715   1.1     oster  *****************************************************************************/
    716   1.1     oster 
    717   1.3     oster void
    718  1.23     oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    719   1.3     oster {
    720   1.3     oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    721  1.21     oster 	int     fcol = raidPtr->reconControl->fcol;
    722  1.21     oster 	int     scol = raidPtr->reconControl->spareCol;
    723   1.3     oster 	RF_PhysDiskAddr_t *pda;
    724   1.3     oster 
    725  1.21     oster 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    726   1.3     oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    727   1.3     oster 		if (pda->col == fcol) {
    728  1.31     oster #if RF_DEBUG_DAG
    729   1.3     oster 			if (rf_dagDebug) {
    730  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    731   1.3     oster 					pda->startSector)) {
    732   1.3     oster 					RF_PANIC();
    733   1.3     oster 				}
    734   1.3     oster 			}
    735  1.31     oster #endif
    736   1.3     oster 			/* printf("Remapped data for large write\n"); */
    737   1.3     oster 			if (ds) {
    738   1.3     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    739  1.21     oster 				    &pda->col, &pda->startSector, RF_REMAP);
    740   1.3     oster 			} else {
    741   1.3     oster 				pda->col = scol;
    742   1.3     oster 			}
    743   1.3     oster 		}
    744   1.3     oster 	}
    745   1.3     oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    746   1.3     oster 		if (pda->col == fcol) {
    747  1.31     oster #if RF_DEBUG_DAG
    748   1.3     oster 			if (rf_dagDebug) {
    749  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    750   1.3     oster 					RF_PANIC();
    751   1.3     oster 				}
    752   1.3     oster 			}
    753  1.31     oster #endif
    754   1.3     oster 		}
    755   1.3     oster 		if (ds) {
    756  1.21     oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    757   1.3     oster 		} else {
    758   1.3     oster 			pda->col = scol;
    759   1.3     oster 		}
    760   1.3     oster 	}
    761   1.1     oster }
    762   1.1     oster 
    763   1.1     oster 
    764   1.1     oster /* this routine allocates read buffers and generates stripe maps for the
    765   1.1     oster  * regions of the array from the start of the stripe to the start of the
    766   1.1     oster  * access, and from the end of the access to the end of the stripe.  It also
    767   1.1     oster  * computes and returns the number of DAG nodes needed to read all this data.
    768   1.1     oster  * Note that this routine does the wrong thing if the access is fully
    769   1.1     oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    770   1.1     oster  * start.
    771  1.23     oster  *
    772  1.23     oster  * layoutPtr - in: layout information
    773  1.23     oster  * asmap     - in: access stripe map
    774  1.23     oster  * dag_h     - in: header of the dag to create
    775  1.23     oster  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    776  1.23     oster  * nRodNodes - out: num nodes to be generated to read unaccessed data
    777  1.23     oster  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    778   1.1     oster  */
    779   1.3     oster void
    780  1.23     oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    781  1.23     oster 				RF_RaidLayout_t *layoutPtr,
    782  1.23     oster 				RF_AccessStripeMap_t *asmap,
    783  1.23     oster 				RF_DagHeader_t *dag_h,
    784  1.23     oster 				RF_AccessStripeMapHeader_t **new_asm_h,
    785  1.23     oster 				int *nRodNodes,
    786  1.23     oster 				char **sosBuffer, char **eosBuffer,
    787  1.23     oster 				RF_AllocListElem_t *allocList)
    788   1.3     oster {
    789   1.3     oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    790   1.3     oster 	RF_SectorNum_t sosNumSector, eosNumSector;
    791   1.3     oster 
    792   1.3     oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    793   1.3     oster 	/* generate an access map for the region of the array from start of
    794   1.3     oster 	 * stripe to start of access */
    795   1.3     oster 	new_asm_h[0] = new_asm_h[1] = NULL;
    796   1.3     oster 	*nRodNodes = 0;
    797   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    798   1.3     oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    799   1.3     oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    800   1.3     oster 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    801   1.3     oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    802   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
    803   1.3     oster 		dag_h->asmList = new_asm_h[0];
    804   1.3     oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    805   1.3     oster 
    806   1.3     oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    807   1.3     oster 		/* we're totally within one stripe here */
    808   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    809   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    810   1.3     oster 	}
    811   1.3     oster 	/* generate an access map for the region of the array from end of
    812   1.3     oster 	 * access to end of stripe */
    813   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    814   1.3     oster 		eosRaidAddress = asmap->endRaidAddress;
    815   1.3     oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    816   1.3     oster 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    817   1.3     oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    818   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
    819   1.3     oster 		dag_h->asmList = new_asm_h[1];
    820   1.3     oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    821   1.3     oster 
    822   1.3     oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    823   1.3     oster 		/* we're totally within one stripe here */
    824   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    825   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    826   1.3     oster 	}
    827   1.1     oster }
    828   1.1     oster 
    829   1.1     oster 
    830   1.1     oster 
    831   1.1     oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    832   1.3     oster int
    833  1.23     oster rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
    834  1.23     oster 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
    835   1.3     oster {
    836   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    837   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    838   1.3     oster 	/* use -1 to be sure we stay within SU */
    839   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    840   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    841   1.3     oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    842   1.1     oster }
    843   1.1     oster 
    844   1.1     oster 
    845   1.1     oster /* GenerateFailedAccessASMs
    846   1.1     oster  *
    847   1.1     oster  * this routine figures out what portion of the stripe needs to be read
    848   1.1     oster  * to effect the degraded read or write operation.  It's primary function
    849   1.1     oster  * is to identify everything required to recover the data, and then
    850   1.1     oster  * eliminate anything that is already being accessed by the user.
    851   1.1     oster  *
    852   1.1     oster  * The main result is two new ASMs, one for the region from the start of the
    853   1.1     oster  * stripe to the start of the access, and one for the region from the end of
    854   1.1     oster  * the access to the end of the stripe.  These ASMs describe everything that
    855   1.1     oster  * needs to be read to effect the degraded access.  Other results are:
    856   1.1     oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
    857   1.1     oster  *                recover the lost data,
    858   1.1     oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    859   1.1     oster  *                at entry, not allocated.
    860   1.1     oster  *    overlappingPDAs --
    861   1.1     oster  *                describes which of the non-failed PDAs in the user access
    862   1.1     oster  *                overlap data that needs to be read to effect recovery.
    863   1.1     oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    864   1.1     oster  *                PDA, the ith pda in the input asm overlaps data that needs
    865   1.1     oster  *                to be read for recovery.
    866   1.1     oster  */
    867   1.1     oster  /* in: asm - ASM for the actual access, one stripe only */
    868  1.10       wiz  /* in: failedPDA - which component of the access has failed */
    869   1.1     oster  /* in: dag_h - header of the DAG we're going to create */
    870   1.1     oster  /* out: new_asm_h - the two new ASMs */
    871   1.1     oster  /* out: nXorBufs - the total number of xor bufs required */
    872   1.1     oster  /* out: rpBufPtr - a buffer for the parity read */
    873   1.3     oster void
    874  1.23     oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    875  1.23     oster 			    RF_PhysDiskAddr_t *failedPDA,
    876  1.23     oster 			    RF_DagHeader_t *dag_h,
    877  1.23     oster 			    RF_AccessStripeMapHeader_t **new_asm_h,
    878  1.23     oster 			    int *nXorBufs, char **rpBufPtr,
    879  1.23     oster 			    char *overlappingPDAs,
    880  1.23     oster 			    RF_AllocListElem_t *allocList)
    881   1.3     oster {
    882   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    883   1.3     oster 
    884   1.3     oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    885   1.3     oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    886   1.3     oster 	RF_PhysDiskAddr_t *pda;
    887   1.3     oster 	int     foundit, i;
    888   1.3     oster 
    889   1.3     oster 	foundit = 0;
    890   1.3     oster 	/* first compute the following raid addresses: start of stripe,
    891   1.3     oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    892   1.3     oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    893   1.3     oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    894   1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    895   1.3     oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    896   1.3     oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    897   1.3     oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    898   1.3     oster 
    899   1.3     oster 	/* now generate access stripe maps for each of the above regions of
    900   1.3     oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    901   1.3     oster 
    902   1.3     oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    903   1.3     oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    904   1.3     oster 
    905   1.3     oster 	/* walk through the PDAs and range-restrict each SU to the region of
    906   1.3     oster 	 * the SU touched on the failed PDA.  also compute total data buffer
    907   1.3     oster 	 * space requirements in this step.  Ignore the parity for now. */
    908  1.35     oster 	/* Also count nodes to find out how many bufs need to be xored together */
    909  1.35     oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    910  1.35     oster 				 * case, 1 is for failed data */
    911   1.3     oster 
    912   1.3     oster 	if (new_asm_h[0]) {
    913   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
    914   1.3     oster 		dag_h->asmList = new_asm_h[0];
    915   1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    916   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    917  1.35     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
    918   1.3     oster 		}
    919  1.35     oster 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    920   1.3     oster 	}
    921   1.3     oster 	if (new_asm_h[1]) {
    922   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
    923   1.3     oster 		dag_h->asmList = new_asm_h[1];
    924   1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    925   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    926  1.35     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
    927   1.3     oster 		}
    928   1.3     oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    929   1.3     oster 	}
    930  1.35     oster 
    931  1.35     oster 	/* allocate a buffer for parity */
    932  1.35     oster 	if (rpBufPtr)
    933  1.35     oster 		*rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
    934   1.3     oster 
    935   1.3     oster 	/* the last step is to figure out how many more distinct buffers need
    936   1.3     oster 	 * to get xor'd to produce the missing unit.  there's one for each
    937   1.3     oster 	 * user-data read node that overlaps the portion of the failed unit
    938   1.3     oster 	 * being accessed */
    939   1.3     oster 
    940   1.3     oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
    941   1.3     oster 		if (pda == failedPDA) {
    942   1.3     oster 			i--;
    943   1.3     oster 			foundit = 1;
    944   1.3     oster 			continue;
    945   1.3     oster 		}
    946   1.3     oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
    947   1.3     oster 			overlappingPDAs[i] = 1;
    948   1.3     oster 			(*nXorBufs)++;
    949   1.3     oster 		}
    950   1.3     oster 	}
    951   1.3     oster 	if (!foundit) {
    952   1.3     oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
    953   1.3     oster 		RF_ASSERT(0);
    954   1.3     oster 	}
    955  1.31     oster #if RF_DEBUG_DAG
    956   1.3     oster 	if (rf_degDagDebug) {
    957   1.3     oster 		if (new_asm_h[0]) {
    958   1.3     oster 			printf("First asm:\n");
    959   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
    960   1.3     oster 		}
    961   1.3     oster 		if (new_asm_h[1]) {
    962   1.3     oster 			printf("Second asm:\n");
    963   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
    964   1.3     oster 		}
    965   1.3     oster 	}
    966  1.31     oster #endif
    967   1.1     oster }
    968   1.1     oster 
    969   1.1     oster 
    970   1.1     oster /* adjusts the offset and number of sectors in the destination pda so that
    971   1.1     oster  * it covers at most the region of the SU covered by the source PDA.  This
    972   1.1     oster  * is exclusively a restriction:  the number of sectors indicated by the
    973   1.1     oster  * target PDA can only shrink.
    974   1.1     oster  *
    975   1.1     oster  * For example:  s = sectors within SU indicated by source PDA
    976   1.1     oster  *               d = sectors within SU indicated by dest PDA
    977   1.1     oster  *               r = results, stored in dest PDA
    978   1.1     oster  *
    979   1.1     oster  * |--------------- one stripe unit ---------------------|
    980   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
    981   1.1     oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
    982   1.1     oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
    983   1.1     oster  *
    984   1.1     oster  * Another example:
    985   1.1     oster  *
    986   1.1     oster  * |--------------- one stripe unit ---------------------|
    987   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
    988   1.1     oster  * |    ddddddddddddddddddddddd                          |
    989   1.1     oster  * |           rrrrrrrrrrrrrrrr                          |
    990   1.1     oster  *
    991   1.1     oster  */
    992   1.3     oster void
    993  1.23     oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
    994  1.23     oster 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
    995   1.3     oster {
    996   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    997   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    998   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    999   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1000   1.3     oster 													 * stay within SU */
   1001   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1002   1.3     oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1003   1.3     oster 
   1004   1.3     oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1005   1.3     oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1006   1.3     oster 
   1007   1.3     oster 	if (dobuffer)
   1008   1.3     oster 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1009   1.3     oster 	if (doraidaddr) {
   1010   1.3     oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1011   1.3     oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1012   1.3     oster 	}
   1013   1.1     oster }
   1014  1.11     oster 
   1015  1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1016  1.11     oster 
   1017   1.1     oster /*
   1018   1.1     oster  * Want the highest of these primes to be the largest one
   1019   1.1     oster  * less than the max expected number of columns (won't hurt
   1020   1.1     oster  * to be too small or too large, but won't be optimal, either)
   1021   1.1     oster  * --jimz
   1022   1.1     oster  */
   1023   1.1     oster #define NLOWPRIMES 8
   1024   1.3     oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1025   1.1     oster /*****************************************************************************
   1026   1.1     oster  * compute the workload shift factor.  (chained declustering)
   1027   1.1     oster  *
   1028   1.1     oster  * return nonzero if access should shift to secondary, otherwise,
   1029   1.1     oster  * access is to primary
   1030   1.1     oster  *****************************************************************************/
   1031   1.3     oster int
   1032  1.23     oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1033   1.3     oster {
   1034   1.3     oster 	/*
   1035   1.3     oster          * variables:
   1036   1.3     oster          *  d   = column of disk containing primary
   1037   1.3     oster          *  f   = column of failed disk
   1038   1.3     oster          *  n   = number of disks in array
   1039   1.3     oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1040   1.3     oster          *  v   = numerator of redirection ratio
   1041   1.3     oster          *  k   = denominator of redirection ratio
   1042   1.3     oster          */
   1043  1.21     oster 	RF_RowCol_t d, f, sd, n;
   1044   1.3     oster 	int     k, v, ret, i;
   1045   1.3     oster 
   1046   1.3     oster 	n = raidPtr->numCol;
   1047   1.3     oster 
   1048   1.3     oster 	/* assign column of primary copy to d */
   1049   1.3     oster 	d = pda->col;
   1050   1.3     oster 
   1051   1.3     oster 	/* assign column of dead disk to f */
   1052  1.21     oster 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1053   1.3     oster 
   1054   1.3     oster 	RF_ASSERT(f < n);
   1055   1.3     oster 	RF_ASSERT(f != d);
   1056   1.3     oster 
   1057   1.3     oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1058   1.3     oster 	RF_ASSERT(sd < n);
   1059   1.3     oster 
   1060   1.3     oster 	/*
   1061   1.3     oster          * v of every k accesses should be redirected
   1062   1.3     oster          *
   1063   1.3     oster          * v/k := (n-1-sd)/(n-1)
   1064   1.3     oster          */
   1065   1.3     oster 	v = (n - 1 - sd);
   1066   1.3     oster 	k = (n - 1);
   1067   1.1     oster 
   1068   1.1     oster #if 1
   1069   1.3     oster 	/*
   1070   1.3     oster          * XXX
   1071   1.3     oster          * Is this worth it?
   1072   1.3     oster          *
   1073   1.3     oster          * Now reduce the fraction, by repeatedly factoring
   1074   1.3     oster          * out primes (just like they teach in elementary school!)
   1075   1.3     oster          */
   1076   1.3     oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1077   1.3     oster 		if (lowprimes[i] > v)
   1078   1.3     oster 			break;
   1079   1.3     oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1080   1.3     oster 			v /= lowprimes[i];
   1081   1.3     oster 			k /= lowprimes[i];
   1082   1.3     oster 		}
   1083   1.3     oster 	}
   1084   1.1     oster #endif
   1085   1.1     oster 
   1086  1.21     oster 	raidPtr->hist_diskreq[d]++;
   1087  1.21     oster 	if (raidPtr->hist_diskreq[d] > v) {
   1088   1.3     oster 		ret = 0;	/* do not redirect */
   1089   1.3     oster 	} else {
   1090   1.3     oster 		ret = 1;	/* redirect */
   1091   1.3     oster 	}
   1092   1.1     oster 
   1093   1.1     oster #if 0
   1094   1.3     oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1095  1.21     oster 	    raidPtr->hist_diskreq[d]);
   1096   1.1     oster #endif
   1097   1.1     oster 
   1098  1.21     oster 	if (raidPtr->hist_diskreq[d] >= k) {
   1099   1.3     oster 		/* reset counter */
   1100  1.21     oster 		raidPtr->hist_diskreq[d] = 0;
   1101   1.3     oster 	}
   1102   1.3     oster 	return (ret);
   1103   1.1     oster }
   1104  1.11     oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1105  1.11     oster 
   1106   1.1     oster /*
   1107   1.1     oster  * Disk selection routines
   1108   1.1     oster  */
   1109   1.1     oster 
   1110   1.1     oster /*
   1111   1.1     oster  * Selects the disk with the shortest queue from a mirror pair.
   1112   1.1     oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1113   1.1     oster  * disk are counted as members of the "queue"
   1114   1.1     oster  */
   1115   1.3     oster void
   1116   1.3     oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1117   1.1     oster {
   1118   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1119  1.21     oster 	RF_RowCol_t colData, colMirror;
   1120   1.3     oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1121   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1122   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1123   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1124  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1125  1.21     oster 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1126   1.3     oster 
   1127   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1128   1.3     oster 	colData = data_pda->col;
   1129   1.3     oster 	colMirror = mirror_pda->col;
   1130  1.21     oster 	dataQueue = &(dqs[colData]);
   1131  1.21     oster 	mirrorQueue = &(dqs[colMirror]);
   1132   1.1     oster 
   1133   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1134   1.3     oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1135   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1136   1.3     oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1137   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1138   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1139   1.3     oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1140   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1141   1.3     oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1142   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1143   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1144   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1145   1.1     oster 
   1146   1.3     oster 	usemirror = 0;
   1147  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1148   1.3     oster 		usemirror = 0;
   1149   1.3     oster 	} else
   1150  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1151   1.3     oster 			usemirror = 1;
   1152   1.3     oster 		} else
   1153   1.5     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1154   1.5     oster 				/* Trust only the main disk */
   1155   1.3     oster 				usemirror = 0;
   1156   1.3     oster 			} else
   1157   1.5     oster 				if (dataQueueLength < mirrorQueueLength) {
   1158   1.5     oster 					usemirror = 0;
   1159   1.5     oster 				} else
   1160   1.5     oster 					if (mirrorQueueLength < dataQueueLength) {
   1161   1.5     oster 						usemirror = 1;
   1162   1.3     oster 					} else {
   1163   1.5     oster 						/* queues are equal length. attempt
   1164   1.5     oster 						 * cleverness. */
   1165   1.5     oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1166   1.5     oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1167   1.5     oster 							usemirror = 0;
   1168   1.5     oster 						} else {
   1169   1.5     oster 							usemirror = 1;
   1170   1.5     oster 						}
   1171   1.3     oster 					}
   1172   1.3     oster 
   1173   1.3     oster 	if (usemirror) {
   1174   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1175   1.3     oster 		tmp_pda = data_pda;
   1176   1.3     oster 		node->params[0].p = mirror_pda;
   1177   1.3     oster 		node->params[4].p = tmp_pda;
   1178   1.3     oster 	} else {
   1179   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1180   1.3     oster 	}
   1181   1.3     oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1182   1.3     oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1183   1.1     oster }
   1184  1.19     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1185   1.1     oster /*
   1186   1.1     oster  * Do simple partitioning. This assumes that
   1187   1.1     oster  * the data and parity disks are laid out identically.
   1188   1.1     oster  */
   1189   1.3     oster void
   1190   1.3     oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1191   1.1     oster {
   1192   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1193  1.21     oster 	RF_RowCol_t colData, colMirror;
   1194   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1195   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1196   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1197  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1198   1.3     oster 	int     usemirror;
   1199   1.3     oster 
   1200   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1201   1.3     oster 	colData = data_pda->col;
   1202   1.3     oster 	colMirror = mirror_pda->col;
   1203   1.3     oster 
   1204   1.3     oster 	usemirror = 0;
   1205  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1206   1.3     oster 		usemirror = 0;
   1207   1.3     oster 	} else
   1208  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1209   1.3     oster 			usemirror = 1;
   1210   1.6     oster 		} else
   1211   1.6     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1212   1.6     oster 				/* Trust only the main disk */
   1213   1.3     oster 				usemirror = 0;
   1214   1.6     oster 			} else
   1215   1.6     oster 				if (data_pda->startSector <
   1216  1.21     oster 				    (disks[colData].numBlocks / 2)) {
   1217   1.6     oster 					usemirror = 0;
   1218   1.6     oster 				} else {
   1219   1.6     oster 					usemirror = 1;
   1220   1.6     oster 				}
   1221   1.3     oster 
   1222   1.3     oster 	if (usemirror) {
   1223   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1224   1.3     oster 		tmp_pda = data_pda;
   1225   1.3     oster 		node->params[0].p = mirror_pda;
   1226   1.3     oster 		node->params[4].p = tmp_pda;
   1227   1.3     oster 	} else {
   1228   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1229   1.3     oster 	}
   1230   1.1     oster }
   1231  1.19     oster #endif
   1232