rf_dagutils.c revision 1.40 1 1.40 oster /* $NetBSD: rf_dagutils.c,v 1.40 2004/03/19 17:01:26 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_dagutils.c -- utility routines for manipulating dags
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.40 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.40 2004/03/19 17:01:26 oster Exp $");
37 1.1 oster
38 1.8 oster #include <dev/raidframe/raidframevar.h>
39 1.8 oster
40 1.1 oster #include "rf_archs.h"
41 1.1 oster #include "rf_threadstuff.h"
42 1.1 oster #include "rf_raid.h"
43 1.1 oster #include "rf_dag.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_shutdown.h"
49 1.1 oster
50 1.1 oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 1.1 oster
52 1.20 jdolecek const RF_RedFuncs_t rf_xorFuncs = {
53 1.1 oster rf_RegularXorFunc, "Reg Xr",
54 1.32 oster rf_SimpleXorFunc, "Simple Xr"};
55 1.1 oster
56 1.20 jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 1.1 oster rf_RecoveryXorFunc, "Recovery Xr",
58 1.32 oster rf_RecoveryXorFunc, "Recovery Xr"};
59 1.1 oster
60 1.13 oster #if RF_DEBUG_VALIDATE_DAG
61 1.1 oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 1.1 oster static void rf_PrintDAG(RF_DagHeader_t *);
63 1.12 oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 1.12 oster RF_DagNode_t **, int);
65 1.1 oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 1.1 oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
68 1.1 oster
69 1.40 oster
70 1.40 oster /* The maximum number of nodes in a DAG is bounded by
71 1.40 oster
72 1.40 oster (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
73 1.40 oster (1 * 2 * layoutPtr->numParityCol) + 3
74 1.40 oster
75 1.40 oster which is: 2*RF_MAXCOL+1*2+1*2*2+3
76 1.40 oster
77 1.40 oster For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
78 1.40 oster on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
79 1.40 oster would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
80 1.40 oster have a few kicking around.
81 1.40 oster */
82 1.40 oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
83 1.40 oster
84 1.40 oster
85 1.1 oster /******************************************************************************
86 1.1 oster *
87 1.1 oster * InitNode - initialize a dag node
88 1.1 oster *
89 1.1 oster * the size of the propList array is always the same as that of the
90 1.1 oster * successors array.
91 1.1 oster *
92 1.1 oster *****************************************************************************/
93 1.40 oster void
94 1.23 oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
95 1.23 oster int (*doFunc) (RF_DagNode_t *node),
96 1.23 oster int (*undoFunc) (RF_DagNode_t *node),
97 1.23 oster int (*wakeFunc) (RF_DagNode_t *node, int status),
98 1.23 oster int nSucc, int nAnte, int nParam, int nResult,
99 1.23 oster RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
100 1.3 oster {
101 1.3 oster void **ptrs;
102 1.3 oster int nptrs;
103 1.3 oster
104 1.3 oster if (nAnte > RF_MAX_ANTECEDENTS)
105 1.3 oster RF_PANIC();
106 1.3 oster node->status = initstatus;
107 1.3 oster node->commitNode = commit;
108 1.3 oster node->doFunc = doFunc;
109 1.3 oster node->undoFunc = undoFunc;
110 1.3 oster node->wakeFunc = wakeFunc;
111 1.3 oster node->numParams = nParam;
112 1.3 oster node->numResults = nResult;
113 1.3 oster node->numAntecedents = nAnte;
114 1.3 oster node->numAntDone = 0;
115 1.3 oster node->next = NULL;
116 1.38 oster /* node->list_next = NULL */ /* Don't touch this here!
117 1.38 oster It may already be
118 1.38 oster in use by the caller! */
119 1.3 oster node->numSuccedents = nSucc;
120 1.3 oster node->name = name;
121 1.3 oster node->dagHdr = hdr;
122 1.40 oster node->big_dag_ptrs = NULL;
123 1.40 oster node->big_dag_params = NULL;
124 1.3 oster node->visited = 0;
125 1.3 oster
126 1.3 oster /* allocate all the pointers with one call to malloc */
127 1.3 oster nptrs = nSucc + nAnte + nResult + nSucc;
128 1.3 oster
129 1.3 oster if (nptrs <= RF_DAG_PTRCACHESIZE) {
130 1.3 oster /*
131 1.3 oster * The dag_ptrs field of the node is basically some scribble
132 1.3 oster * space to be used here. We could get rid of it, and always
133 1.3 oster * allocate the range of pointers, but that's expensive. So,
134 1.3 oster * we pick a "common case" size for the pointer cache. Hopefully,
135 1.3 oster * we'll find that:
136 1.3 oster * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
137 1.3 oster * only a little bit (least efficient case)
138 1.3 oster * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
139 1.3 oster * (wasted memory)
140 1.3 oster */
141 1.3 oster ptrs = (void **) node->dag_ptrs;
142 1.40 oster } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
143 1.40 oster node->big_dag_ptrs = rf_AllocDAGPCache();
144 1.40 oster ptrs = (void **) node->big_dag_ptrs;
145 1.3 oster } else {
146 1.22 oster RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
147 1.22 oster (void **), alist);
148 1.3 oster }
149 1.3 oster node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
150 1.3 oster node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
151 1.3 oster node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
152 1.3 oster node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
153 1.3 oster
154 1.3 oster if (nParam) {
155 1.3 oster if (nParam <= RF_DAG_PARAMCACHESIZE) {
156 1.3 oster node->params = (RF_DagParam_t *) node->dag_params;
157 1.40 oster } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
158 1.40 oster node->big_dag_params = rf_AllocDAGPCache();
159 1.40 oster node->params = node->big_dag_params;
160 1.3 oster } else {
161 1.22 oster RF_MallocAndAdd(node->params,
162 1.22 oster nParam * sizeof(RF_DagParam_t),
163 1.22 oster (RF_DagParam_t *), alist);
164 1.3 oster }
165 1.3 oster } else {
166 1.3 oster node->params = NULL;
167 1.3 oster }
168 1.1 oster }
169 1.1 oster
170 1.1 oster
171 1.1 oster
172 1.1 oster /******************************************************************************
173 1.1 oster *
174 1.1 oster * allocation and deallocation routines
175 1.1 oster *
176 1.1 oster *****************************************************************************/
177 1.1 oster
178 1.3 oster void
179 1.23 oster rf_FreeDAG(RF_DagHeader_t *dag_h)
180 1.3 oster {
181 1.3 oster RF_AccessStripeMapHeader_t *asmap, *t_asmap;
182 1.39 oster RF_PhysDiskAddr_t *pda;
183 1.38 oster RF_DagNode_t *tmpnode;
184 1.3 oster RF_DagHeader_t *nextDag;
185 1.3 oster
186 1.3 oster while (dag_h) {
187 1.3 oster nextDag = dag_h->next;
188 1.3 oster rf_FreeAllocList(dag_h->allocList);
189 1.3 oster for (asmap = dag_h->asmList; asmap;) {
190 1.3 oster t_asmap = asmap;
191 1.3 oster asmap = asmap->next;
192 1.3 oster rf_FreeAccessStripeMap(t_asmap);
193 1.3 oster }
194 1.39 oster while (dag_h->pda_cleanup_list) {
195 1.39 oster pda = dag_h->pda_cleanup_list;
196 1.39 oster dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
197 1.39 oster rf_FreePhysDiskAddr(pda);
198 1.39 oster }
199 1.39 oster while (dag_h->nodes) {
200 1.38 oster tmpnode = dag_h->nodes;
201 1.38 oster dag_h->nodes = dag_h->nodes->list_next;
202 1.38 oster rf_FreeDAGNode(tmpnode);
203 1.38 oster }
204 1.3 oster rf_FreeDAGHeader(dag_h);
205 1.3 oster dag_h = nextDag;
206 1.3 oster }
207 1.3 oster }
208 1.3 oster
209 1.1 oster #define RF_MAX_FREE_DAGH 128
210 1.30 oster #define RF_MIN_FREE_DAGH 32
211 1.1 oster
212 1.38 oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
213 1.38 oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
214 1.38 oster
215 1.25 oster #define RF_MAX_FREE_DAGLIST 128
216 1.30 oster #define RF_MIN_FREE_DAGLIST 32
217 1.25 oster
218 1.40 oster #define RF_MAX_FREE_DAGPCACHE 128
219 1.40 oster #define RF_MIN_FREE_DAGPCACHE 8
220 1.40 oster
221 1.27 oster #define RF_MAX_FREE_FUNCLIST 128
222 1.30 oster #define RF_MIN_FREE_FUNCLIST 32
223 1.25 oster
224 1.1 oster static void rf_ShutdownDAGs(void *);
225 1.3 oster static void
226 1.23 oster rf_ShutdownDAGs(void *ignored)
227 1.1 oster {
228 1.36 oster pool_destroy(&rf_pools.dagh);
229 1.38 oster pool_destroy(&rf_pools.dagnode);
230 1.36 oster pool_destroy(&rf_pools.daglist);
231 1.40 oster pool_destroy(&rf_pools.dagpcache);
232 1.36 oster pool_destroy(&rf_pools.funclist);
233 1.1 oster }
234 1.1 oster
235 1.3 oster int
236 1.23 oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
237 1.1 oster {
238 1.1 oster
239 1.38 oster rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
240 1.38 oster "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
241 1.36 oster rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
242 1.36 oster "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
243 1.36 oster rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
244 1.36 oster "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
245 1.40 oster rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
246 1.40 oster "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
247 1.36 oster rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
248 1.36 oster "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
249 1.29 oster rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
250 1.29 oster
251 1.3 oster return (0);
252 1.1 oster }
253 1.1 oster
254 1.3 oster RF_DagHeader_t *
255 1.3 oster rf_AllocDAGHeader()
256 1.1 oster {
257 1.1 oster RF_DagHeader_t *dh;
258 1.1 oster
259 1.36 oster dh = pool_get(&rf_pools.dagh, PR_WAITOK);
260 1.28 oster memset((char *) dh, 0, sizeof(RF_DagHeader_t));
261 1.3 oster return (dh);
262 1.1 oster }
263 1.1 oster
264 1.3 oster void
265 1.3 oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
266 1.1 oster {
267 1.36 oster pool_put(&rf_pools.dagh, dh);
268 1.1 oster }
269 1.25 oster
270 1.38 oster RF_DagNode_t *
271 1.38 oster rf_AllocDAGNode()
272 1.38 oster {
273 1.38 oster RF_DagNode_t *node;
274 1.38 oster
275 1.38 oster node = pool_get(&rf_pools.dagnode, PR_WAITOK);
276 1.38 oster memset(node, 0, sizeof(RF_DagNode_t));
277 1.38 oster return (node);
278 1.38 oster }
279 1.38 oster
280 1.38 oster void
281 1.38 oster rf_FreeDAGNode(RF_DagNode_t *node)
282 1.38 oster {
283 1.40 oster if (node->big_dag_ptrs) {
284 1.40 oster rf_FreeDAGPCache(node->big_dag_ptrs);
285 1.40 oster }
286 1.40 oster if (node->big_dag_params) {
287 1.40 oster rf_FreeDAGPCache(node->big_dag_params);
288 1.40 oster }
289 1.38 oster pool_put(&rf_pools.dagnode, node);
290 1.38 oster }
291 1.38 oster
292 1.25 oster RF_DagList_t *
293 1.25 oster rf_AllocDAGList()
294 1.25 oster {
295 1.25 oster RF_DagList_t *dagList;
296 1.25 oster
297 1.36 oster dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
298 1.25 oster memset(dagList, 0, sizeof(RF_DagList_t));
299 1.25 oster
300 1.25 oster return (dagList);
301 1.25 oster }
302 1.25 oster
303 1.25 oster void
304 1.25 oster rf_FreeDAGList(RF_DagList_t *dagList)
305 1.25 oster {
306 1.36 oster pool_put(&rf_pools.daglist, dagList);
307 1.25 oster }
308 1.25 oster
309 1.40 oster void *
310 1.40 oster rf_AllocDAGPCache()
311 1.40 oster {
312 1.40 oster void *p;
313 1.40 oster p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
314 1.40 oster memset(p, 0, RF_DAGPCACHE_SIZE);
315 1.40 oster
316 1.40 oster return (p);
317 1.40 oster }
318 1.40 oster
319 1.40 oster void
320 1.40 oster rf_FreeDAGPCache(void *p)
321 1.40 oster {
322 1.40 oster pool_put(&rf_pools.dagpcache, p);
323 1.40 oster }
324 1.40 oster
325 1.27 oster RF_FuncList_t *
326 1.27 oster rf_AllocFuncList()
327 1.27 oster {
328 1.27 oster RF_FuncList_t *funcList;
329 1.27 oster
330 1.36 oster funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
331 1.27 oster memset(funcList, 0, sizeof(RF_FuncList_t));
332 1.27 oster
333 1.27 oster return (funcList);
334 1.27 oster }
335 1.27 oster
336 1.27 oster void
337 1.27 oster rf_FreeFuncList(RF_FuncList_t *funcList)
338 1.27 oster {
339 1.36 oster pool_put(&rf_pools.funclist, funcList);
340 1.27 oster }
341 1.25 oster
342 1.25 oster
343 1.25 oster
344 1.1 oster /* allocates a buffer big enough to hold the data described by pda */
345 1.3 oster void *
346 1.33 oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
347 1.33 oster RF_AllocListElem_t *allocList)
348 1.3 oster {
349 1.3 oster char *p;
350 1.3 oster
351 1.3 oster RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
352 1.3 oster (char *), allocList);
353 1.3 oster return ((void *) p);
354 1.1 oster }
355 1.13 oster #if RF_DEBUG_VALIDATE_DAG
356 1.1 oster /******************************************************************************
357 1.1 oster *
358 1.1 oster * debug routines
359 1.1 oster *
360 1.1 oster *****************************************************************************/
361 1.1 oster
362 1.3 oster char *
363 1.23 oster rf_NodeStatusString(RF_DagNode_t *node)
364 1.1 oster {
365 1.3 oster switch (node->status) {
366 1.34 oster case rf_wait:
367 1.34 oster return ("wait");
368 1.3 oster case rf_fired:
369 1.3 oster return ("fired");
370 1.3 oster case rf_good:
371 1.3 oster return ("good");
372 1.3 oster case rf_bad:
373 1.3 oster return ("bad");
374 1.3 oster default:
375 1.3 oster return ("?");
376 1.3 oster }
377 1.3 oster }
378 1.1 oster
379 1.3 oster void
380 1.23 oster rf_PrintNodeInfoString(RF_DagNode_t *node)
381 1.3 oster {
382 1.3 oster RF_PhysDiskAddr_t *pda;
383 1.3 oster int (*df) (RF_DagNode_t *) = node->doFunc;
384 1.3 oster int i, lk, unlk;
385 1.3 oster void *bufPtr;
386 1.3 oster
387 1.3 oster if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
388 1.3 oster || (df == rf_DiskReadMirrorIdleFunc)
389 1.3 oster || (df == rf_DiskReadMirrorPartitionFunc)) {
390 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
391 1.3 oster bufPtr = (void *) node->params[1].p;
392 1.24 oster lk = 0;
393 1.24 oster unlk = 0;
394 1.3 oster RF_ASSERT(!(lk && unlk));
395 1.21 oster printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
396 1.3 oster (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
397 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
398 1.3 oster return;
399 1.3 oster }
400 1.3 oster if (df == rf_DiskUnlockFunc) {
401 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
402 1.24 oster lk = 0;
403 1.24 oster unlk = 0;
404 1.3 oster RF_ASSERT(!(lk && unlk));
405 1.21 oster printf("c %d %s\n", pda->col,
406 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
407 1.3 oster return;
408 1.3 oster }
409 1.3 oster if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
410 1.3 oster || (df == rf_RecoveryXorFunc)) {
411 1.3 oster printf("result buf 0x%lx\n", (long) node->results[0]);
412 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
413 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
414 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
415 1.21 oster printf(" buf 0x%lx c%d offs %ld nsect %d\n",
416 1.21 oster (long) bufPtr, pda->col,
417 1.3 oster (long) pda->startSector, (int) pda->numSector);
418 1.3 oster }
419 1.3 oster return;
420 1.3 oster }
421 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
422 1.3 oster if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
423 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
424 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
425 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
426 1.21 oster printf(" c%d offs %ld nsect %d buf 0x%lx\n",
427 1.21 oster pda->col, (long) pda->startSector,
428 1.3 oster (int) pda->numSector, (long) bufPtr);
429 1.3 oster }
430 1.3 oster return;
431 1.3 oster }
432 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
433 1.3 oster
434 1.3 oster if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
435 1.3 oster printf("\n");
436 1.3 oster return;
437 1.3 oster }
438 1.3 oster printf("?\n");
439 1.3 oster }
440 1.16 oster #ifdef DEBUG
441 1.3 oster static void
442 1.23 oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
443 1.3 oster {
444 1.3 oster char *anttype;
445 1.3 oster int i;
446 1.3 oster
447 1.3 oster node->visited = (unvisited) ? 0 : 1;
448 1.3 oster printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
449 1.3 oster node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
450 1.3 oster node->numSuccedents, node->numSuccFired, node->numSuccDone,
451 1.3 oster node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
452 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
453 1.3 oster printf("%d%s", node->succedents[i]->nodeNum,
454 1.3 oster ((i == node->numSuccedents - 1) ? "\0" : " "));
455 1.3 oster }
456 1.3 oster printf("} A{");
457 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
458 1.3 oster switch (node->antType[i]) {
459 1.3 oster case rf_trueData:
460 1.3 oster anttype = "T";
461 1.3 oster break;
462 1.3 oster case rf_antiData:
463 1.3 oster anttype = "A";
464 1.3 oster break;
465 1.3 oster case rf_outputData:
466 1.3 oster anttype = "O";
467 1.3 oster break;
468 1.3 oster case rf_control:
469 1.3 oster anttype = "C";
470 1.3 oster break;
471 1.3 oster default:
472 1.3 oster anttype = "?";
473 1.3 oster break;
474 1.3 oster }
475 1.3 oster printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
476 1.3 oster }
477 1.3 oster printf("}; ");
478 1.3 oster rf_PrintNodeInfoString(node);
479 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
480 1.3 oster if (node->succedents[i]->visited == unvisited)
481 1.3 oster rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
482 1.3 oster }
483 1.1 oster }
484 1.1 oster
485 1.3 oster static void
486 1.23 oster rf_PrintDAG(RF_DagHeader_t *dag_h)
487 1.3 oster {
488 1.3 oster int unvisited, i;
489 1.3 oster char *status;
490 1.3 oster
491 1.3 oster /* set dag status */
492 1.3 oster switch (dag_h->status) {
493 1.3 oster case rf_enable:
494 1.3 oster status = "enable";
495 1.3 oster break;
496 1.3 oster case rf_rollForward:
497 1.3 oster status = "rollForward";
498 1.3 oster break;
499 1.3 oster case rf_rollBackward:
500 1.3 oster status = "rollBackward";
501 1.3 oster break;
502 1.3 oster default:
503 1.3 oster status = "illegal!";
504 1.3 oster break;
505 1.3 oster }
506 1.3 oster /* find out if visited bits are currently set or clear */
507 1.3 oster unvisited = dag_h->succedents[0]->visited;
508 1.3 oster
509 1.3 oster printf("DAG type: %s\n", dag_h->creator);
510 1.3 oster printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
511 1.3 oster printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
512 1.3 oster status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
513 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
514 1.3 oster printf("%d%s", dag_h->succedents[i]->nodeNum,
515 1.3 oster ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
516 1.3 oster }
517 1.3 oster printf("};\n");
518 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
519 1.3 oster if (dag_h->succedents[i]->visited == unvisited)
520 1.3 oster rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
521 1.3 oster }
522 1.3 oster }
523 1.16 oster #endif
524 1.1 oster /* assigns node numbers */
525 1.3 oster int
526 1.3 oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
527 1.1 oster {
528 1.3 oster int unvisited, i, nnum;
529 1.3 oster RF_DagNode_t *node;
530 1.1 oster
531 1.3 oster nnum = 0;
532 1.3 oster unvisited = dag_h->succedents[0]->visited;
533 1.3 oster
534 1.3 oster dag_h->nodeNum = nnum++;
535 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
536 1.3 oster node = dag_h->succedents[i];
537 1.3 oster if (node->visited == unvisited) {
538 1.3 oster nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
539 1.3 oster }
540 1.3 oster }
541 1.3 oster return (nnum);
542 1.1 oster }
543 1.1 oster
544 1.3 oster int
545 1.23 oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
546 1.3 oster {
547 1.3 oster int i;
548 1.3 oster
549 1.3 oster node->visited = (unvisited) ? 0 : 1;
550 1.3 oster
551 1.3 oster node->nodeNum = num++;
552 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
553 1.3 oster if (node->succedents[i]->visited == unvisited) {
554 1.3 oster num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
555 1.3 oster }
556 1.3 oster }
557 1.3 oster return (num);
558 1.3 oster }
559 1.1 oster /* set the header pointers in each node to "newptr" */
560 1.3 oster void
561 1.23 oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
562 1.3 oster {
563 1.3 oster int i;
564 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++)
565 1.3 oster if (dag_h->succedents[i]->dagHdr != newptr)
566 1.3 oster rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
567 1.1 oster }
568 1.1 oster
569 1.3 oster void
570 1.23 oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
571 1.1 oster {
572 1.3 oster int i;
573 1.3 oster node->dagHdr = newptr;
574 1.3 oster for (i = 0; i < node->numSuccedents; i++)
575 1.3 oster if (node->succedents[i]->dagHdr != newptr)
576 1.3 oster rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
577 1.3 oster }
578 1.1 oster
579 1.1 oster
580 1.3 oster void
581 1.3 oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
582 1.3 oster {
583 1.3 oster int i = 0;
584 1.3 oster
585 1.3 oster for (; dag_h; dag_h = dag_h->next) {
586 1.3 oster rf_AssignNodeNums(dag_h);
587 1.3 oster printf("\n\nDAG %d IN LIST:\n", i++);
588 1.3 oster rf_PrintDAG(dag_h);
589 1.3 oster }
590 1.1 oster }
591 1.1 oster
592 1.3 oster static int
593 1.23 oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
594 1.23 oster RF_DagNode_t **nodes, int unvisited)
595 1.3 oster {
596 1.3 oster int i, retcode = 0;
597 1.3 oster
598 1.3 oster /* construct an array of node pointers indexed by node num */
599 1.3 oster node->visited = (unvisited) ? 0 : 1;
600 1.3 oster nodes[node->nodeNum] = node;
601 1.3 oster
602 1.3 oster if (node->next != NULL) {
603 1.3 oster printf("INVALID DAG: next pointer in node is not NULL\n");
604 1.3 oster retcode = 1;
605 1.3 oster }
606 1.3 oster if (node->status != rf_wait) {
607 1.3 oster printf("INVALID DAG: Node status is not wait\n");
608 1.3 oster retcode = 1;
609 1.3 oster }
610 1.3 oster if (node->numAntDone != 0) {
611 1.3 oster printf("INVALID DAG: numAntDone is not zero\n");
612 1.3 oster retcode = 1;
613 1.3 oster }
614 1.3 oster if (node->doFunc == rf_TerminateFunc) {
615 1.3 oster if (node->numSuccedents != 0) {
616 1.3 oster printf("INVALID DAG: Terminator node has succedents\n");
617 1.3 oster retcode = 1;
618 1.3 oster }
619 1.3 oster } else {
620 1.3 oster if (node->numSuccedents == 0) {
621 1.3 oster printf("INVALID DAG: Non-terminator node has no succedents\n");
622 1.3 oster retcode = 1;
623 1.3 oster }
624 1.3 oster }
625 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
626 1.3 oster if (!node->succedents[i]) {
627 1.3 oster printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
628 1.3 oster retcode = 1;
629 1.3 oster }
630 1.3 oster scount[node->succedents[i]->nodeNum]++;
631 1.3 oster }
632 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
633 1.3 oster if (!node->antecedents[i]) {
634 1.3 oster printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
635 1.3 oster retcode = 1;
636 1.3 oster }
637 1.3 oster acount[node->antecedents[i]->nodeNum]++;
638 1.3 oster }
639 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
640 1.3 oster if (node->succedents[i]->visited == unvisited) {
641 1.3 oster if (rf_ValidateBranch(node->succedents[i], scount,
642 1.3 oster acount, nodes, unvisited)) {
643 1.3 oster retcode = 1;
644 1.3 oster }
645 1.3 oster }
646 1.3 oster }
647 1.3 oster return (retcode);
648 1.3 oster }
649 1.3 oster
650 1.3 oster static void
651 1.23 oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
652 1.3 oster {
653 1.3 oster int i;
654 1.3 oster
655 1.3 oster RF_ASSERT(node->visited == unvisited);
656 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
657 1.3 oster if (node->succedents[i] == NULL) {
658 1.3 oster printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
659 1.3 oster RF_ASSERT(0);
660 1.3 oster }
661 1.3 oster rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
662 1.3 oster }
663 1.3 oster }
664 1.3 oster /* NOTE: never call this on a big dag, because it is exponential
665 1.3 oster * in execution time
666 1.3 oster */
667 1.3 oster static void
668 1.23 oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
669 1.3 oster {
670 1.3 oster int i, unvisited;
671 1.3 oster
672 1.3 oster unvisited = dag->succedents[0]->visited;
673 1.3 oster
674 1.3 oster for (i = 0; i < dag->numSuccedents; i++) {
675 1.3 oster if (dag->succedents[i] == NULL) {
676 1.3 oster printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
677 1.3 oster RF_ASSERT(0);
678 1.3 oster }
679 1.3 oster rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
680 1.3 oster }
681 1.3 oster }
682 1.1 oster /* validate a DAG. _at entry_ verify that:
683 1.1 oster * -- numNodesCompleted is zero
684 1.1 oster * -- node queue is null
685 1.1 oster * -- dag status is rf_enable
686 1.1 oster * -- next pointer is null on every node
687 1.1 oster * -- all nodes have status wait
688 1.1 oster * -- numAntDone is zero in all nodes
689 1.1 oster * -- terminator node has zero successors
690 1.1 oster * -- no other node besides terminator has zero successors
691 1.1 oster * -- no successor or antecedent pointer in a node is NULL
692 1.1 oster * -- number of times that each node appears as a successor of another node
693 1.1 oster * is equal to the antecedent count on that node
694 1.1 oster * -- number of times that each node appears as an antecedent of another node
695 1.1 oster * is equal to the succedent count on that node
696 1.1 oster * -- what else?
697 1.1 oster */
698 1.3 oster int
699 1.23 oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
700 1.3 oster {
701 1.3 oster int i, nodecount;
702 1.3 oster int *scount, *acount;/* per-node successor and antecedent counts */
703 1.3 oster RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
704 1.3 oster int retcode = 0;
705 1.3 oster int unvisited;
706 1.3 oster int commitNodeCount = 0;
707 1.3 oster
708 1.3 oster if (rf_validateVisitedDebug)
709 1.3 oster rf_ValidateVisitedBits(dag_h);
710 1.3 oster
711 1.3 oster if (dag_h->numNodesCompleted != 0) {
712 1.3 oster printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
713 1.3 oster retcode = 1;
714 1.3 oster goto validate_dag_bad;
715 1.3 oster }
716 1.3 oster if (dag_h->status != rf_enable) {
717 1.3 oster printf("INVALID DAG: not enabled\n");
718 1.3 oster retcode = 1;
719 1.3 oster goto validate_dag_bad;
720 1.3 oster }
721 1.3 oster if (dag_h->numCommits != 0) {
722 1.3 oster printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
723 1.3 oster retcode = 1;
724 1.3 oster goto validate_dag_bad;
725 1.3 oster }
726 1.3 oster if (dag_h->numSuccedents != 1) {
727 1.3 oster /* currently, all dags must have only one succedent */
728 1.3 oster printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
729 1.3 oster retcode = 1;
730 1.3 oster goto validate_dag_bad;
731 1.3 oster }
732 1.3 oster nodecount = rf_AssignNodeNums(dag_h);
733 1.3 oster
734 1.3 oster unvisited = dag_h->succedents[0]->visited;
735 1.3 oster
736 1.22 oster RF_Malloc(scount, nodecount * sizeof(int), (int *));
737 1.22 oster RF_Malloc(acount, nodecount * sizeof(int), (int *));
738 1.22 oster RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
739 1.22 oster (RF_DagNode_t **));
740 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
741 1.3 oster if ((dag_h->succedents[i]->visited == unvisited)
742 1.3 oster && rf_ValidateBranch(dag_h->succedents[i], scount,
743 1.3 oster acount, nodes, unvisited)) {
744 1.3 oster retcode = 1;
745 1.3 oster }
746 1.3 oster }
747 1.3 oster /* start at 1 to skip the header node */
748 1.3 oster for (i = 1; i < nodecount; i++) {
749 1.3 oster if (nodes[i]->commitNode)
750 1.3 oster commitNodeCount++;
751 1.3 oster if (nodes[i]->doFunc == NULL) {
752 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
753 1.3 oster retcode = 1;
754 1.3 oster goto validate_dag_out;
755 1.3 oster }
756 1.3 oster if (nodes[i]->undoFunc == NULL) {
757 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
758 1.3 oster retcode = 1;
759 1.3 oster goto validate_dag_out;
760 1.3 oster }
761 1.3 oster if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
762 1.3 oster printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
763 1.3 oster nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
764 1.3 oster retcode = 1;
765 1.3 oster goto validate_dag_out;
766 1.3 oster }
767 1.3 oster if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
768 1.3 oster printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
769 1.3 oster nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
770 1.3 oster retcode = 1;
771 1.3 oster goto validate_dag_out;
772 1.3 oster }
773 1.3 oster }
774 1.1 oster
775 1.3 oster if (dag_h->numCommitNodes != commitNodeCount) {
776 1.3 oster printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
777 1.3 oster dag_h->numCommitNodes, commitNodeCount);
778 1.3 oster retcode = 1;
779 1.3 oster goto validate_dag_out;
780 1.3 oster }
781 1.1 oster validate_dag_out:
782 1.3 oster RF_Free(scount, nodecount * sizeof(int));
783 1.3 oster RF_Free(acount, nodecount * sizeof(int));
784 1.3 oster RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
785 1.3 oster if (retcode)
786 1.3 oster rf_PrintDAGList(dag_h);
787 1.3 oster
788 1.3 oster if (rf_validateVisitedDebug)
789 1.3 oster rf_ValidateVisitedBits(dag_h);
790 1.3 oster
791 1.3 oster return (retcode);
792 1.1 oster
793 1.1 oster validate_dag_bad:
794 1.3 oster rf_PrintDAGList(dag_h);
795 1.3 oster return (retcode);
796 1.1 oster }
797 1.1 oster
798 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
799 1.1 oster
800 1.1 oster /******************************************************************************
801 1.1 oster *
802 1.1 oster * misc construction routines
803 1.1 oster *
804 1.1 oster *****************************************************************************/
805 1.1 oster
806 1.3 oster void
807 1.23 oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
808 1.3 oster {
809 1.3 oster int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
810 1.21 oster int fcol = raidPtr->reconControl->fcol;
811 1.21 oster int scol = raidPtr->reconControl->spareCol;
812 1.3 oster RF_PhysDiskAddr_t *pda;
813 1.3 oster
814 1.21 oster RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
815 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
816 1.3 oster if (pda->col == fcol) {
817 1.31 oster #if RF_DEBUG_DAG
818 1.3 oster if (rf_dagDebug) {
819 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
820 1.3 oster pda->startSector)) {
821 1.3 oster RF_PANIC();
822 1.3 oster }
823 1.3 oster }
824 1.31 oster #endif
825 1.3 oster /* printf("Remapped data for large write\n"); */
826 1.3 oster if (ds) {
827 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
828 1.21 oster &pda->col, &pda->startSector, RF_REMAP);
829 1.3 oster } else {
830 1.3 oster pda->col = scol;
831 1.3 oster }
832 1.3 oster }
833 1.3 oster }
834 1.3 oster for (pda = asmap->parityInfo; pda; pda = pda->next) {
835 1.3 oster if (pda->col == fcol) {
836 1.31 oster #if RF_DEBUG_DAG
837 1.3 oster if (rf_dagDebug) {
838 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
839 1.3 oster RF_PANIC();
840 1.3 oster }
841 1.3 oster }
842 1.31 oster #endif
843 1.3 oster }
844 1.3 oster if (ds) {
845 1.21 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
846 1.3 oster } else {
847 1.3 oster pda->col = scol;
848 1.3 oster }
849 1.3 oster }
850 1.1 oster }
851 1.1 oster
852 1.1 oster
853 1.1 oster /* this routine allocates read buffers and generates stripe maps for the
854 1.1 oster * regions of the array from the start of the stripe to the start of the
855 1.1 oster * access, and from the end of the access to the end of the stripe. It also
856 1.1 oster * computes and returns the number of DAG nodes needed to read all this data.
857 1.1 oster * Note that this routine does the wrong thing if the access is fully
858 1.1 oster * contained within one stripe unit, so we RF_ASSERT against this case at the
859 1.1 oster * start.
860 1.23 oster *
861 1.23 oster * layoutPtr - in: layout information
862 1.23 oster * asmap - in: access stripe map
863 1.23 oster * dag_h - in: header of the dag to create
864 1.23 oster * new_asm_h - in: ptr to array of 2 headers. to be filled in
865 1.23 oster * nRodNodes - out: num nodes to be generated to read unaccessed data
866 1.23 oster * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
867 1.1 oster */
868 1.3 oster void
869 1.23 oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
870 1.23 oster RF_RaidLayout_t *layoutPtr,
871 1.23 oster RF_AccessStripeMap_t *asmap,
872 1.23 oster RF_DagHeader_t *dag_h,
873 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
874 1.23 oster int *nRodNodes,
875 1.23 oster char **sosBuffer, char **eosBuffer,
876 1.23 oster RF_AllocListElem_t *allocList)
877 1.3 oster {
878 1.3 oster RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
879 1.3 oster RF_SectorNum_t sosNumSector, eosNumSector;
880 1.3 oster
881 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
882 1.3 oster /* generate an access map for the region of the array from start of
883 1.3 oster * stripe to start of access */
884 1.3 oster new_asm_h[0] = new_asm_h[1] = NULL;
885 1.3 oster *nRodNodes = 0;
886 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
887 1.3 oster sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
888 1.3 oster sosNumSector = asmap->raidAddress - sosRaidAddress;
889 1.3 oster RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
890 1.3 oster new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
891 1.3 oster new_asm_h[0]->next = dag_h->asmList;
892 1.3 oster dag_h->asmList = new_asm_h[0];
893 1.3 oster *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
894 1.3 oster
895 1.3 oster RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
896 1.3 oster /* we're totally within one stripe here */
897 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
898 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
899 1.3 oster }
900 1.3 oster /* generate an access map for the region of the array from end of
901 1.3 oster * access to end of stripe */
902 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
903 1.3 oster eosRaidAddress = asmap->endRaidAddress;
904 1.3 oster eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
905 1.3 oster RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
906 1.3 oster new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
907 1.3 oster new_asm_h[1]->next = dag_h->asmList;
908 1.3 oster dag_h->asmList = new_asm_h[1];
909 1.3 oster *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
910 1.3 oster
911 1.3 oster RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
912 1.3 oster /* we're totally within one stripe here */
913 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
914 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
915 1.3 oster }
916 1.1 oster }
917 1.1 oster
918 1.1 oster
919 1.1 oster
920 1.1 oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
921 1.3 oster int
922 1.23 oster rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
923 1.23 oster RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
924 1.3 oster {
925 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
926 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
927 1.3 oster /* use -1 to be sure we stay within SU */
928 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
929 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
930 1.3 oster return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
931 1.1 oster }
932 1.1 oster
933 1.1 oster
934 1.1 oster /* GenerateFailedAccessASMs
935 1.1 oster *
936 1.1 oster * this routine figures out what portion of the stripe needs to be read
937 1.1 oster * to effect the degraded read or write operation. It's primary function
938 1.1 oster * is to identify everything required to recover the data, and then
939 1.1 oster * eliminate anything that is already being accessed by the user.
940 1.1 oster *
941 1.1 oster * The main result is two new ASMs, one for the region from the start of the
942 1.1 oster * stripe to the start of the access, and one for the region from the end of
943 1.1 oster * the access to the end of the stripe. These ASMs describe everything that
944 1.1 oster * needs to be read to effect the degraded access. Other results are:
945 1.1 oster * nXorBufs -- the total number of buffers that need to be XORed together to
946 1.1 oster * recover the lost data,
947 1.1 oster * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
948 1.1 oster * at entry, not allocated.
949 1.1 oster * overlappingPDAs --
950 1.1 oster * describes which of the non-failed PDAs in the user access
951 1.1 oster * overlap data that needs to be read to effect recovery.
952 1.1 oster * overlappingPDAs[i]==1 if and only if, neglecting the failed
953 1.1 oster * PDA, the ith pda in the input asm overlaps data that needs
954 1.1 oster * to be read for recovery.
955 1.1 oster */
956 1.1 oster /* in: asm - ASM for the actual access, one stripe only */
957 1.10 wiz /* in: failedPDA - which component of the access has failed */
958 1.1 oster /* in: dag_h - header of the DAG we're going to create */
959 1.1 oster /* out: new_asm_h - the two new ASMs */
960 1.1 oster /* out: nXorBufs - the total number of xor bufs required */
961 1.1 oster /* out: rpBufPtr - a buffer for the parity read */
962 1.3 oster void
963 1.23 oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
964 1.23 oster RF_PhysDiskAddr_t *failedPDA,
965 1.23 oster RF_DagHeader_t *dag_h,
966 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
967 1.23 oster int *nXorBufs, char **rpBufPtr,
968 1.23 oster char *overlappingPDAs,
969 1.23 oster RF_AllocListElem_t *allocList)
970 1.3 oster {
971 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
972 1.3 oster
973 1.3 oster /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
974 1.3 oster RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
975 1.3 oster RF_PhysDiskAddr_t *pda;
976 1.3 oster int foundit, i;
977 1.3 oster
978 1.3 oster foundit = 0;
979 1.3 oster /* first compute the following raid addresses: start of stripe,
980 1.3 oster * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
981 1.3 oster * MAX(end of access, end of failed SU), (eosStartAddr) end of
982 1.3 oster * stripe (i.e. start of next stripe) (eosAddr) */
983 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
984 1.3 oster sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
985 1.3 oster eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
986 1.3 oster eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
987 1.3 oster
988 1.3 oster /* now generate access stripe maps for each of the above regions of
989 1.3 oster * the stripe. Use a dummy (NULL) buf ptr for now */
990 1.3 oster
991 1.3 oster new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
992 1.3 oster new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
993 1.3 oster
994 1.3 oster /* walk through the PDAs and range-restrict each SU to the region of
995 1.3 oster * the SU touched on the failed PDA. also compute total data buffer
996 1.3 oster * space requirements in this step. Ignore the parity for now. */
997 1.35 oster /* Also count nodes to find out how many bufs need to be xored together */
998 1.35 oster (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
999 1.35 oster * case, 1 is for failed data */
1000 1.3 oster
1001 1.3 oster if (new_asm_h[0]) {
1002 1.3 oster new_asm_h[0]->next = dag_h->asmList;
1003 1.3 oster dag_h->asmList = new_asm_h[0];
1004 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1005 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1006 1.35 oster pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
1007 1.3 oster }
1008 1.35 oster (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1009 1.3 oster }
1010 1.3 oster if (new_asm_h[1]) {
1011 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1012 1.3 oster dag_h->asmList = new_asm_h[1];
1013 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1014 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1015 1.35 oster pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
1016 1.3 oster }
1017 1.3 oster (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1018 1.3 oster }
1019 1.35 oster
1020 1.35 oster /* allocate a buffer for parity */
1021 1.35 oster if (rpBufPtr)
1022 1.35 oster *rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
1023 1.3 oster
1024 1.3 oster /* the last step is to figure out how many more distinct buffers need
1025 1.3 oster * to get xor'd to produce the missing unit. there's one for each
1026 1.3 oster * user-data read node that overlaps the portion of the failed unit
1027 1.3 oster * being accessed */
1028 1.3 oster
1029 1.3 oster for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1030 1.3 oster if (pda == failedPDA) {
1031 1.3 oster i--;
1032 1.3 oster foundit = 1;
1033 1.3 oster continue;
1034 1.3 oster }
1035 1.3 oster if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1036 1.3 oster overlappingPDAs[i] = 1;
1037 1.3 oster (*nXorBufs)++;
1038 1.3 oster }
1039 1.3 oster }
1040 1.3 oster if (!foundit) {
1041 1.3 oster RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1042 1.3 oster RF_ASSERT(0);
1043 1.3 oster }
1044 1.31 oster #if RF_DEBUG_DAG
1045 1.3 oster if (rf_degDagDebug) {
1046 1.3 oster if (new_asm_h[0]) {
1047 1.3 oster printf("First asm:\n");
1048 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1049 1.3 oster }
1050 1.3 oster if (new_asm_h[1]) {
1051 1.3 oster printf("Second asm:\n");
1052 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1053 1.3 oster }
1054 1.3 oster }
1055 1.31 oster #endif
1056 1.1 oster }
1057 1.1 oster
1058 1.1 oster
1059 1.1 oster /* adjusts the offset and number of sectors in the destination pda so that
1060 1.1 oster * it covers at most the region of the SU covered by the source PDA. This
1061 1.1 oster * is exclusively a restriction: the number of sectors indicated by the
1062 1.1 oster * target PDA can only shrink.
1063 1.1 oster *
1064 1.1 oster * For example: s = sectors within SU indicated by source PDA
1065 1.1 oster * d = sectors within SU indicated by dest PDA
1066 1.1 oster * r = results, stored in dest PDA
1067 1.1 oster *
1068 1.1 oster * |--------------- one stripe unit ---------------------|
1069 1.1 oster * | sssssssssssssssssssssssssssssssss |
1070 1.1 oster * | ddddddddddddddddddddddddddddddddddddddddddddd |
1071 1.1 oster * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1072 1.1 oster *
1073 1.1 oster * Another example:
1074 1.1 oster *
1075 1.1 oster * |--------------- one stripe unit ---------------------|
1076 1.1 oster * | sssssssssssssssssssssssssssssssss |
1077 1.1 oster * | ddddddddddddddddddddddd |
1078 1.1 oster * | rrrrrrrrrrrrrrrr |
1079 1.1 oster *
1080 1.1 oster */
1081 1.3 oster void
1082 1.23 oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1083 1.23 oster RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1084 1.3 oster {
1085 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1086 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1087 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1088 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1089 1.3 oster * stay within SU */
1090 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1091 1.3 oster RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1092 1.3 oster
1093 1.3 oster dest->startSector = subAddr + RF_MAX(soffs, doffs);
1094 1.3 oster dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1095 1.3 oster
1096 1.3 oster if (dobuffer)
1097 1.3 oster dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1098 1.3 oster if (doraidaddr) {
1099 1.3 oster dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1100 1.3 oster rf_StripeUnitOffset(layoutPtr, dest->startSector);
1101 1.3 oster }
1102 1.1 oster }
1103 1.11 oster
1104 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1105 1.11 oster
1106 1.1 oster /*
1107 1.1 oster * Want the highest of these primes to be the largest one
1108 1.1 oster * less than the max expected number of columns (won't hurt
1109 1.1 oster * to be too small or too large, but won't be optimal, either)
1110 1.1 oster * --jimz
1111 1.1 oster */
1112 1.1 oster #define NLOWPRIMES 8
1113 1.3 oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1114 1.1 oster /*****************************************************************************
1115 1.1 oster * compute the workload shift factor. (chained declustering)
1116 1.1 oster *
1117 1.1 oster * return nonzero if access should shift to secondary, otherwise,
1118 1.1 oster * access is to primary
1119 1.1 oster *****************************************************************************/
1120 1.3 oster int
1121 1.23 oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1122 1.3 oster {
1123 1.3 oster /*
1124 1.3 oster * variables:
1125 1.3 oster * d = column of disk containing primary
1126 1.3 oster * f = column of failed disk
1127 1.3 oster * n = number of disks in array
1128 1.3 oster * sd = "shift distance" (number of columns that d is to the right of f)
1129 1.3 oster * v = numerator of redirection ratio
1130 1.3 oster * k = denominator of redirection ratio
1131 1.3 oster */
1132 1.21 oster RF_RowCol_t d, f, sd, n;
1133 1.3 oster int k, v, ret, i;
1134 1.3 oster
1135 1.3 oster n = raidPtr->numCol;
1136 1.3 oster
1137 1.3 oster /* assign column of primary copy to d */
1138 1.3 oster d = pda->col;
1139 1.3 oster
1140 1.3 oster /* assign column of dead disk to f */
1141 1.21 oster for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1142 1.3 oster
1143 1.3 oster RF_ASSERT(f < n);
1144 1.3 oster RF_ASSERT(f != d);
1145 1.3 oster
1146 1.3 oster sd = (f > d) ? (n + d - f) : (d - f);
1147 1.3 oster RF_ASSERT(sd < n);
1148 1.3 oster
1149 1.3 oster /*
1150 1.3 oster * v of every k accesses should be redirected
1151 1.3 oster *
1152 1.3 oster * v/k := (n-1-sd)/(n-1)
1153 1.3 oster */
1154 1.3 oster v = (n - 1 - sd);
1155 1.3 oster k = (n - 1);
1156 1.1 oster
1157 1.1 oster #if 1
1158 1.3 oster /*
1159 1.3 oster * XXX
1160 1.3 oster * Is this worth it?
1161 1.3 oster *
1162 1.3 oster * Now reduce the fraction, by repeatedly factoring
1163 1.3 oster * out primes (just like they teach in elementary school!)
1164 1.3 oster */
1165 1.3 oster for (i = 0; i < NLOWPRIMES; i++) {
1166 1.3 oster if (lowprimes[i] > v)
1167 1.3 oster break;
1168 1.3 oster while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1169 1.3 oster v /= lowprimes[i];
1170 1.3 oster k /= lowprimes[i];
1171 1.3 oster }
1172 1.3 oster }
1173 1.1 oster #endif
1174 1.1 oster
1175 1.21 oster raidPtr->hist_diskreq[d]++;
1176 1.21 oster if (raidPtr->hist_diskreq[d] > v) {
1177 1.3 oster ret = 0; /* do not redirect */
1178 1.3 oster } else {
1179 1.3 oster ret = 1; /* redirect */
1180 1.3 oster }
1181 1.1 oster
1182 1.1 oster #if 0
1183 1.3 oster printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1184 1.21 oster raidPtr->hist_diskreq[d]);
1185 1.1 oster #endif
1186 1.1 oster
1187 1.21 oster if (raidPtr->hist_diskreq[d] >= k) {
1188 1.3 oster /* reset counter */
1189 1.21 oster raidPtr->hist_diskreq[d] = 0;
1190 1.3 oster }
1191 1.3 oster return (ret);
1192 1.1 oster }
1193 1.11 oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1194 1.11 oster
1195 1.1 oster /*
1196 1.1 oster * Disk selection routines
1197 1.1 oster */
1198 1.1 oster
1199 1.1 oster /*
1200 1.1 oster * Selects the disk with the shortest queue from a mirror pair.
1201 1.1 oster * Both the disk I/Os queued in RAIDframe as well as those at the physical
1202 1.1 oster * disk are counted as members of the "queue"
1203 1.1 oster */
1204 1.3 oster void
1205 1.3 oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1206 1.1 oster {
1207 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1208 1.21 oster RF_RowCol_t colData, colMirror;
1209 1.3 oster int dataQueueLength, mirrorQueueLength, usemirror;
1210 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1211 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1212 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1213 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1214 1.21 oster RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1215 1.3 oster
1216 1.3 oster /* return the [row col] of the disk with the shortest queue */
1217 1.3 oster colData = data_pda->col;
1218 1.3 oster colMirror = mirror_pda->col;
1219 1.21 oster dataQueue = &(dqs[colData]);
1220 1.21 oster mirrorQueue = &(dqs[colMirror]);
1221 1.1 oster
1222 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1223 1.3 oster RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1224 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1225 1.3 oster dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1226 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1227 1.3 oster RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1228 1.3 oster RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1229 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1230 1.3 oster mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1231 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1232 1.3 oster RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1233 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1234 1.1 oster
1235 1.3 oster usemirror = 0;
1236 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1237 1.3 oster usemirror = 0;
1238 1.3 oster } else
1239 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1240 1.3 oster usemirror = 1;
1241 1.3 oster } else
1242 1.5 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1243 1.5 oster /* Trust only the main disk */
1244 1.3 oster usemirror = 0;
1245 1.3 oster } else
1246 1.5 oster if (dataQueueLength < mirrorQueueLength) {
1247 1.5 oster usemirror = 0;
1248 1.5 oster } else
1249 1.5 oster if (mirrorQueueLength < dataQueueLength) {
1250 1.5 oster usemirror = 1;
1251 1.3 oster } else {
1252 1.5 oster /* queues are equal length. attempt
1253 1.5 oster * cleverness. */
1254 1.5 oster if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1255 1.5 oster <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1256 1.5 oster usemirror = 0;
1257 1.5 oster } else {
1258 1.5 oster usemirror = 1;
1259 1.5 oster }
1260 1.3 oster }
1261 1.3 oster
1262 1.3 oster if (usemirror) {
1263 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1264 1.3 oster tmp_pda = data_pda;
1265 1.3 oster node->params[0].p = mirror_pda;
1266 1.3 oster node->params[4].p = tmp_pda;
1267 1.3 oster } else {
1268 1.3 oster /* use data disk, leave param 0 unchanged */
1269 1.3 oster }
1270 1.3 oster /* printf("dataQueueLength %d, mirrorQueueLength
1271 1.3 oster * %d\n",dataQueueLength, mirrorQueueLength); */
1272 1.1 oster }
1273 1.19 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1274 1.1 oster /*
1275 1.1 oster * Do simple partitioning. This assumes that
1276 1.1 oster * the data and parity disks are laid out identically.
1277 1.1 oster */
1278 1.3 oster void
1279 1.3 oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1280 1.1 oster {
1281 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1282 1.21 oster RF_RowCol_t colData, colMirror;
1283 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1284 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1285 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1286 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1287 1.3 oster int usemirror;
1288 1.3 oster
1289 1.3 oster /* return the [row col] of the disk with the shortest queue */
1290 1.3 oster colData = data_pda->col;
1291 1.3 oster colMirror = mirror_pda->col;
1292 1.3 oster
1293 1.3 oster usemirror = 0;
1294 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1295 1.3 oster usemirror = 0;
1296 1.3 oster } else
1297 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1298 1.3 oster usemirror = 1;
1299 1.6 oster } else
1300 1.6 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1301 1.6 oster /* Trust only the main disk */
1302 1.3 oster usemirror = 0;
1303 1.6 oster } else
1304 1.6 oster if (data_pda->startSector <
1305 1.21 oster (disks[colData].numBlocks / 2)) {
1306 1.6 oster usemirror = 0;
1307 1.6 oster } else {
1308 1.6 oster usemirror = 1;
1309 1.6 oster }
1310 1.3 oster
1311 1.3 oster if (usemirror) {
1312 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1313 1.3 oster tmp_pda = data_pda;
1314 1.3 oster node->params[0].p = mirror_pda;
1315 1.3 oster node->params[4].p = tmp_pda;
1316 1.3 oster } else {
1317 1.3 oster /* use data disk, leave param 0 unchanged */
1318 1.3 oster }
1319 1.1 oster }
1320 1.19 oster #endif
1321