rf_dagutils.c revision 1.44 1 1.44 oster /* $NetBSD: rf_dagutils.c,v 1.44 2004/04/09 23:10:16 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_dagutils.c -- utility routines for manipulating dags
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.44 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.44 2004/04/09 23:10:16 oster Exp $");
37 1.1 oster
38 1.8 oster #include <dev/raidframe/raidframevar.h>
39 1.8 oster
40 1.1 oster #include "rf_archs.h"
41 1.1 oster #include "rf_threadstuff.h"
42 1.1 oster #include "rf_raid.h"
43 1.1 oster #include "rf_dag.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_shutdown.h"
49 1.1 oster
50 1.1 oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 1.1 oster
52 1.20 jdolecek const RF_RedFuncs_t rf_xorFuncs = {
53 1.1 oster rf_RegularXorFunc, "Reg Xr",
54 1.32 oster rf_SimpleXorFunc, "Simple Xr"};
55 1.1 oster
56 1.20 jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 1.1 oster rf_RecoveryXorFunc, "Recovery Xr",
58 1.32 oster rf_RecoveryXorFunc, "Recovery Xr"};
59 1.1 oster
60 1.13 oster #if RF_DEBUG_VALIDATE_DAG
61 1.1 oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 1.1 oster static void rf_PrintDAG(RF_DagHeader_t *);
63 1.12 oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 1.12 oster RF_DagNode_t **, int);
65 1.1 oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 1.1 oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
68 1.1 oster
69 1.40 oster /* The maximum number of nodes in a DAG is bounded by
70 1.40 oster
71 1.40 oster (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 1.40 oster (1 * 2 * layoutPtr->numParityCol) + 3
73 1.40 oster
74 1.40 oster which is: 2*RF_MAXCOL+1*2+1*2*2+3
75 1.40 oster
76 1.40 oster For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 1.40 oster on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 1.40 oster would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 1.40 oster have a few kicking around.
80 1.40 oster */
81 1.40 oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 1.40 oster
83 1.40 oster
84 1.1 oster /******************************************************************************
85 1.1 oster *
86 1.1 oster * InitNode - initialize a dag node
87 1.1 oster *
88 1.1 oster * the size of the propList array is always the same as that of the
89 1.1 oster * successors array.
90 1.1 oster *
91 1.1 oster *****************************************************************************/
92 1.40 oster void
93 1.23 oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 1.23 oster int (*doFunc) (RF_DagNode_t *node),
95 1.23 oster int (*undoFunc) (RF_DagNode_t *node),
96 1.23 oster int (*wakeFunc) (RF_DagNode_t *node, int status),
97 1.23 oster int nSucc, int nAnte, int nParam, int nResult,
98 1.23 oster RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
99 1.3 oster {
100 1.3 oster void **ptrs;
101 1.3 oster int nptrs;
102 1.3 oster
103 1.3 oster if (nAnte > RF_MAX_ANTECEDENTS)
104 1.3 oster RF_PANIC();
105 1.3 oster node->status = initstatus;
106 1.3 oster node->commitNode = commit;
107 1.3 oster node->doFunc = doFunc;
108 1.3 oster node->undoFunc = undoFunc;
109 1.3 oster node->wakeFunc = wakeFunc;
110 1.3 oster node->numParams = nParam;
111 1.3 oster node->numResults = nResult;
112 1.3 oster node->numAntecedents = nAnte;
113 1.3 oster node->numAntDone = 0;
114 1.3 oster node->next = NULL;
115 1.38 oster /* node->list_next = NULL */ /* Don't touch this here!
116 1.38 oster It may already be
117 1.38 oster in use by the caller! */
118 1.3 oster node->numSuccedents = nSucc;
119 1.3 oster node->name = name;
120 1.3 oster node->dagHdr = hdr;
121 1.40 oster node->big_dag_ptrs = NULL;
122 1.40 oster node->big_dag_params = NULL;
123 1.3 oster node->visited = 0;
124 1.3 oster
125 1.3 oster /* allocate all the pointers with one call to malloc */
126 1.3 oster nptrs = nSucc + nAnte + nResult + nSucc;
127 1.3 oster
128 1.3 oster if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 1.3 oster /*
130 1.3 oster * The dag_ptrs field of the node is basically some scribble
131 1.3 oster * space to be used here. We could get rid of it, and always
132 1.3 oster * allocate the range of pointers, but that's expensive. So,
133 1.3 oster * we pick a "common case" size for the pointer cache. Hopefully,
134 1.3 oster * we'll find that:
135 1.3 oster * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 1.3 oster * only a little bit (least efficient case)
137 1.3 oster * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 1.3 oster * (wasted memory)
139 1.3 oster */
140 1.3 oster ptrs = (void **) node->dag_ptrs;
141 1.40 oster } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 1.40 oster node->big_dag_ptrs = rf_AllocDAGPCache();
143 1.40 oster ptrs = (void **) node->big_dag_ptrs;
144 1.3 oster } else {
145 1.22 oster RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 1.22 oster (void **), alist);
147 1.3 oster }
148 1.3 oster node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 1.3 oster node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 1.3 oster node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 1.3 oster node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152 1.3 oster
153 1.3 oster if (nParam) {
154 1.3 oster if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 1.3 oster node->params = (RF_DagParam_t *) node->dag_params;
156 1.40 oster } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 1.40 oster node->big_dag_params = rf_AllocDAGPCache();
158 1.40 oster node->params = node->big_dag_params;
159 1.3 oster } else {
160 1.22 oster RF_MallocAndAdd(node->params,
161 1.22 oster nParam * sizeof(RF_DagParam_t),
162 1.22 oster (RF_DagParam_t *), alist);
163 1.3 oster }
164 1.3 oster } else {
165 1.3 oster node->params = NULL;
166 1.3 oster }
167 1.1 oster }
168 1.1 oster
169 1.1 oster
170 1.1 oster
171 1.1 oster /******************************************************************************
172 1.1 oster *
173 1.1 oster * allocation and deallocation routines
174 1.1 oster *
175 1.1 oster *****************************************************************************/
176 1.1 oster
177 1.3 oster void
178 1.23 oster rf_FreeDAG(RF_DagHeader_t *dag_h)
179 1.3 oster {
180 1.3 oster RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 1.39 oster RF_PhysDiskAddr_t *pda;
182 1.38 oster RF_DagNode_t *tmpnode;
183 1.3 oster RF_DagHeader_t *nextDag;
184 1.3 oster
185 1.3 oster while (dag_h) {
186 1.3 oster nextDag = dag_h->next;
187 1.3 oster rf_FreeAllocList(dag_h->allocList);
188 1.3 oster for (asmap = dag_h->asmList; asmap;) {
189 1.3 oster t_asmap = asmap;
190 1.3 oster asmap = asmap->next;
191 1.3 oster rf_FreeAccessStripeMap(t_asmap);
192 1.3 oster }
193 1.39 oster while (dag_h->pda_cleanup_list) {
194 1.39 oster pda = dag_h->pda_cleanup_list;
195 1.39 oster dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
196 1.39 oster rf_FreePhysDiskAddr(pda);
197 1.39 oster }
198 1.39 oster while (dag_h->nodes) {
199 1.38 oster tmpnode = dag_h->nodes;
200 1.38 oster dag_h->nodes = dag_h->nodes->list_next;
201 1.38 oster rf_FreeDAGNode(tmpnode);
202 1.38 oster }
203 1.3 oster rf_FreeDAGHeader(dag_h);
204 1.3 oster dag_h = nextDag;
205 1.3 oster }
206 1.3 oster }
207 1.3 oster
208 1.1 oster #define RF_MAX_FREE_DAGH 128
209 1.30 oster #define RF_MIN_FREE_DAGH 32
210 1.1 oster
211 1.38 oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
212 1.38 oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
213 1.38 oster
214 1.25 oster #define RF_MAX_FREE_DAGLIST 128
215 1.30 oster #define RF_MIN_FREE_DAGLIST 32
216 1.25 oster
217 1.40 oster #define RF_MAX_FREE_DAGPCACHE 128
218 1.40 oster #define RF_MIN_FREE_DAGPCACHE 8
219 1.40 oster
220 1.27 oster #define RF_MAX_FREE_FUNCLIST 128
221 1.30 oster #define RF_MIN_FREE_FUNCLIST 32
222 1.25 oster
223 1.41 oster #define RF_MAX_FREE_BUFFERS 128
224 1.41 oster #define RF_MIN_FREE_BUFFERS 32
225 1.41 oster
226 1.1 oster static void rf_ShutdownDAGs(void *);
227 1.3 oster static void
228 1.23 oster rf_ShutdownDAGs(void *ignored)
229 1.1 oster {
230 1.36 oster pool_destroy(&rf_pools.dagh);
231 1.38 oster pool_destroy(&rf_pools.dagnode);
232 1.36 oster pool_destroy(&rf_pools.daglist);
233 1.40 oster pool_destroy(&rf_pools.dagpcache);
234 1.36 oster pool_destroy(&rf_pools.funclist);
235 1.1 oster }
236 1.1 oster
237 1.3 oster int
238 1.23 oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
239 1.1 oster {
240 1.1 oster
241 1.38 oster rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
242 1.38 oster "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
243 1.36 oster rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
244 1.36 oster "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
245 1.36 oster rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
246 1.36 oster "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
247 1.40 oster rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
248 1.40 oster "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
249 1.36 oster rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
250 1.36 oster "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
251 1.29 oster rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
252 1.29 oster
253 1.3 oster return (0);
254 1.1 oster }
255 1.1 oster
256 1.3 oster RF_DagHeader_t *
257 1.3 oster rf_AllocDAGHeader()
258 1.1 oster {
259 1.1 oster RF_DagHeader_t *dh;
260 1.1 oster
261 1.36 oster dh = pool_get(&rf_pools.dagh, PR_WAITOK);
262 1.28 oster memset((char *) dh, 0, sizeof(RF_DagHeader_t));
263 1.3 oster return (dh);
264 1.1 oster }
265 1.1 oster
266 1.3 oster void
267 1.3 oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
268 1.1 oster {
269 1.36 oster pool_put(&rf_pools.dagh, dh);
270 1.1 oster }
271 1.25 oster
272 1.38 oster RF_DagNode_t *
273 1.38 oster rf_AllocDAGNode()
274 1.38 oster {
275 1.38 oster RF_DagNode_t *node;
276 1.38 oster
277 1.38 oster node = pool_get(&rf_pools.dagnode, PR_WAITOK);
278 1.38 oster memset(node, 0, sizeof(RF_DagNode_t));
279 1.38 oster return (node);
280 1.38 oster }
281 1.38 oster
282 1.38 oster void
283 1.38 oster rf_FreeDAGNode(RF_DagNode_t *node)
284 1.38 oster {
285 1.40 oster if (node->big_dag_ptrs) {
286 1.40 oster rf_FreeDAGPCache(node->big_dag_ptrs);
287 1.40 oster }
288 1.40 oster if (node->big_dag_params) {
289 1.40 oster rf_FreeDAGPCache(node->big_dag_params);
290 1.40 oster }
291 1.38 oster pool_put(&rf_pools.dagnode, node);
292 1.38 oster }
293 1.38 oster
294 1.25 oster RF_DagList_t *
295 1.25 oster rf_AllocDAGList()
296 1.25 oster {
297 1.25 oster RF_DagList_t *dagList;
298 1.25 oster
299 1.36 oster dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
300 1.25 oster memset(dagList, 0, sizeof(RF_DagList_t));
301 1.25 oster
302 1.25 oster return (dagList);
303 1.25 oster }
304 1.25 oster
305 1.25 oster void
306 1.25 oster rf_FreeDAGList(RF_DagList_t *dagList)
307 1.25 oster {
308 1.36 oster pool_put(&rf_pools.daglist, dagList);
309 1.25 oster }
310 1.25 oster
311 1.40 oster void *
312 1.40 oster rf_AllocDAGPCache()
313 1.40 oster {
314 1.40 oster void *p;
315 1.40 oster p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
316 1.40 oster memset(p, 0, RF_DAGPCACHE_SIZE);
317 1.40 oster
318 1.40 oster return (p);
319 1.40 oster }
320 1.40 oster
321 1.40 oster void
322 1.40 oster rf_FreeDAGPCache(void *p)
323 1.40 oster {
324 1.40 oster pool_put(&rf_pools.dagpcache, p);
325 1.40 oster }
326 1.40 oster
327 1.27 oster RF_FuncList_t *
328 1.27 oster rf_AllocFuncList()
329 1.27 oster {
330 1.27 oster RF_FuncList_t *funcList;
331 1.27 oster
332 1.36 oster funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
333 1.27 oster memset(funcList, 0, sizeof(RF_FuncList_t));
334 1.27 oster
335 1.27 oster return (funcList);
336 1.27 oster }
337 1.27 oster
338 1.27 oster void
339 1.27 oster rf_FreeFuncList(RF_FuncList_t *funcList)
340 1.27 oster {
341 1.36 oster pool_put(&rf_pools.funclist, funcList);
342 1.27 oster }
343 1.25 oster
344 1.44 oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
345 1.44 oster in an entire stripe.
346 1.44 oster */
347 1.44 oster
348 1.44 oster void *
349 1.44 oster rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
350 1.44 oster {
351 1.44 oster RF_VoidPointerListElem_t *vple;
352 1.44 oster void *p;
353 1.44 oster
354 1.44 oster RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 1.44 oster raidPtr->logBytesPerSector))));
356 1.44 oster
357 1.44 oster p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
358 1.44 oster raidPtr->logBytesPerSector),
359 1.44 oster M_RAIDFRAME, M_NOWAIT);
360 1.44 oster if (!p) {
361 1.44 oster RF_LOCK_MUTEX(raidPtr->mutex);
362 1.44 oster if (raidPtr->stripebuf_count > 0) {
363 1.44 oster vple = raidPtr->stripebuf;
364 1.44 oster raidPtr->stripebuf = vple->next;
365 1.44 oster p = vple->p;
366 1.44 oster rf_FreeVPListElem(vple);
367 1.44 oster raidPtr->stripebuf_count--;
368 1.44 oster } else {
369 1.44 oster #ifdef DIAGNOSTIC
370 1.44 oster printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
371 1.44 oster #endif
372 1.44 oster }
373 1.44 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
374 1.44 oster if (!p) {
375 1.44 oster /* We didn't get a buffer... not much we can do other than wait,
376 1.44 oster and hope that someone frees up memory for us.. */
377 1.44 oster p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
378 1.44 oster raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
379 1.44 oster }
380 1.44 oster }
381 1.44 oster memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
382 1.44 oster
383 1.44 oster vple = rf_AllocVPListElem();
384 1.44 oster vple->p = p;
385 1.44 oster vple->next = dag_h->desc->stripebufs;
386 1.44 oster dag_h->desc->stripebufs = vple;
387 1.44 oster
388 1.44 oster return (p);
389 1.44 oster }
390 1.44 oster
391 1.25 oster
392 1.44 oster void
393 1.44 oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
394 1.44 oster {
395 1.44 oster RF_LOCK_MUTEX(raidPtr->mutex);
396 1.44 oster if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
397 1.44 oster /* just tack it in */
398 1.44 oster vple->next = raidPtr->stripebuf;
399 1.44 oster raidPtr->stripebuf = vple;
400 1.44 oster raidPtr->stripebuf_count++;
401 1.44 oster } else {
402 1.44 oster free(vple->p, M_RAIDFRAME);
403 1.44 oster rf_FreeVPListElem(vple);
404 1.44 oster }
405 1.44 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
406 1.44 oster }
407 1.25 oster
408 1.42 oster /* allocates a buffer big enough to hold the data described by the
409 1.42 oster caller (ie. the data of the associated PDA). Glue this buffer
410 1.42 oster into our dag_h cleanup structure. */
411 1.42 oster
412 1.43 oster void *
413 1.44 oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
414 1.3 oster {
415 1.42 oster RF_VoidPointerListElem_t *vple;
416 1.42 oster void *p;
417 1.3 oster
418 1.42 oster p = rf_AllocIOBuffer(raidPtr, size);
419 1.42 oster vple = rf_AllocVPListElem();
420 1.42 oster vple->p = p;
421 1.44 oster vple->next = dag_h->desc->iobufs;
422 1.44 oster dag_h->desc->iobufs = vple;
423 1.42 oster
424 1.42 oster return (p);
425 1.1 oster }
426 1.41 oster
427 1.41 oster void *
428 1.41 oster rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
429 1.41 oster {
430 1.44 oster RF_VoidPointerListElem_t *vple;
431 1.41 oster void *p;
432 1.41 oster
433 1.44 oster RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
434 1.44 oster raidPtr->logBytesPerSector)));
435 1.41 oster
436 1.41 oster p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
437 1.41 oster raidPtr->logBytesPerSector,
438 1.41 oster M_RAIDFRAME, M_NOWAIT);
439 1.41 oster if (!p) {
440 1.41 oster RF_LOCK_MUTEX(raidPtr->mutex);
441 1.41 oster if (raidPtr->iobuf_count > 0) {
442 1.44 oster vple = raidPtr->iobuf;
443 1.44 oster raidPtr->iobuf = vple->next;
444 1.44 oster p = vple->p;
445 1.44 oster rf_FreeVPListElem(vple);
446 1.41 oster raidPtr->iobuf_count--;
447 1.41 oster } else {
448 1.41 oster #ifdef DIAGNOSTIC
449 1.41 oster printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
450 1.41 oster #endif
451 1.41 oster }
452 1.41 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
453 1.41 oster if (!p) {
454 1.41 oster /* We didn't get a buffer... not much we can do other than wait,
455 1.41 oster and hope that someone frees up memory for us.. */
456 1.41 oster p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
457 1.41 oster raidPtr->logBytesPerSector,
458 1.41 oster M_RAIDFRAME, M_WAITOK);
459 1.41 oster }
460 1.41 oster }
461 1.44 oster memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
462 1.41 oster return (p);
463 1.41 oster }
464 1.41 oster
465 1.41 oster void
466 1.44 oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
467 1.41 oster {
468 1.41 oster RF_LOCK_MUTEX(raidPtr->mutex);
469 1.41 oster if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
470 1.44 oster /* just tack it in */
471 1.44 oster vple->next = raidPtr->iobuf;
472 1.44 oster raidPtr->iobuf = vple;
473 1.41 oster raidPtr->iobuf_count++;
474 1.41 oster } else {
475 1.44 oster free(vple->p, M_RAIDFRAME);
476 1.44 oster rf_FreeVPListElem(vple);
477 1.41 oster }
478 1.41 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
479 1.41 oster }
480 1.41 oster
481 1.41 oster
482 1.41 oster
483 1.13 oster #if RF_DEBUG_VALIDATE_DAG
484 1.1 oster /******************************************************************************
485 1.1 oster *
486 1.1 oster * debug routines
487 1.1 oster *
488 1.1 oster *****************************************************************************/
489 1.1 oster
490 1.3 oster char *
491 1.23 oster rf_NodeStatusString(RF_DagNode_t *node)
492 1.1 oster {
493 1.3 oster switch (node->status) {
494 1.34 oster case rf_wait:
495 1.34 oster return ("wait");
496 1.3 oster case rf_fired:
497 1.3 oster return ("fired");
498 1.3 oster case rf_good:
499 1.3 oster return ("good");
500 1.3 oster case rf_bad:
501 1.3 oster return ("bad");
502 1.3 oster default:
503 1.3 oster return ("?");
504 1.3 oster }
505 1.3 oster }
506 1.1 oster
507 1.3 oster void
508 1.23 oster rf_PrintNodeInfoString(RF_DagNode_t *node)
509 1.3 oster {
510 1.3 oster RF_PhysDiskAddr_t *pda;
511 1.3 oster int (*df) (RF_DagNode_t *) = node->doFunc;
512 1.3 oster int i, lk, unlk;
513 1.3 oster void *bufPtr;
514 1.3 oster
515 1.3 oster if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
516 1.3 oster || (df == rf_DiskReadMirrorIdleFunc)
517 1.3 oster || (df == rf_DiskReadMirrorPartitionFunc)) {
518 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
519 1.3 oster bufPtr = (void *) node->params[1].p;
520 1.24 oster lk = 0;
521 1.24 oster unlk = 0;
522 1.3 oster RF_ASSERT(!(lk && unlk));
523 1.21 oster printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
524 1.3 oster (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
525 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
526 1.3 oster return;
527 1.3 oster }
528 1.3 oster if (df == rf_DiskUnlockFunc) {
529 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
530 1.24 oster lk = 0;
531 1.24 oster unlk = 0;
532 1.3 oster RF_ASSERT(!(lk && unlk));
533 1.21 oster printf("c %d %s\n", pda->col,
534 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
535 1.3 oster return;
536 1.3 oster }
537 1.3 oster if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
538 1.3 oster || (df == rf_RecoveryXorFunc)) {
539 1.3 oster printf("result buf 0x%lx\n", (long) node->results[0]);
540 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
541 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
542 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
543 1.21 oster printf(" buf 0x%lx c%d offs %ld nsect %d\n",
544 1.21 oster (long) bufPtr, pda->col,
545 1.3 oster (long) pda->startSector, (int) pda->numSector);
546 1.3 oster }
547 1.3 oster return;
548 1.3 oster }
549 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
550 1.3 oster if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
551 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
552 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
553 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
554 1.21 oster printf(" c%d offs %ld nsect %d buf 0x%lx\n",
555 1.21 oster pda->col, (long) pda->startSector,
556 1.3 oster (int) pda->numSector, (long) bufPtr);
557 1.3 oster }
558 1.3 oster return;
559 1.3 oster }
560 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
561 1.3 oster
562 1.3 oster if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
563 1.3 oster printf("\n");
564 1.3 oster return;
565 1.3 oster }
566 1.3 oster printf("?\n");
567 1.3 oster }
568 1.16 oster #ifdef DEBUG
569 1.3 oster static void
570 1.23 oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
571 1.3 oster {
572 1.3 oster char *anttype;
573 1.3 oster int i;
574 1.3 oster
575 1.3 oster node->visited = (unvisited) ? 0 : 1;
576 1.3 oster printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
577 1.3 oster node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
578 1.3 oster node->numSuccedents, node->numSuccFired, node->numSuccDone,
579 1.3 oster node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
580 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
581 1.3 oster printf("%d%s", node->succedents[i]->nodeNum,
582 1.3 oster ((i == node->numSuccedents - 1) ? "\0" : " "));
583 1.3 oster }
584 1.3 oster printf("} A{");
585 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
586 1.3 oster switch (node->antType[i]) {
587 1.3 oster case rf_trueData:
588 1.3 oster anttype = "T";
589 1.3 oster break;
590 1.3 oster case rf_antiData:
591 1.3 oster anttype = "A";
592 1.3 oster break;
593 1.3 oster case rf_outputData:
594 1.3 oster anttype = "O";
595 1.3 oster break;
596 1.3 oster case rf_control:
597 1.3 oster anttype = "C";
598 1.3 oster break;
599 1.3 oster default:
600 1.3 oster anttype = "?";
601 1.3 oster break;
602 1.3 oster }
603 1.3 oster printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
604 1.3 oster }
605 1.3 oster printf("}; ");
606 1.3 oster rf_PrintNodeInfoString(node);
607 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
608 1.3 oster if (node->succedents[i]->visited == unvisited)
609 1.3 oster rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
610 1.3 oster }
611 1.1 oster }
612 1.1 oster
613 1.3 oster static void
614 1.23 oster rf_PrintDAG(RF_DagHeader_t *dag_h)
615 1.3 oster {
616 1.3 oster int unvisited, i;
617 1.3 oster char *status;
618 1.3 oster
619 1.3 oster /* set dag status */
620 1.3 oster switch (dag_h->status) {
621 1.3 oster case rf_enable:
622 1.3 oster status = "enable";
623 1.3 oster break;
624 1.3 oster case rf_rollForward:
625 1.3 oster status = "rollForward";
626 1.3 oster break;
627 1.3 oster case rf_rollBackward:
628 1.3 oster status = "rollBackward";
629 1.3 oster break;
630 1.3 oster default:
631 1.3 oster status = "illegal!";
632 1.3 oster break;
633 1.3 oster }
634 1.3 oster /* find out if visited bits are currently set or clear */
635 1.3 oster unvisited = dag_h->succedents[0]->visited;
636 1.3 oster
637 1.3 oster printf("DAG type: %s\n", dag_h->creator);
638 1.3 oster printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
639 1.3 oster printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
640 1.3 oster status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
641 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
642 1.3 oster printf("%d%s", dag_h->succedents[i]->nodeNum,
643 1.3 oster ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
644 1.3 oster }
645 1.3 oster printf("};\n");
646 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
647 1.3 oster if (dag_h->succedents[i]->visited == unvisited)
648 1.3 oster rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
649 1.3 oster }
650 1.3 oster }
651 1.16 oster #endif
652 1.1 oster /* assigns node numbers */
653 1.3 oster int
654 1.3 oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
655 1.1 oster {
656 1.3 oster int unvisited, i, nnum;
657 1.3 oster RF_DagNode_t *node;
658 1.1 oster
659 1.3 oster nnum = 0;
660 1.3 oster unvisited = dag_h->succedents[0]->visited;
661 1.3 oster
662 1.3 oster dag_h->nodeNum = nnum++;
663 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
664 1.3 oster node = dag_h->succedents[i];
665 1.3 oster if (node->visited == unvisited) {
666 1.3 oster nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
667 1.3 oster }
668 1.3 oster }
669 1.3 oster return (nnum);
670 1.1 oster }
671 1.1 oster
672 1.3 oster int
673 1.23 oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
674 1.3 oster {
675 1.3 oster int i;
676 1.3 oster
677 1.3 oster node->visited = (unvisited) ? 0 : 1;
678 1.3 oster
679 1.3 oster node->nodeNum = num++;
680 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
681 1.3 oster if (node->succedents[i]->visited == unvisited) {
682 1.3 oster num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
683 1.3 oster }
684 1.3 oster }
685 1.3 oster return (num);
686 1.3 oster }
687 1.1 oster /* set the header pointers in each node to "newptr" */
688 1.3 oster void
689 1.23 oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
690 1.3 oster {
691 1.3 oster int i;
692 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++)
693 1.3 oster if (dag_h->succedents[i]->dagHdr != newptr)
694 1.3 oster rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
695 1.1 oster }
696 1.1 oster
697 1.3 oster void
698 1.23 oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
699 1.1 oster {
700 1.3 oster int i;
701 1.3 oster node->dagHdr = newptr;
702 1.3 oster for (i = 0; i < node->numSuccedents; i++)
703 1.3 oster if (node->succedents[i]->dagHdr != newptr)
704 1.3 oster rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
705 1.3 oster }
706 1.1 oster
707 1.1 oster
708 1.3 oster void
709 1.3 oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
710 1.3 oster {
711 1.3 oster int i = 0;
712 1.3 oster
713 1.3 oster for (; dag_h; dag_h = dag_h->next) {
714 1.3 oster rf_AssignNodeNums(dag_h);
715 1.3 oster printf("\n\nDAG %d IN LIST:\n", i++);
716 1.3 oster rf_PrintDAG(dag_h);
717 1.3 oster }
718 1.1 oster }
719 1.1 oster
720 1.3 oster static int
721 1.23 oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
722 1.23 oster RF_DagNode_t **nodes, int unvisited)
723 1.3 oster {
724 1.3 oster int i, retcode = 0;
725 1.3 oster
726 1.3 oster /* construct an array of node pointers indexed by node num */
727 1.3 oster node->visited = (unvisited) ? 0 : 1;
728 1.3 oster nodes[node->nodeNum] = node;
729 1.3 oster
730 1.3 oster if (node->next != NULL) {
731 1.3 oster printf("INVALID DAG: next pointer in node is not NULL\n");
732 1.3 oster retcode = 1;
733 1.3 oster }
734 1.3 oster if (node->status != rf_wait) {
735 1.3 oster printf("INVALID DAG: Node status is not wait\n");
736 1.3 oster retcode = 1;
737 1.3 oster }
738 1.3 oster if (node->numAntDone != 0) {
739 1.3 oster printf("INVALID DAG: numAntDone is not zero\n");
740 1.3 oster retcode = 1;
741 1.3 oster }
742 1.3 oster if (node->doFunc == rf_TerminateFunc) {
743 1.3 oster if (node->numSuccedents != 0) {
744 1.3 oster printf("INVALID DAG: Terminator node has succedents\n");
745 1.3 oster retcode = 1;
746 1.3 oster }
747 1.3 oster } else {
748 1.3 oster if (node->numSuccedents == 0) {
749 1.3 oster printf("INVALID DAG: Non-terminator node has no succedents\n");
750 1.3 oster retcode = 1;
751 1.3 oster }
752 1.3 oster }
753 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
754 1.3 oster if (!node->succedents[i]) {
755 1.3 oster printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
756 1.3 oster retcode = 1;
757 1.3 oster }
758 1.3 oster scount[node->succedents[i]->nodeNum]++;
759 1.3 oster }
760 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
761 1.3 oster if (!node->antecedents[i]) {
762 1.3 oster printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
763 1.3 oster retcode = 1;
764 1.3 oster }
765 1.3 oster acount[node->antecedents[i]->nodeNum]++;
766 1.3 oster }
767 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
768 1.3 oster if (node->succedents[i]->visited == unvisited) {
769 1.3 oster if (rf_ValidateBranch(node->succedents[i], scount,
770 1.3 oster acount, nodes, unvisited)) {
771 1.3 oster retcode = 1;
772 1.3 oster }
773 1.3 oster }
774 1.3 oster }
775 1.3 oster return (retcode);
776 1.3 oster }
777 1.3 oster
778 1.3 oster static void
779 1.23 oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
780 1.3 oster {
781 1.3 oster int i;
782 1.3 oster
783 1.3 oster RF_ASSERT(node->visited == unvisited);
784 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
785 1.3 oster if (node->succedents[i] == NULL) {
786 1.3 oster printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
787 1.3 oster RF_ASSERT(0);
788 1.3 oster }
789 1.3 oster rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
790 1.3 oster }
791 1.3 oster }
792 1.3 oster /* NOTE: never call this on a big dag, because it is exponential
793 1.3 oster * in execution time
794 1.3 oster */
795 1.3 oster static void
796 1.23 oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
797 1.3 oster {
798 1.3 oster int i, unvisited;
799 1.3 oster
800 1.3 oster unvisited = dag->succedents[0]->visited;
801 1.3 oster
802 1.3 oster for (i = 0; i < dag->numSuccedents; i++) {
803 1.3 oster if (dag->succedents[i] == NULL) {
804 1.3 oster printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
805 1.3 oster RF_ASSERT(0);
806 1.3 oster }
807 1.3 oster rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
808 1.3 oster }
809 1.3 oster }
810 1.1 oster /* validate a DAG. _at entry_ verify that:
811 1.1 oster * -- numNodesCompleted is zero
812 1.1 oster * -- node queue is null
813 1.1 oster * -- dag status is rf_enable
814 1.1 oster * -- next pointer is null on every node
815 1.1 oster * -- all nodes have status wait
816 1.1 oster * -- numAntDone is zero in all nodes
817 1.1 oster * -- terminator node has zero successors
818 1.1 oster * -- no other node besides terminator has zero successors
819 1.1 oster * -- no successor or antecedent pointer in a node is NULL
820 1.1 oster * -- number of times that each node appears as a successor of another node
821 1.1 oster * is equal to the antecedent count on that node
822 1.1 oster * -- number of times that each node appears as an antecedent of another node
823 1.1 oster * is equal to the succedent count on that node
824 1.1 oster * -- what else?
825 1.1 oster */
826 1.3 oster int
827 1.23 oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
828 1.3 oster {
829 1.3 oster int i, nodecount;
830 1.3 oster int *scount, *acount;/* per-node successor and antecedent counts */
831 1.3 oster RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
832 1.3 oster int retcode = 0;
833 1.3 oster int unvisited;
834 1.3 oster int commitNodeCount = 0;
835 1.3 oster
836 1.3 oster if (rf_validateVisitedDebug)
837 1.3 oster rf_ValidateVisitedBits(dag_h);
838 1.3 oster
839 1.3 oster if (dag_h->numNodesCompleted != 0) {
840 1.3 oster printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
841 1.3 oster retcode = 1;
842 1.3 oster goto validate_dag_bad;
843 1.3 oster }
844 1.3 oster if (dag_h->status != rf_enable) {
845 1.3 oster printf("INVALID DAG: not enabled\n");
846 1.3 oster retcode = 1;
847 1.3 oster goto validate_dag_bad;
848 1.3 oster }
849 1.3 oster if (dag_h->numCommits != 0) {
850 1.3 oster printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
851 1.3 oster retcode = 1;
852 1.3 oster goto validate_dag_bad;
853 1.3 oster }
854 1.3 oster if (dag_h->numSuccedents != 1) {
855 1.3 oster /* currently, all dags must have only one succedent */
856 1.3 oster printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
857 1.3 oster retcode = 1;
858 1.3 oster goto validate_dag_bad;
859 1.3 oster }
860 1.3 oster nodecount = rf_AssignNodeNums(dag_h);
861 1.3 oster
862 1.3 oster unvisited = dag_h->succedents[0]->visited;
863 1.3 oster
864 1.22 oster RF_Malloc(scount, nodecount * sizeof(int), (int *));
865 1.22 oster RF_Malloc(acount, nodecount * sizeof(int), (int *));
866 1.22 oster RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
867 1.22 oster (RF_DagNode_t **));
868 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
869 1.3 oster if ((dag_h->succedents[i]->visited == unvisited)
870 1.3 oster && rf_ValidateBranch(dag_h->succedents[i], scount,
871 1.3 oster acount, nodes, unvisited)) {
872 1.3 oster retcode = 1;
873 1.3 oster }
874 1.3 oster }
875 1.3 oster /* start at 1 to skip the header node */
876 1.3 oster for (i = 1; i < nodecount; i++) {
877 1.3 oster if (nodes[i]->commitNode)
878 1.3 oster commitNodeCount++;
879 1.3 oster if (nodes[i]->doFunc == NULL) {
880 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
881 1.3 oster retcode = 1;
882 1.3 oster goto validate_dag_out;
883 1.3 oster }
884 1.3 oster if (nodes[i]->undoFunc == NULL) {
885 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
886 1.3 oster retcode = 1;
887 1.3 oster goto validate_dag_out;
888 1.3 oster }
889 1.3 oster if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
890 1.3 oster printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
891 1.3 oster nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
892 1.3 oster retcode = 1;
893 1.3 oster goto validate_dag_out;
894 1.3 oster }
895 1.3 oster if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
896 1.3 oster printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
897 1.3 oster nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
898 1.3 oster retcode = 1;
899 1.3 oster goto validate_dag_out;
900 1.3 oster }
901 1.3 oster }
902 1.1 oster
903 1.3 oster if (dag_h->numCommitNodes != commitNodeCount) {
904 1.3 oster printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
905 1.3 oster dag_h->numCommitNodes, commitNodeCount);
906 1.3 oster retcode = 1;
907 1.3 oster goto validate_dag_out;
908 1.3 oster }
909 1.1 oster validate_dag_out:
910 1.3 oster RF_Free(scount, nodecount * sizeof(int));
911 1.3 oster RF_Free(acount, nodecount * sizeof(int));
912 1.3 oster RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
913 1.3 oster if (retcode)
914 1.3 oster rf_PrintDAGList(dag_h);
915 1.3 oster
916 1.3 oster if (rf_validateVisitedDebug)
917 1.3 oster rf_ValidateVisitedBits(dag_h);
918 1.3 oster
919 1.3 oster return (retcode);
920 1.1 oster
921 1.1 oster validate_dag_bad:
922 1.3 oster rf_PrintDAGList(dag_h);
923 1.3 oster return (retcode);
924 1.1 oster }
925 1.1 oster
926 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
927 1.1 oster
928 1.1 oster /******************************************************************************
929 1.1 oster *
930 1.1 oster * misc construction routines
931 1.1 oster *
932 1.1 oster *****************************************************************************/
933 1.1 oster
934 1.3 oster void
935 1.23 oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
936 1.3 oster {
937 1.3 oster int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
938 1.21 oster int fcol = raidPtr->reconControl->fcol;
939 1.21 oster int scol = raidPtr->reconControl->spareCol;
940 1.3 oster RF_PhysDiskAddr_t *pda;
941 1.3 oster
942 1.21 oster RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
943 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
944 1.3 oster if (pda->col == fcol) {
945 1.31 oster #if RF_DEBUG_DAG
946 1.3 oster if (rf_dagDebug) {
947 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
948 1.3 oster pda->startSector)) {
949 1.3 oster RF_PANIC();
950 1.3 oster }
951 1.3 oster }
952 1.31 oster #endif
953 1.3 oster /* printf("Remapped data for large write\n"); */
954 1.3 oster if (ds) {
955 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
956 1.21 oster &pda->col, &pda->startSector, RF_REMAP);
957 1.3 oster } else {
958 1.3 oster pda->col = scol;
959 1.3 oster }
960 1.3 oster }
961 1.3 oster }
962 1.3 oster for (pda = asmap->parityInfo; pda; pda = pda->next) {
963 1.3 oster if (pda->col == fcol) {
964 1.31 oster #if RF_DEBUG_DAG
965 1.3 oster if (rf_dagDebug) {
966 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
967 1.3 oster RF_PANIC();
968 1.3 oster }
969 1.3 oster }
970 1.31 oster #endif
971 1.3 oster }
972 1.3 oster if (ds) {
973 1.21 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
974 1.3 oster } else {
975 1.3 oster pda->col = scol;
976 1.3 oster }
977 1.3 oster }
978 1.1 oster }
979 1.1 oster
980 1.1 oster
981 1.1 oster /* this routine allocates read buffers and generates stripe maps for the
982 1.1 oster * regions of the array from the start of the stripe to the start of the
983 1.1 oster * access, and from the end of the access to the end of the stripe. It also
984 1.1 oster * computes and returns the number of DAG nodes needed to read all this data.
985 1.1 oster * Note that this routine does the wrong thing if the access is fully
986 1.1 oster * contained within one stripe unit, so we RF_ASSERT against this case at the
987 1.1 oster * start.
988 1.23 oster *
989 1.23 oster * layoutPtr - in: layout information
990 1.23 oster * asmap - in: access stripe map
991 1.23 oster * dag_h - in: header of the dag to create
992 1.23 oster * new_asm_h - in: ptr to array of 2 headers. to be filled in
993 1.23 oster * nRodNodes - out: num nodes to be generated to read unaccessed data
994 1.23 oster * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
995 1.1 oster */
996 1.3 oster void
997 1.23 oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
998 1.23 oster RF_RaidLayout_t *layoutPtr,
999 1.23 oster RF_AccessStripeMap_t *asmap,
1000 1.23 oster RF_DagHeader_t *dag_h,
1001 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
1002 1.23 oster int *nRodNodes,
1003 1.23 oster char **sosBuffer, char **eosBuffer,
1004 1.23 oster RF_AllocListElem_t *allocList)
1005 1.3 oster {
1006 1.3 oster RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
1007 1.3 oster RF_SectorNum_t sosNumSector, eosNumSector;
1008 1.3 oster
1009 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
1010 1.3 oster /* generate an access map for the region of the array from start of
1011 1.3 oster * stripe to start of access */
1012 1.3 oster new_asm_h[0] = new_asm_h[1] = NULL;
1013 1.3 oster *nRodNodes = 0;
1014 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
1015 1.3 oster sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1016 1.3 oster sosNumSector = asmap->raidAddress - sosRaidAddress;
1017 1.44 oster *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
1018 1.3 oster new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
1019 1.3 oster new_asm_h[0]->next = dag_h->asmList;
1020 1.3 oster dag_h->asmList = new_asm_h[0];
1021 1.3 oster *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1022 1.3 oster
1023 1.3 oster RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1024 1.3 oster /* we're totally within one stripe here */
1025 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1026 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1027 1.3 oster }
1028 1.3 oster /* generate an access map for the region of the array from end of
1029 1.3 oster * access to end of stripe */
1030 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1031 1.3 oster eosRaidAddress = asmap->endRaidAddress;
1032 1.3 oster eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1033 1.44 oster *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1034 1.3 oster new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1035 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1036 1.3 oster dag_h->asmList = new_asm_h[1];
1037 1.3 oster *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1038 1.3 oster
1039 1.3 oster RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1040 1.3 oster /* we're totally within one stripe here */
1041 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1042 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1043 1.3 oster }
1044 1.1 oster }
1045 1.1 oster
1046 1.1 oster
1047 1.1 oster
1048 1.1 oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1049 1.3 oster int
1050 1.23 oster rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1051 1.23 oster RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1052 1.3 oster {
1053 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1054 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1055 1.3 oster /* use -1 to be sure we stay within SU */
1056 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1057 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1058 1.3 oster return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1059 1.1 oster }
1060 1.1 oster
1061 1.1 oster
1062 1.1 oster /* GenerateFailedAccessASMs
1063 1.1 oster *
1064 1.1 oster * this routine figures out what portion of the stripe needs to be read
1065 1.1 oster * to effect the degraded read or write operation. It's primary function
1066 1.1 oster * is to identify everything required to recover the data, and then
1067 1.1 oster * eliminate anything that is already being accessed by the user.
1068 1.1 oster *
1069 1.1 oster * The main result is two new ASMs, one for the region from the start of the
1070 1.1 oster * stripe to the start of the access, and one for the region from the end of
1071 1.1 oster * the access to the end of the stripe. These ASMs describe everything that
1072 1.1 oster * needs to be read to effect the degraded access. Other results are:
1073 1.1 oster * nXorBufs -- the total number of buffers that need to be XORed together to
1074 1.1 oster * recover the lost data,
1075 1.1 oster * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1076 1.1 oster * at entry, not allocated.
1077 1.1 oster * overlappingPDAs --
1078 1.1 oster * describes which of the non-failed PDAs in the user access
1079 1.1 oster * overlap data that needs to be read to effect recovery.
1080 1.1 oster * overlappingPDAs[i]==1 if and only if, neglecting the failed
1081 1.1 oster * PDA, the ith pda in the input asm overlaps data that needs
1082 1.1 oster * to be read for recovery.
1083 1.1 oster */
1084 1.1 oster /* in: asm - ASM for the actual access, one stripe only */
1085 1.10 wiz /* in: failedPDA - which component of the access has failed */
1086 1.1 oster /* in: dag_h - header of the DAG we're going to create */
1087 1.1 oster /* out: new_asm_h - the two new ASMs */
1088 1.1 oster /* out: nXorBufs - the total number of xor bufs required */
1089 1.1 oster /* out: rpBufPtr - a buffer for the parity read */
1090 1.3 oster void
1091 1.23 oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1092 1.23 oster RF_PhysDiskAddr_t *failedPDA,
1093 1.23 oster RF_DagHeader_t *dag_h,
1094 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
1095 1.23 oster int *nXorBufs, char **rpBufPtr,
1096 1.23 oster char *overlappingPDAs,
1097 1.23 oster RF_AllocListElem_t *allocList)
1098 1.3 oster {
1099 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1100 1.3 oster
1101 1.3 oster /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1102 1.3 oster RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1103 1.3 oster RF_PhysDiskAddr_t *pda;
1104 1.3 oster int foundit, i;
1105 1.3 oster
1106 1.3 oster foundit = 0;
1107 1.3 oster /* first compute the following raid addresses: start of stripe,
1108 1.3 oster * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1109 1.3 oster * MAX(end of access, end of failed SU), (eosStartAddr) end of
1110 1.3 oster * stripe (i.e. start of next stripe) (eosAddr) */
1111 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1112 1.3 oster sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1113 1.3 oster eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1114 1.3 oster eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1115 1.3 oster
1116 1.3 oster /* now generate access stripe maps for each of the above regions of
1117 1.3 oster * the stripe. Use a dummy (NULL) buf ptr for now */
1118 1.3 oster
1119 1.3 oster new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1120 1.3 oster new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1121 1.3 oster
1122 1.3 oster /* walk through the PDAs and range-restrict each SU to the region of
1123 1.3 oster * the SU touched on the failed PDA. also compute total data buffer
1124 1.3 oster * space requirements in this step. Ignore the parity for now. */
1125 1.35 oster /* Also count nodes to find out how many bufs need to be xored together */
1126 1.35 oster (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1127 1.35 oster * case, 1 is for failed data */
1128 1.3 oster
1129 1.3 oster if (new_asm_h[0]) {
1130 1.3 oster new_asm_h[0]->next = dag_h->asmList;
1131 1.3 oster dag_h->asmList = new_asm_h[0];
1132 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1133 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1134 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1135 1.3 oster }
1136 1.35 oster (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1137 1.3 oster }
1138 1.3 oster if (new_asm_h[1]) {
1139 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1140 1.3 oster dag_h->asmList = new_asm_h[1];
1141 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1142 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1143 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1144 1.3 oster }
1145 1.3 oster (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1146 1.3 oster }
1147 1.35 oster
1148 1.35 oster /* allocate a buffer for parity */
1149 1.35 oster if (rpBufPtr)
1150 1.44 oster *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1151 1.3 oster
1152 1.3 oster /* the last step is to figure out how many more distinct buffers need
1153 1.3 oster * to get xor'd to produce the missing unit. there's one for each
1154 1.3 oster * user-data read node that overlaps the portion of the failed unit
1155 1.3 oster * being accessed */
1156 1.3 oster
1157 1.3 oster for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1158 1.3 oster if (pda == failedPDA) {
1159 1.3 oster i--;
1160 1.3 oster foundit = 1;
1161 1.3 oster continue;
1162 1.3 oster }
1163 1.3 oster if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1164 1.3 oster overlappingPDAs[i] = 1;
1165 1.3 oster (*nXorBufs)++;
1166 1.3 oster }
1167 1.3 oster }
1168 1.3 oster if (!foundit) {
1169 1.3 oster RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1170 1.3 oster RF_ASSERT(0);
1171 1.3 oster }
1172 1.31 oster #if RF_DEBUG_DAG
1173 1.3 oster if (rf_degDagDebug) {
1174 1.3 oster if (new_asm_h[0]) {
1175 1.3 oster printf("First asm:\n");
1176 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1177 1.3 oster }
1178 1.3 oster if (new_asm_h[1]) {
1179 1.3 oster printf("Second asm:\n");
1180 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1181 1.3 oster }
1182 1.3 oster }
1183 1.31 oster #endif
1184 1.1 oster }
1185 1.1 oster
1186 1.1 oster
1187 1.1 oster /* adjusts the offset and number of sectors in the destination pda so that
1188 1.1 oster * it covers at most the region of the SU covered by the source PDA. This
1189 1.1 oster * is exclusively a restriction: the number of sectors indicated by the
1190 1.1 oster * target PDA can only shrink.
1191 1.1 oster *
1192 1.1 oster * For example: s = sectors within SU indicated by source PDA
1193 1.1 oster * d = sectors within SU indicated by dest PDA
1194 1.1 oster * r = results, stored in dest PDA
1195 1.1 oster *
1196 1.1 oster * |--------------- one stripe unit ---------------------|
1197 1.1 oster * | sssssssssssssssssssssssssssssssss |
1198 1.1 oster * | ddddddddddddddddddddddddddddddddddddddddddddd |
1199 1.1 oster * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1200 1.1 oster *
1201 1.1 oster * Another example:
1202 1.1 oster *
1203 1.1 oster * |--------------- one stripe unit ---------------------|
1204 1.1 oster * | sssssssssssssssssssssssssssssssss |
1205 1.1 oster * | ddddddddddddddddddddddd |
1206 1.1 oster * | rrrrrrrrrrrrrrrr |
1207 1.1 oster *
1208 1.1 oster */
1209 1.3 oster void
1210 1.23 oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1211 1.23 oster RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1212 1.3 oster {
1213 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1214 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1215 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1216 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1217 1.3 oster * stay within SU */
1218 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1219 1.3 oster RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1220 1.3 oster
1221 1.3 oster dest->startSector = subAddr + RF_MAX(soffs, doffs);
1222 1.3 oster dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1223 1.3 oster
1224 1.3 oster if (dobuffer)
1225 1.3 oster dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1226 1.3 oster if (doraidaddr) {
1227 1.3 oster dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1228 1.3 oster rf_StripeUnitOffset(layoutPtr, dest->startSector);
1229 1.3 oster }
1230 1.1 oster }
1231 1.11 oster
1232 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1233 1.11 oster
1234 1.1 oster /*
1235 1.1 oster * Want the highest of these primes to be the largest one
1236 1.1 oster * less than the max expected number of columns (won't hurt
1237 1.1 oster * to be too small or too large, but won't be optimal, either)
1238 1.1 oster * --jimz
1239 1.1 oster */
1240 1.1 oster #define NLOWPRIMES 8
1241 1.3 oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1242 1.1 oster /*****************************************************************************
1243 1.1 oster * compute the workload shift factor. (chained declustering)
1244 1.1 oster *
1245 1.1 oster * return nonzero if access should shift to secondary, otherwise,
1246 1.1 oster * access is to primary
1247 1.1 oster *****************************************************************************/
1248 1.3 oster int
1249 1.23 oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1250 1.3 oster {
1251 1.3 oster /*
1252 1.3 oster * variables:
1253 1.3 oster * d = column of disk containing primary
1254 1.3 oster * f = column of failed disk
1255 1.3 oster * n = number of disks in array
1256 1.3 oster * sd = "shift distance" (number of columns that d is to the right of f)
1257 1.3 oster * v = numerator of redirection ratio
1258 1.3 oster * k = denominator of redirection ratio
1259 1.3 oster */
1260 1.21 oster RF_RowCol_t d, f, sd, n;
1261 1.3 oster int k, v, ret, i;
1262 1.3 oster
1263 1.3 oster n = raidPtr->numCol;
1264 1.3 oster
1265 1.3 oster /* assign column of primary copy to d */
1266 1.3 oster d = pda->col;
1267 1.3 oster
1268 1.3 oster /* assign column of dead disk to f */
1269 1.21 oster for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1270 1.3 oster
1271 1.3 oster RF_ASSERT(f < n);
1272 1.3 oster RF_ASSERT(f != d);
1273 1.3 oster
1274 1.3 oster sd = (f > d) ? (n + d - f) : (d - f);
1275 1.3 oster RF_ASSERT(sd < n);
1276 1.3 oster
1277 1.3 oster /*
1278 1.3 oster * v of every k accesses should be redirected
1279 1.3 oster *
1280 1.3 oster * v/k := (n-1-sd)/(n-1)
1281 1.3 oster */
1282 1.3 oster v = (n - 1 - sd);
1283 1.3 oster k = (n - 1);
1284 1.1 oster
1285 1.1 oster #if 1
1286 1.3 oster /*
1287 1.3 oster * XXX
1288 1.3 oster * Is this worth it?
1289 1.3 oster *
1290 1.3 oster * Now reduce the fraction, by repeatedly factoring
1291 1.3 oster * out primes (just like they teach in elementary school!)
1292 1.3 oster */
1293 1.3 oster for (i = 0; i < NLOWPRIMES; i++) {
1294 1.3 oster if (lowprimes[i] > v)
1295 1.3 oster break;
1296 1.3 oster while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1297 1.3 oster v /= lowprimes[i];
1298 1.3 oster k /= lowprimes[i];
1299 1.3 oster }
1300 1.3 oster }
1301 1.1 oster #endif
1302 1.1 oster
1303 1.21 oster raidPtr->hist_diskreq[d]++;
1304 1.21 oster if (raidPtr->hist_diskreq[d] > v) {
1305 1.3 oster ret = 0; /* do not redirect */
1306 1.3 oster } else {
1307 1.3 oster ret = 1; /* redirect */
1308 1.3 oster }
1309 1.1 oster
1310 1.1 oster #if 0
1311 1.3 oster printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1312 1.21 oster raidPtr->hist_diskreq[d]);
1313 1.1 oster #endif
1314 1.1 oster
1315 1.21 oster if (raidPtr->hist_diskreq[d] >= k) {
1316 1.3 oster /* reset counter */
1317 1.21 oster raidPtr->hist_diskreq[d] = 0;
1318 1.3 oster }
1319 1.3 oster return (ret);
1320 1.1 oster }
1321 1.11 oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1322 1.11 oster
1323 1.1 oster /*
1324 1.1 oster * Disk selection routines
1325 1.1 oster */
1326 1.1 oster
1327 1.1 oster /*
1328 1.1 oster * Selects the disk with the shortest queue from a mirror pair.
1329 1.1 oster * Both the disk I/Os queued in RAIDframe as well as those at the physical
1330 1.1 oster * disk are counted as members of the "queue"
1331 1.1 oster */
1332 1.3 oster void
1333 1.3 oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1334 1.1 oster {
1335 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1336 1.21 oster RF_RowCol_t colData, colMirror;
1337 1.3 oster int dataQueueLength, mirrorQueueLength, usemirror;
1338 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1339 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1340 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1341 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1342 1.21 oster RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1343 1.3 oster
1344 1.3 oster /* return the [row col] of the disk with the shortest queue */
1345 1.3 oster colData = data_pda->col;
1346 1.3 oster colMirror = mirror_pda->col;
1347 1.21 oster dataQueue = &(dqs[colData]);
1348 1.21 oster mirrorQueue = &(dqs[colMirror]);
1349 1.1 oster
1350 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1351 1.3 oster RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1352 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1353 1.3 oster dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1354 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1355 1.3 oster RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1356 1.3 oster RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1357 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1358 1.3 oster mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1359 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1360 1.3 oster RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1361 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1362 1.1 oster
1363 1.3 oster usemirror = 0;
1364 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1365 1.3 oster usemirror = 0;
1366 1.3 oster } else
1367 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1368 1.3 oster usemirror = 1;
1369 1.3 oster } else
1370 1.5 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1371 1.5 oster /* Trust only the main disk */
1372 1.3 oster usemirror = 0;
1373 1.3 oster } else
1374 1.5 oster if (dataQueueLength < mirrorQueueLength) {
1375 1.5 oster usemirror = 0;
1376 1.5 oster } else
1377 1.5 oster if (mirrorQueueLength < dataQueueLength) {
1378 1.5 oster usemirror = 1;
1379 1.3 oster } else {
1380 1.5 oster /* queues are equal length. attempt
1381 1.5 oster * cleverness. */
1382 1.5 oster if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1383 1.5 oster <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1384 1.5 oster usemirror = 0;
1385 1.5 oster } else {
1386 1.5 oster usemirror = 1;
1387 1.5 oster }
1388 1.3 oster }
1389 1.3 oster
1390 1.3 oster if (usemirror) {
1391 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1392 1.3 oster tmp_pda = data_pda;
1393 1.3 oster node->params[0].p = mirror_pda;
1394 1.3 oster node->params[4].p = tmp_pda;
1395 1.3 oster } else {
1396 1.3 oster /* use data disk, leave param 0 unchanged */
1397 1.3 oster }
1398 1.3 oster /* printf("dataQueueLength %d, mirrorQueueLength
1399 1.3 oster * %d\n",dataQueueLength, mirrorQueueLength); */
1400 1.1 oster }
1401 1.19 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1402 1.1 oster /*
1403 1.1 oster * Do simple partitioning. This assumes that
1404 1.1 oster * the data and parity disks are laid out identically.
1405 1.1 oster */
1406 1.3 oster void
1407 1.3 oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1408 1.1 oster {
1409 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1410 1.21 oster RF_RowCol_t colData, colMirror;
1411 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1412 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1413 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1414 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1415 1.3 oster int usemirror;
1416 1.3 oster
1417 1.3 oster /* return the [row col] of the disk with the shortest queue */
1418 1.3 oster colData = data_pda->col;
1419 1.3 oster colMirror = mirror_pda->col;
1420 1.3 oster
1421 1.3 oster usemirror = 0;
1422 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1423 1.3 oster usemirror = 0;
1424 1.3 oster } else
1425 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1426 1.3 oster usemirror = 1;
1427 1.6 oster } else
1428 1.6 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1429 1.6 oster /* Trust only the main disk */
1430 1.3 oster usemirror = 0;
1431 1.6 oster } else
1432 1.6 oster if (data_pda->startSector <
1433 1.21 oster (disks[colData].numBlocks / 2)) {
1434 1.6 oster usemirror = 0;
1435 1.6 oster } else {
1436 1.6 oster usemirror = 1;
1437 1.6 oster }
1438 1.3 oster
1439 1.3 oster if (usemirror) {
1440 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1441 1.3 oster tmp_pda = data_pda;
1442 1.3 oster node->params[0].p = mirror_pda;
1443 1.3 oster node->params[4].p = tmp_pda;
1444 1.3 oster } else {
1445 1.3 oster /* use data disk, leave param 0 unchanged */
1446 1.3 oster }
1447 1.1 oster }
1448 1.19 oster #endif
1449