Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.46
      1  1.46  christos /*	$NetBSD: rf_dagutils.c,v 1.46 2005/05/29 22:03:09 christos Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /******************************************************************************
     30   1.1     oster  *
     31   1.1     oster  * rf_dagutils.c -- utility routines for manipulating dags
     32   1.1     oster  *
     33   1.1     oster  *****************************************************************************/
     34   1.9     lukem 
     35   1.9     lukem #include <sys/cdefs.h>
     36  1.46  christos __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.46 2005/05/29 22:03:09 christos Exp $");
     37   1.1     oster 
     38   1.8     oster #include <dev/raidframe/raidframevar.h>
     39   1.8     oster 
     40   1.1     oster #include "rf_archs.h"
     41   1.1     oster #include "rf_threadstuff.h"
     42   1.1     oster #include "rf_raid.h"
     43   1.1     oster #include "rf_dag.h"
     44   1.1     oster #include "rf_dagutils.h"
     45   1.1     oster #include "rf_dagfuncs.h"
     46   1.1     oster #include "rf_general.h"
     47   1.1     oster #include "rf_map.h"
     48   1.1     oster #include "rf_shutdown.h"
     49   1.1     oster 
     50   1.1     oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51   1.1     oster 
     52  1.20  jdolecek const RF_RedFuncs_t rf_xorFuncs = {
     53   1.1     oster 	rf_RegularXorFunc, "Reg Xr",
     54  1.32     oster 	rf_SimpleXorFunc, "Simple Xr"};
     55   1.1     oster 
     56  1.20  jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57   1.1     oster 	rf_RecoveryXorFunc, "Recovery Xr",
     58  1.32     oster 	rf_RecoveryXorFunc, "Recovery Xr"};
     59   1.1     oster 
     60  1.13     oster #if RF_DEBUG_VALIDATE_DAG
     61   1.1     oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62   1.1     oster static void rf_PrintDAG(RF_DagHeader_t *);
     63  1.12     oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64  1.12     oster 			     RF_DagNode_t **, int);
     65   1.1     oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66   1.1     oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
     68   1.1     oster 
     69  1.40     oster /* The maximum number of nodes in a DAG is bounded by
     70  1.40     oster 
     71  1.45     perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72  1.40     oster 	(1 * 2 * layoutPtr->numParityCol) + 3
     73  1.40     oster 
     74  1.40     oster which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75  1.40     oster 
     76  1.40     oster For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77  1.45     perry on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78  1.45     perry would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79  1.40     oster have a few kicking around.
     80  1.40     oster */
     81  1.40     oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82  1.40     oster 
     83  1.40     oster 
     84   1.1     oster /******************************************************************************
     85   1.1     oster  *
     86   1.1     oster  * InitNode - initialize a dag node
     87   1.1     oster  *
     88   1.1     oster  * the size of the propList array is always the same as that of the
     89   1.1     oster  * successors array.
     90   1.1     oster  *
     91   1.1     oster  *****************************************************************************/
     92  1.40     oster void
     93  1.23     oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94  1.23     oster     int (*doFunc) (RF_DagNode_t *node),
     95  1.23     oster     int (*undoFunc) (RF_DagNode_t *node),
     96  1.23     oster     int (*wakeFunc) (RF_DagNode_t *node, int status),
     97  1.23     oster     int nSucc, int nAnte, int nParam, int nResult,
     98  1.46  christos     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99   1.3     oster {
    100   1.3     oster 	void  **ptrs;
    101   1.3     oster 	int     nptrs;
    102   1.3     oster 
    103   1.3     oster 	if (nAnte > RF_MAX_ANTECEDENTS)
    104   1.3     oster 		RF_PANIC();
    105   1.3     oster 	node->status = initstatus;
    106   1.3     oster 	node->commitNode = commit;
    107   1.3     oster 	node->doFunc = doFunc;
    108   1.3     oster 	node->undoFunc = undoFunc;
    109   1.3     oster 	node->wakeFunc = wakeFunc;
    110   1.3     oster 	node->numParams = nParam;
    111   1.3     oster 	node->numResults = nResult;
    112   1.3     oster 	node->numAntecedents = nAnte;
    113   1.3     oster 	node->numAntDone = 0;
    114   1.3     oster 	node->next = NULL;
    115  1.45     perry 	/* node->list_next = NULL */  /* Don't touch this here!
    116  1.45     perry 	                                 It may already be
    117  1.38     oster 					 in use by the caller! */
    118   1.3     oster 	node->numSuccedents = nSucc;
    119   1.3     oster 	node->name = name;
    120   1.3     oster 	node->dagHdr = hdr;
    121  1.40     oster 	node->big_dag_ptrs = NULL;
    122  1.40     oster 	node->big_dag_params = NULL;
    123   1.3     oster 	node->visited = 0;
    124   1.3     oster 
    125   1.3     oster 	/* allocate all the pointers with one call to malloc */
    126   1.3     oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    127   1.3     oster 
    128   1.3     oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    129   1.3     oster 		/*
    130   1.3     oster 	         * The dag_ptrs field of the node is basically some scribble
    131   1.3     oster 	         * space to be used here. We could get rid of it, and always
    132   1.3     oster 	         * allocate the range of pointers, but that's expensive. So,
    133   1.3     oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    134   1.3     oster 	         * we'll find that:
    135   1.3     oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    136   1.3     oster 	         *     only a little bit (least efficient case)
    137   1.3     oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    138   1.3     oster 	         *     (wasted memory)
    139   1.3     oster 	         */
    140   1.3     oster 		ptrs = (void **) node->dag_ptrs;
    141  1.40     oster 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    142  1.40     oster 		node->big_dag_ptrs = rf_AllocDAGPCache();
    143  1.40     oster 		ptrs = (void **) node->big_dag_ptrs;
    144   1.3     oster 	} else {
    145  1.45     perry 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    146  1.22     oster 				(void **), alist);
    147   1.3     oster 	}
    148   1.3     oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    149   1.3     oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    150   1.3     oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    151   1.3     oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    152   1.3     oster 
    153   1.3     oster 	if (nParam) {
    154   1.3     oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    155   1.3     oster 			node->params = (RF_DagParam_t *) node->dag_params;
    156  1.40     oster 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    157  1.40     oster 			node->big_dag_params = rf_AllocDAGPCache();
    158  1.40     oster 			node->params = node->big_dag_params;
    159   1.3     oster 		} else {
    160  1.45     perry 			RF_MallocAndAdd(node->params,
    161  1.45     perry 					nParam * sizeof(RF_DagParam_t),
    162  1.22     oster 					(RF_DagParam_t *), alist);
    163   1.3     oster 		}
    164   1.3     oster 	} else {
    165   1.3     oster 		node->params = NULL;
    166   1.3     oster 	}
    167   1.1     oster }
    168   1.1     oster 
    169   1.1     oster 
    170   1.1     oster 
    171   1.1     oster /******************************************************************************
    172   1.1     oster  *
    173   1.1     oster  * allocation and deallocation routines
    174   1.1     oster  *
    175   1.1     oster  *****************************************************************************/
    176   1.1     oster 
    177  1.45     perry void
    178  1.23     oster rf_FreeDAG(RF_DagHeader_t *dag_h)
    179   1.3     oster {
    180   1.3     oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    181  1.39     oster 	RF_PhysDiskAddr_t *pda;
    182  1.38     oster 	RF_DagNode_t *tmpnode;
    183   1.3     oster 	RF_DagHeader_t *nextDag;
    184   1.3     oster 
    185   1.3     oster 	while (dag_h) {
    186   1.3     oster 		nextDag = dag_h->next;
    187   1.3     oster 		rf_FreeAllocList(dag_h->allocList);
    188   1.3     oster 		for (asmap = dag_h->asmList; asmap;) {
    189   1.3     oster 			t_asmap = asmap;
    190   1.3     oster 			asmap = asmap->next;
    191   1.3     oster 			rf_FreeAccessStripeMap(t_asmap);
    192   1.3     oster 		}
    193  1.39     oster 		while (dag_h->pda_cleanup_list) {
    194  1.39     oster 			pda = dag_h->pda_cleanup_list;
    195  1.39     oster 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    196  1.39     oster 			rf_FreePhysDiskAddr(pda);
    197  1.39     oster 		}
    198  1.39     oster 		while (dag_h->nodes) {
    199  1.38     oster 			tmpnode = dag_h->nodes;
    200  1.38     oster 			dag_h->nodes = dag_h->nodes->list_next;
    201  1.38     oster 			rf_FreeDAGNode(tmpnode);
    202  1.38     oster 		}
    203   1.3     oster 		rf_FreeDAGHeader(dag_h);
    204   1.3     oster 		dag_h = nextDag;
    205   1.3     oster 	}
    206   1.3     oster }
    207   1.3     oster 
    208   1.1     oster #define RF_MAX_FREE_DAGH 128
    209  1.30     oster #define RF_MIN_FREE_DAGH  32
    210   1.1     oster 
    211  1.38     oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    212  1.38     oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    213  1.38     oster 
    214  1.25     oster #define RF_MAX_FREE_DAGLIST 128
    215  1.30     oster #define RF_MIN_FREE_DAGLIST  32
    216  1.25     oster 
    217  1.40     oster #define RF_MAX_FREE_DAGPCACHE 128
    218  1.40     oster #define RF_MIN_FREE_DAGPCACHE   8
    219  1.40     oster 
    220  1.27     oster #define RF_MAX_FREE_FUNCLIST 128
    221  1.30     oster #define RF_MIN_FREE_FUNCLIST  32
    222  1.25     oster 
    223  1.41     oster #define RF_MAX_FREE_BUFFERS 128
    224  1.41     oster #define RF_MIN_FREE_BUFFERS  32
    225  1.41     oster 
    226   1.1     oster static void rf_ShutdownDAGs(void *);
    227  1.45     perry static void
    228  1.23     oster rf_ShutdownDAGs(void *ignored)
    229   1.1     oster {
    230  1.36     oster 	pool_destroy(&rf_pools.dagh);
    231  1.38     oster 	pool_destroy(&rf_pools.dagnode);
    232  1.36     oster 	pool_destroy(&rf_pools.daglist);
    233  1.40     oster 	pool_destroy(&rf_pools.dagpcache);
    234  1.36     oster 	pool_destroy(&rf_pools.funclist);
    235   1.1     oster }
    236   1.1     oster 
    237  1.45     perry int
    238  1.23     oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    239   1.1     oster {
    240   1.1     oster 
    241  1.38     oster 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    242  1.38     oster 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    243  1.36     oster 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    244  1.36     oster 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    245  1.36     oster 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    246  1.36     oster 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    247  1.40     oster 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    248  1.40     oster 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    249  1.36     oster 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    250  1.36     oster 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    251  1.29     oster 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    252  1.29     oster 
    253   1.3     oster 	return (0);
    254   1.1     oster }
    255   1.1     oster 
    256   1.3     oster RF_DagHeader_t *
    257   1.3     oster rf_AllocDAGHeader()
    258   1.1     oster {
    259   1.1     oster 	RF_DagHeader_t *dh;
    260   1.1     oster 
    261  1.36     oster 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    262  1.28     oster 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    263   1.3     oster 	return (dh);
    264   1.1     oster }
    265   1.1     oster 
    266  1.45     perry void
    267   1.3     oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    268   1.1     oster {
    269  1.36     oster 	pool_put(&rf_pools.dagh, dh);
    270   1.1     oster }
    271  1.25     oster 
    272  1.38     oster RF_DagNode_t *
    273  1.38     oster rf_AllocDAGNode()
    274  1.38     oster {
    275  1.38     oster 	RF_DagNode_t *node;
    276  1.38     oster 
    277  1.38     oster 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    278  1.38     oster 	memset(node, 0, sizeof(RF_DagNode_t));
    279  1.38     oster 	return (node);
    280  1.38     oster }
    281  1.38     oster 
    282  1.38     oster void
    283  1.38     oster rf_FreeDAGNode(RF_DagNode_t *node)
    284  1.38     oster {
    285  1.40     oster 	if (node->big_dag_ptrs) {
    286  1.40     oster 		rf_FreeDAGPCache(node->big_dag_ptrs);
    287  1.40     oster 	}
    288  1.40     oster 	if (node->big_dag_params) {
    289  1.40     oster 		rf_FreeDAGPCache(node->big_dag_params);
    290  1.40     oster 	}
    291  1.38     oster 	pool_put(&rf_pools.dagnode, node);
    292  1.38     oster }
    293  1.38     oster 
    294  1.25     oster RF_DagList_t *
    295  1.25     oster rf_AllocDAGList()
    296  1.25     oster {
    297  1.25     oster 	RF_DagList_t *dagList;
    298  1.25     oster 
    299  1.36     oster 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    300  1.25     oster 	memset(dagList, 0, sizeof(RF_DagList_t));
    301  1.25     oster 
    302  1.25     oster 	return (dagList);
    303  1.25     oster }
    304  1.25     oster 
    305  1.25     oster void
    306  1.25     oster rf_FreeDAGList(RF_DagList_t *dagList)
    307  1.25     oster {
    308  1.36     oster 	pool_put(&rf_pools.daglist, dagList);
    309  1.25     oster }
    310  1.25     oster 
    311  1.40     oster void *
    312  1.40     oster rf_AllocDAGPCache()
    313  1.40     oster {
    314  1.40     oster 	void *p;
    315  1.40     oster 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    316  1.40     oster 	memset(p, 0, RF_DAGPCACHE_SIZE);
    317  1.45     perry 
    318  1.40     oster 	return (p);
    319  1.40     oster }
    320  1.40     oster 
    321  1.40     oster void
    322  1.40     oster rf_FreeDAGPCache(void *p)
    323  1.40     oster {
    324  1.40     oster 	pool_put(&rf_pools.dagpcache, p);
    325  1.40     oster }
    326  1.40     oster 
    327  1.27     oster RF_FuncList_t *
    328  1.27     oster rf_AllocFuncList()
    329  1.27     oster {
    330  1.27     oster 	RF_FuncList_t *funcList;
    331  1.27     oster 
    332  1.36     oster 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    333  1.27     oster 	memset(funcList, 0, sizeof(RF_FuncList_t));
    334  1.45     perry 
    335  1.27     oster 	return (funcList);
    336  1.27     oster }
    337  1.27     oster 
    338  1.27     oster void
    339  1.27     oster rf_FreeFuncList(RF_FuncList_t *funcList)
    340  1.27     oster {
    341  1.36     oster 	pool_put(&rf_pools.funclist, funcList);
    342  1.27     oster }
    343  1.25     oster 
    344  1.44     oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
    345  1.45     perry    in an entire stripe.
    346  1.44     oster */
    347  1.44     oster 
    348  1.44     oster void *
    349  1.44     oster rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    350  1.44     oster {
    351  1.44     oster 	RF_VoidPointerListElem_t *vple;
    352  1.44     oster 	void *p;
    353  1.44     oster 
    354  1.45     perry 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    355  1.44     oster 					       raidPtr->logBytesPerSector))));
    356  1.44     oster 
    357  1.45     perry 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    358  1.45     perry 					raidPtr->logBytesPerSector),
    359  1.44     oster 		     M_RAIDFRAME, M_NOWAIT);
    360  1.44     oster 	if (!p) {
    361  1.44     oster 		RF_LOCK_MUTEX(raidPtr->mutex);
    362  1.44     oster 		if (raidPtr->stripebuf_count > 0) {
    363  1.44     oster 			vple = raidPtr->stripebuf;
    364  1.44     oster 			raidPtr->stripebuf = vple->next;
    365  1.44     oster 			p = vple->p;
    366  1.44     oster 			rf_FreeVPListElem(vple);
    367  1.44     oster 			raidPtr->stripebuf_count--;
    368  1.44     oster 		} else {
    369  1.44     oster #ifdef DIAGNOSTIC
    370  1.44     oster 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    371  1.44     oster #endif
    372  1.44     oster 		}
    373  1.44     oster 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    374  1.44     oster 		if (!p) {
    375  1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    376  1.44     oster 			   and hope that someone frees up memory for us.. */
    377  1.45     perry 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    378  1.44     oster 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    379  1.44     oster 		}
    380  1.44     oster 	}
    381  1.44     oster 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    382  1.44     oster 
    383  1.44     oster 	vple = rf_AllocVPListElem();
    384  1.44     oster 	vple->p = p;
    385  1.44     oster         vple->next = dag_h->desc->stripebufs;
    386  1.44     oster         dag_h->desc->stripebufs = vple;
    387  1.44     oster 
    388  1.44     oster 	return (p);
    389  1.44     oster }
    390  1.44     oster 
    391  1.25     oster 
    392  1.44     oster void
    393  1.44     oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    394  1.44     oster {
    395  1.44     oster 	RF_LOCK_MUTEX(raidPtr->mutex);
    396  1.44     oster 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    397  1.44     oster 		/* just tack it in */
    398  1.44     oster 		vple->next = raidPtr->stripebuf;
    399  1.44     oster 		raidPtr->stripebuf = vple;
    400  1.44     oster 		raidPtr->stripebuf_count++;
    401  1.44     oster 	} else {
    402  1.44     oster 		free(vple->p, M_RAIDFRAME);
    403  1.44     oster 		rf_FreeVPListElem(vple);
    404  1.44     oster 	}
    405  1.44     oster 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    406  1.44     oster }
    407  1.25     oster 
    408  1.42     oster /* allocates a buffer big enough to hold the data described by the
    409  1.42     oster caller (ie. the data of the associated PDA).  Glue this buffer
    410  1.42     oster into our dag_h cleanup structure. */
    411  1.42     oster 
    412  1.43     oster void *
    413  1.44     oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    414   1.3     oster {
    415  1.42     oster 	RF_VoidPointerListElem_t *vple;
    416  1.42     oster 	void *p;
    417   1.3     oster 
    418  1.42     oster 	p = rf_AllocIOBuffer(raidPtr, size);
    419  1.42     oster 	vple = rf_AllocVPListElem();
    420  1.42     oster 	vple->p = p;
    421  1.44     oster 	vple->next = dag_h->desc->iobufs;
    422  1.44     oster 	dag_h->desc->iobufs = vple;
    423  1.42     oster 
    424  1.42     oster 	return (p);
    425   1.1     oster }
    426  1.41     oster 
    427  1.41     oster void *
    428  1.41     oster rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    429  1.41     oster {
    430  1.44     oster 	RF_VoidPointerListElem_t *vple;
    431  1.41     oster 	void *p;
    432  1.41     oster 
    433  1.45     perry 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    434  1.44     oster 			   raidPtr->logBytesPerSector)));
    435  1.41     oster 
    436  1.45     perry 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    437  1.45     perry 				 raidPtr->logBytesPerSector,
    438  1.41     oster 				 M_RAIDFRAME, M_NOWAIT);
    439  1.41     oster 	if (!p) {
    440  1.41     oster 		RF_LOCK_MUTEX(raidPtr->mutex);
    441  1.41     oster 		if (raidPtr->iobuf_count > 0) {
    442  1.44     oster 			vple = raidPtr->iobuf;
    443  1.44     oster 			raidPtr->iobuf = vple->next;
    444  1.44     oster 			p = vple->p;
    445  1.44     oster 			rf_FreeVPListElem(vple);
    446  1.41     oster 			raidPtr->iobuf_count--;
    447  1.41     oster 		} else {
    448  1.41     oster #ifdef DIAGNOSTIC
    449  1.41     oster 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    450  1.41     oster #endif
    451  1.41     oster 		}
    452  1.41     oster 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    453  1.41     oster 		if (!p) {
    454  1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    455  1.41     oster 			   and hope that someone frees up memory for us.. */
    456  1.45     perry 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    457  1.45     perry 				    raidPtr->logBytesPerSector,
    458  1.41     oster 				    M_RAIDFRAME, M_WAITOK);
    459  1.41     oster 		}
    460  1.41     oster 	}
    461  1.44     oster 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    462  1.41     oster 	return (p);
    463  1.41     oster }
    464  1.41     oster 
    465  1.41     oster void
    466  1.44     oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    467  1.41     oster {
    468  1.41     oster 	RF_LOCK_MUTEX(raidPtr->mutex);
    469  1.41     oster 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    470  1.44     oster 		/* just tack it in */
    471  1.44     oster 		vple->next = raidPtr->iobuf;
    472  1.44     oster 		raidPtr->iobuf = vple;
    473  1.41     oster 		raidPtr->iobuf_count++;
    474  1.41     oster 	} else {
    475  1.44     oster 		free(vple->p, M_RAIDFRAME);
    476  1.44     oster 		rf_FreeVPListElem(vple);
    477  1.41     oster 	}
    478  1.41     oster 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    479  1.41     oster }
    480  1.41     oster 
    481  1.41     oster 
    482  1.41     oster 
    483  1.13     oster #if RF_DEBUG_VALIDATE_DAG
    484   1.1     oster /******************************************************************************
    485   1.1     oster  *
    486   1.1     oster  * debug routines
    487   1.1     oster  *
    488   1.1     oster  *****************************************************************************/
    489   1.1     oster 
    490   1.3     oster char   *
    491  1.23     oster rf_NodeStatusString(RF_DagNode_t *node)
    492   1.1     oster {
    493   1.3     oster 	switch (node->status) {
    494  1.34     oster 	case rf_wait:
    495  1.34     oster 		return ("wait");
    496   1.3     oster 	case rf_fired:
    497   1.3     oster 		return ("fired");
    498   1.3     oster 	case rf_good:
    499   1.3     oster 		return ("good");
    500   1.3     oster 	case rf_bad:
    501   1.3     oster 		return ("bad");
    502   1.3     oster 	default:
    503   1.3     oster 		return ("?");
    504   1.3     oster 	}
    505   1.3     oster }
    506   1.1     oster 
    507  1.45     perry void
    508  1.23     oster rf_PrintNodeInfoString(RF_DagNode_t *node)
    509   1.3     oster {
    510   1.3     oster 	RF_PhysDiskAddr_t *pda;
    511   1.3     oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    512   1.3     oster 	int     i, lk, unlk;
    513   1.3     oster 	void   *bufPtr;
    514   1.3     oster 
    515   1.3     oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    516   1.3     oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    517   1.3     oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    518   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    519   1.3     oster 		bufPtr = (void *) node->params[1].p;
    520  1.24     oster 		lk = 0;
    521  1.24     oster 		unlk = 0;
    522   1.3     oster 		RF_ASSERT(!(lk && unlk));
    523  1.21     oster 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    524   1.3     oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    525   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    526   1.3     oster 		return;
    527   1.3     oster 	}
    528   1.3     oster 	if (df == rf_DiskUnlockFunc) {
    529   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    530  1.24     oster 		lk = 0;
    531  1.24     oster 		unlk = 0;
    532   1.3     oster 		RF_ASSERT(!(lk && unlk));
    533  1.21     oster 		printf("c %d %s\n", pda->col,
    534   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    535   1.3     oster 		return;
    536   1.3     oster 	}
    537   1.3     oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    538   1.3     oster 	    || (df == rf_RecoveryXorFunc)) {
    539   1.3     oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    540   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    541   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    542   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    543  1.21     oster 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    544  1.21     oster 			    (long) bufPtr, pda->col,
    545   1.3     oster 			    (long) pda->startSector, (int) pda->numSector);
    546   1.3     oster 		}
    547   1.3     oster 		return;
    548   1.3     oster 	}
    549   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    550   1.3     oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    551   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    552   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    553   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    554  1.21     oster 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    555  1.21     oster 			    pda->col, (long) pda->startSector,
    556   1.3     oster 			    (int) pda->numSector, (long) bufPtr);
    557   1.3     oster 		}
    558   1.3     oster 		return;
    559   1.3     oster 	}
    560   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    561   1.3     oster 
    562   1.3     oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    563   1.3     oster 		printf("\n");
    564   1.3     oster 		return;
    565   1.3     oster 	}
    566   1.3     oster 	printf("?\n");
    567   1.3     oster }
    568  1.16     oster #ifdef DEBUG
    569  1.45     perry static void
    570  1.23     oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    571   1.3     oster {
    572   1.3     oster 	char   *anttype;
    573   1.3     oster 	int     i;
    574   1.3     oster 
    575   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    576   1.3     oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    577   1.3     oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    578   1.3     oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    579   1.3     oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    580   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    581   1.3     oster 		printf("%d%s", node->succedents[i]->nodeNum,
    582   1.3     oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    583   1.3     oster 	}
    584   1.3     oster 	printf("} A{");
    585   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    586   1.3     oster 		switch (node->antType[i]) {
    587   1.3     oster 		case rf_trueData:
    588   1.3     oster 			anttype = "T";
    589   1.3     oster 			break;
    590   1.3     oster 		case rf_antiData:
    591   1.3     oster 			anttype = "A";
    592   1.3     oster 			break;
    593   1.3     oster 		case rf_outputData:
    594   1.3     oster 			anttype = "O";
    595   1.3     oster 			break;
    596   1.3     oster 		case rf_control:
    597   1.3     oster 			anttype = "C";
    598   1.3     oster 			break;
    599   1.3     oster 		default:
    600   1.3     oster 			anttype = "?";
    601   1.3     oster 			break;
    602   1.3     oster 		}
    603   1.3     oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    604   1.3     oster 	}
    605   1.3     oster 	printf("}; ");
    606   1.3     oster 	rf_PrintNodeInfoString(node);
    607   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    608   1.3     oster 		if (node->succedents[i]->visited == unvisited)
    609   1.3     oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    610   1.3     oster 	}
    611   1.1     oster }
    612   1.1     oster 
    613  1.45     perry static void
    614  1.23     oster rf_PrintDAG(RF_DagHeader_t *dag_h)
    615   1.3     oster {
    616   1.3     oster 	int     unvisited, i;
    617   1.3     oster 	char   *status;
    618   1.3     oster 
    619   1.3     oster 	/* set dag status */
    620   1.3     oster 	switch (dag_h->status) {
    621   1.3     oster 	case rf_enable:
    622   1.3     oster 		status = "enable";
    623   1.3     oster 		break;
    624   1.3     oster 	case rf_rollForward:
    625   1.3     oster 		status = "rollForward";
    626   1.3     oster 		break;
    627   1.3     oster 	case rf_rollBackward:
    628   1.3     oster 		status = "rollBackward";
    629   1.3     oster 		break;
    630   1.3     oster 	default:
    631   1.3     oster 		status = "illegal!";
    632   1.3     oster 		break;
    633   1.3     oster 	}
    634   1.3     oster 	/* find out if visited bits are currently set or clear */
    635   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    636   1.3     oster 
    637   1.3     oster 	printf("DAG type:  %s\n", dag_h->creator);
    638   1.3     oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    639   1.3     oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    640   1.3     oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    641   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    642   1.3     oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    643   1.3     oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    644   1.3     oster 	}
    645   1.3     oster 	printf("};\n");
    646   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    647   1.3     oster 		if (dag_h->succedents[i]->visited == unvisited)
    648   1.3     oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    649   1.3     oster 	}
    650   1.3     oster }
    651  1.16     oster #endif
    652   1.1     oster /* assigns node numbers */
    653  1.45     perry int
    654   1.3     oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    655   1.1     oster {
    656   1.3     oster 	int     unvisited, i, nnum;
    657   1.3     oster 	RF_DagNode_t *node;
    658   1.1     oster 
    659   1.3     oster 	nnum = 0;
    660   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    661   1.3     oster 
    662   1.3     oster 	dag_h->nodeNum = nnum++;
    663   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    664   1.3     oster 		node = dag_h->succedents[i];
    665   1.3     oster 		if (node->visited == unvisited) {
    666   1.3     oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    667   1.3     oster 		}
    668   1.3     oster 	}
    669   1.3     oster 	return (nnum);
    670   1.1     oster }
    671   1.1     oster 
    672  1.45     perry int
    673  1.23     oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    674   1.3     oster {
    675   1.3     oster 	int     i;
    676   1.3     oster 
    677   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    678   1.3     oster 
    679   1.3     oster 	node->nodeNum = num++;
    680   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    681   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    682   1.3     oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    683   1.3     oster 		}
    684   1.3     oster 	}
    685   1.3     oster 	return (num);
    686   1.3     oster }
    687   1.1     oster /* set the header pointers in each node to "newptr" */
    688  1.45     perry void
    689  1.23     oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    690   1.3     oster {
    691   1.3     oster 	int     i;
    692   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    693   1.3     oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    694   1.3     oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    695   1.1     oster }
    696   1.1     oster 
    697  1.45     perry void
    698  1.23     oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    699   1.1     oster {
    700   1.3     oster 	int     i;
    701   1.3     oster 	node->dagHdr = newptr;
    702   1.3     oster 	for (i = 0; i < node->numSuccedents; i++)
    703   1.3     oster 		if (node->succedents[i]->dagHdr != newptr)
    704   1.3     oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    705   1.3     oster }
    706   1.1     oster 
    707   1.1     oster 
    708  1.45     perry void
    709   1.3     oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    710   1.3     oster {
    711   1.3     oster 	int     i = 0;
    712   1.3     oster 
    713   1.3     oster 	for (; dag_h; dag_h = dag_h->next) {
    714   1.3     oster 		rf_AssignNodeNums(dag_h);
    715   1.3     oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    716   1.3     oster 		rf_PrintDAG(dag_h);
    717   1.3     oster 	}
    718   1.1     oster }
    719   1.1     oster 
    720  1.45     perry static int
    721  1.23     oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    722  1.23     oster 		  RF_DagNode_t **nodes, int unvisited)
    723   1.3     oster {
    724   1.3     oster 	int     i, retcode = 0;
    725   1.3     oster 
    726   1.3     oster 	/* construct an array of node pointers indexed by node num */
    727   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    728   1.3     oster 	nodes[node->nodeNum] = node;
    729   1.3     oster 
    730   1.3     oster 	if (node->next != NULL) {
    731   1.3     oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    732   1.3     oster 		retcode = 1;
    733   1.3     oster 	}
    734   1.3     oster 	if (node->status != rf_wait) {
    735   1.3     oster 		printf("INVALID DAG: Node status is not wait\n");
    736   1.3     oster 		retcode = 1;
    737   1.3     oster 	}
    738   1.3     oster 	if (node->numAntDone != 0) {
    739   1.3     oster 		printf("INVALID DAG: numAntDone is not zero\n");
    740   1.3     oster 		retcode = 1;
    741   1.3     oster 	}
    742   1.3     oster 	if (node->doFunc == rf_TerminateFunc) {
    743   1.3     oster 		if (node->numSuccedents != 0) {
    744   1.3     oster 			printf("INVALID DAG: Terminator node has succedents\n");
    745   1.3     oster 			retcode = 1;
    746   1.3     oster 		}
    747   1.3     oster 	} else {
    748   1.3     oster 		if (node->numSuccedents == 0) {
    749   1.3     oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    750   1.3     oster 			retcode = 1;
    751   1.3     oster 		}
    752   1.3     oster 	}
    753   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    754   1.3     oster 		if (!node->succedents[i]) {
    755   1.3     oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    756   1.3     oster 			retcode = 1;
    757   1.3     oster 		}
    758   1.3     oster 		scount[node->succedents[i]->nodeNum]++;
    759   1.3     oster 	}
    760   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    761   1.3     oster 		if (!node->antecedents[i]) {
    762   1.3     oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    763   1.3     oster 			retcode = 1;
    764   1.3     oster 		}
    765   1.3     oster 		acount[node->antecedents[i]->nodeNum]++;
    766   1.3     oster 	}
    767   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    768   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    769   1.3     oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    770   1.3     oster 				acount, nodes, unvisited)) {
    771   1.3     oster 				retcode = 1;
    772   1.3     oster 			}
    773   1.3     oster 		}
    774   1.3     oster 	}
    775   1.3     oster 	return (retcode);
    776   1.3     oster }
    777   1.3     oster 
    778  1.45     perry static void
    779  1.23     oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    780   1.3     oster {
    781   1.3     oster 	int     i;
    782   1.3     oster 
    783   1.3     oster 	RF_ASSERT(node->visited == unvisited);
    784   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    785   1.3     oster 		if (node->succedents[i] == NULL) {
    786   1.3     oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    787   1.3     oster 			RF_ASSERT(0);
    788   1.3     oster 		}
    789   1.3     oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    790   1.3     oster 	}
    791   1.3     oster }
    792   1.3     oster /* NOTE:  never call this on a big dag, because it is exponential
    793   1.3     oster  * in execution time
    794   1.3     oster  */
    795  1.45     perry static void
    796  1.23     oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    797   1.3     oster {
    798   1.3     oster 	int     i, unvisited;
    799   1.3     oster 
    800   1.3     oster 	unvisited = dag->succedents[0]->visited;
    801   1.3     oster 
    802   1.3     oster 	for (i = 0; i < dag->numSuccedents; i++) {
    803   1.3     oster 		if (dag->succedents[i] == NULL) {
    804   1.3     oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    805   1.3     oster 			RF_ASSERT(0);
    806   1.3     oster 		}
    807   1.3     oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    808   1.3     oster 	}
    809   1.3     oster }
    810   1.1     oster /* validate a DAG.  _at entry_ verify that:
    811   1.1     oster  *   -- numNodesCompleted is zero
    812   1.1     oster  *   -- node queue is null
    813   1.1     oster  *   -- dag status is rf_enable
    814   1.1     oster  *   -- next pointer is null on every node
    815   1.1     oster  *   -- all nodes have status wait
    816   1.1     oster  *   -- numAntDone is zero in all nodes
    817   1.1     oster  *   -- terminator node has zero successors
    818   1.1     oster  *   -- no other node besides terminator has zero successors
    819   1.1     oster  *   -- no successor or antecedent pointer in a node is NULL
    820   1.1     oster  *   -- number of times that each node appears as a successor of another node
    821   1.1     oster  *      is equal to the antecedent count on that node
    822   1.1     oster  *   -- number of times that each node appears as an antecedent of another node
    823   1.1     oster  *      is equal to the succedent count on that node
    824   1.1     oster  *   -- what else?
    825   1.1     oster  */
    826  1.45     perry int
    827  1.23     oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
    828   1.3     oster {
    829   1.3     oster 	int     i, nodecount;
    830   1.3     oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    831   1.3     oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    832   1.3     oster 	int     retcode = 0;
    833   1.3     oster 	int     unvisited;
    834   1.3     oster 	int     commitNodeCount = 0;
    835   1.3     oster 
    836   1.3     oster 	if (rf_validateVisitedDebug)
    837   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    838   1.3     oster 
    839   1.3     oster 	if (dag_h->numNodesCompleted != 0) {
    840   1.3     oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    841   1.3     oster 		retcode = 1;
    842   1.3     oster 		goto validate_dag_bad;
    843   1.3     oster 	}
    844   1.3     oster 	if (dag_h->status != rf_enable) {
    845   1.3     oster 		printf("INVALID DAG: not enabled\n");
    846   1.3     oster 		retcode = 1;
    847   1.3     oster 		goto validate_dag_bad;
    848   1.3     oster 	}
    849   1.3     oster 	if (dag_h->numCommits != 0) {
    850   1.3     oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    851   1.3     oster 		retcode = 1;
    852   1.3     oster 		goto validate_dag_bad;
    853   1.3     oster 	}
    854   1.3     oster 	if (dag_h->numSuccedents != 1) {
    855   1.3     oster 		/* currently, all dags must have only one succedent */
    856   1.3     oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    857   1.3     oster 		retcode = 1;
    858   1.3     oster 		goto validate_dag_bad;
    859   1.3     oster 	}
    860   1.3     oster 	nodecount = rf_AssignNodeNums(dag_h);
    861   1.3     oster 
    862   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    863   1.3     oster 
    864  1.22     oster 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    865  1.22     oster 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    866  1.45     perry 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    867  1.22     oster 		  (RF_DagNode_t **));
    868   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    869   1.3     oster 		if ((dag_h->succedents[i]->visited == unvisited)
    870   1.3     oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    871   1.3     oster 			acount, nodes, unvisited)) {
    872   1.3     oster 			retcode = 1;
    873   1.3     oster 		}
    874   1.3     oster 	}
    875   1.3     oster 	/* start at 1 to skip the header node */
    876   1.3     oster 	for (i = 1; i < nodecount; i++) {
    877   1.3     oster 		if (nodes[i]->commitNode)
    878   1.3     oster 			commitNodeCount++;
    879   1.3     oster 		if (nodes[i]->doFunc == NULL) {
    880   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    881   1.3     oster 			retcode = 1;
    882   1.3     oster 			goto validate_dag_out;
    883   1.3     oster 		}
    884   1.3     oster 		if (nodes[i]->undoFunc == NULL) {
    885   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    886   1.3     oster 			retcode = 1;
    887   1.3     oster 			goto validate_dag_out;
    888   1.3     oster 		}
    889   1.3     oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    890   1.3     oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    891   1.3     oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    892   1.3     oster 			retcode = 1;
    893   1.3     oster 			goto validate_dag_out;
    894   1.3     oster 		}
    895   1.3     oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    896   1.3     oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    897   1.3     oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    898   1.3     oster 			retcode = 1;
    899   1.3     oster 			goto validate_dag_out;
    900   1.3     oster 		}
    901   1.3     oster 	}
    902   1.1     oster 
    903   1.3     oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    904   1.3     oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    905   1.3     oster 		    dag_h->numCommitNodes, commitNodeCount);
    906   1.3     oster 		retcode = 1;
    907   1.3     oster 		goto validate_dag_out;
    908   1.3     oster 	}
    909   1.1     oster validate_dag_out:
    910   1.3     oster 	RF_Free(scount, nodecount * sizeof(int));
    911   1.3     oster 	RF_Free(acount, nodecount * sizeof(int));
    912   1.3     oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    913   1.3     oster 	if (retcode)
    914   1.3     oster 		rf_PrintDAGList(dag_h);
    915   1.3     oster 
    916   1.3     oster 	if (rf_validateVisitedDebug)
    917   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    918   1.3     oster 
    919   1.3     oster 	return (retcode);
    920   1.1     oster 
    921   1.1     oster validate_dag_bad:
    922   1.3     oster 	rf_PrintDAGList(dag_h);
    923   1.3     oster 	return (retcode);
    924   1.1     oster }
    925   1.1     oster 
    926  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
    927   1.1     oster 
    928   1.1     oster /******************************************************************************
    929   1.1     oster  *
    930   1.1     oster  * misc construction routines
    931   1.1     oster  *
    932   1.1     oster  *****************************************************************************/
    933   1.1     oster 
    934  1.45     perry void
    935  1.23     oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    936   1.3     oster {
    937   1.3     oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    938  1.21     oster 	int     fcol = raidPtr->reconControl->fcol;
    939  1.21     oster 	int     scol = raidPtr->reconControl->spareCol;
    940   1.3     oster 	RF_PhysDiskAddr_t *pda;
    941   1.3     oster 
    942  1.21     oster 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    943   1.3     oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    944   1.3     oster 		if (pda->col == fcol) {
    945  1.31     oster #if RF_DEBUG_DAG
    946   1.3     oster 			if (rf_dagDebug) {
    947  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    948   1.3     oster 					pda->startSector)) {
    949   1.3     oster 					RF_PANIC();
    950   1.3     oster 				}
    951   1.3     oster 			}
    952  1.31     oster #endif
    953   1.3     oster 			/* printf("Remapped data for large write\n"); */
    954   1.3     oster 			if (ds) {
    955   1.3     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    956  1.21     oster 				    &pda->col, &pda->startSector, RF_REMAP);
    957   1.3     oster 			} else {
    958   1.3     oster 				pda->col = scol;
    959   1.3     oster 			}
    960   1.3     oster 		}
    961   1.3     oster 	}
    962   1.3     oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    963   1.3     oster 		if (pda->col == fcol) {
    964  1.31     oster #if RF_DEBUG_DAG
    965   1.3     oster 			if (rf_dagDebug) {
    966  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    967   1.3     oster 					RF_PANIC();
    968   1.3     oster 				}
    969   1.3     oster 			}
    970  1.31     oster #endif
    971   1.3     oster 		}
    972   1.3     oster 		if (ds) {
    973  1.21     oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    974   1.3     oster 		} else {
    975   1.3     oster 			pda->col = scol;
    976   1.3     oster 		}
    977   1.3     oster 	}
    978   1.1     oster }
    979   1.1     oster 
    980   1.1     oster 
    981   1.1     oster /* this routine allocates read buffers and generates stripe maps for the
    982   1.1     oster  * regions of the array from the start of the stripe to the start of the
    983   1.1     oster  * access, and from the end of the access to the end of the stripe.  It also
    984   1.1     oster  * computes and returns the number of DAG nodes needed to read all this data.
    985   1.1     oster  * Note that this routine does the wrong thing if the access is fully
    986   1.1     oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    987   1.1     oster  * start.
    988  1.45     perry  *
    989  1.23     oster  * layoutPtr - in: layout information
    990  1.23     oster  * asmap     - in: access stripe map
    991  1.23     oster  * dag_h     - in: header of the dag to create
    992  1.23     oster  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    993  1.23     oster  * nRodNodes - out: num nodes to be generated to read unaccessed data
    994  1.23     oster  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    995   1.1     oster  */
    996  1.45     perry void
    997  1.23     oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    998  1.23     oster 				RF_RaidLayout_t *layoutPtr,
    999  1.23     oster 				RF_AccessStripeMap_t *asmap,
   1000  1.23     oster 				RF_DagHeader_t *dag_h,
   1001  1.23     oster 				RF_AccessStripeMapHeader_t **new_asm_h,
   1002  1.45     perry 				int *nRodNodes,
   1003  1.23     oster 				char **sosBuffer, char **eosBuffer,
   1004  1.23     oster 				RF_AllocListElem_t *allocList)
   1005   1.3     oster {
   1006   1.3     oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
   1007   1.3     oster 	RF_SectorNum_t sosNumSector, eosNumSector;
   1008   1.3     oster 
   1009   1.3     oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
   1010   1.3     oster 	/* generate an access map for the region of the array from start of
   1011   1.3     oster 	 * stripe to start of access */
   1012   1.3     oster 	new_asm_h[0] = new_asm_h[1] = NULL;
   1013   1.3     oster 	*nRodNodes = 0;
   1014   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
   1015   1.3     oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1016   1.3     oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
   1017  1.44     oster 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
   1018   1.3     oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
   1019   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1020   1.3     oster 		dag_h->asmList = new_asm_h[0];
   1021   1.3     oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1022   1.3     oster 
   1023   1.3     oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1024   1.3     oster 		/* we're totally within one stripe here */
   1025   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1026   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1027   1.3     oster 	}
   1028   1.3     oster 	/* generate an access map for the region of the array from end of
   1029   1.3     oster 	 * access to end of stripe */
   1030   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1031   1.3     oster 		eosRaidAddress = asmap->endRaidAddress;
   1032   1.3     oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1033  1.44     oster 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1034   1.3     oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1035   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1036   1.3     oster 		dag_h->asmList = new_asm_h[1];
   1037   1.3     oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1038   1.3     oster 
   1039   1.3     oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1040   1.3     oster 		/* we're totally within one stripe here */
   1041   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1042   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1043   1.3     oster 	}
   1044   1.1     oster }
   1045   1.1     oster 
   1046   1.1     oster 
   1047   1.1     oster 
   1048   1.1     oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1049  1.45     perry int
   1050  1.45     perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1051  1.23     oster 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1052   1.3     oster {
   1053   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1054   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1055   1.3     oster 	/* use -1 to be sure we stay within SU */
   1056   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1057   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1058   1.3     oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1059   1.1     oster }
   1060   1.1     oster 
   1061   1.1     oster 
   1062   1.1     oster /* GenerateFailedAccessASMs
   1063   1.1     oster  *
   1064   1.1     oster  * this routine figures out what portion of the stripe needs to be read
   1065   1.1     oster  * to effect the degraded read or write operation.  It's primary function
   1066   1.1     oster  * is to identify everything required to recover the data, and then
   1067   1.1     oster  * eliminate anything that is already being accessed by the user.
   1068   1.1     oster  *
   1069   1.1     oster  * The main result is two new ASMs, one for the region from the start of the
   1070   1.1     oster  * stripe to the start of the access, and one for the region from the end of
   1071   1.1     oster  * the access to the end of the stripe.  These ASMs describe everything that
   1072   1.1     oster  * needs to be read to effect the degraded access.  Other results are:
   1073   1.1     oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1074   1.1     oster  *                recover the lost data,
   1075   1.1     oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1076   1.1     oster  *                at entry, not allocated.
   1077   1.1     oster  *    overlappingPDAs --
   1078   1.1     oster  *                describes which of the non-failed PDAs in the user access
   1079   1.1     oster  *                overlap data that needs to be read to effect recovery.
   1080   1.1     oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1081   1.1     oster  *                PDA, the ith pda in the input asm overlaps data that needs
   1082   1.1     oster  *                to be read for recovery.
   1083   1.1     oster  */
   1084   1.1     oster  /* in: asm - ASM for the actual access, one stripe only */
   1085  1.10       wiz  /* in: failedPDA - which component of the access has failed */
   1086   1.1     oster  /* in: dag_h - header of the DAG we're going to create */
   1087   1.1     oster  /* out: new_asm_h - the two new ASMs */
   1088   1.1     oster  /* out: nXorBufs - the total number of xor bufs required */
   1089   1.1     oster  /* out: rpBufPtr - a buffer for the parity read */
   1090  1.45     perry void
   1091  1.23     oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1092  1.23     oster 			    RF_PhysDiskAddr_t *failedPDA,
   1093  1.23     oster 			    RF_DagHeader_t *dag_h,
   1094  1.23     oster 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1095  1.23     oster 			    int *nXorBufs, char **rpBufPtr,
   1096  1.23     oster 			    char *overlappingPDAs,
   1097  1.23     oster 			    RF_AllocListElem_t *allocList)
   1098   1.3     oster {
   1099   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1100   1.3     oster 
   1101   1.3     oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1102   1.3     oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1103   1.3     oster 	RF_PhysDiskAddr_t *pda;
   1104   1.3     oster 	int     foundit, i;
   1105   1.3     oster 
   1106   1.3     oster 	foundit = 0;
   1107   1.3     oster 	/* first compute the following raid addresses: start of stripe,
   1108   1.3     oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1109   1.3     oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1110   1.3     oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1111   1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1112   1.3     oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1113   1.3     oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1114   1.3     oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1115   1.3     oster 
   1116   1.3     oster 	/* now generate access stripe maps for each of the above regions of
   1117   1.3     oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1118   1.3     oster 
   1119   1.3     oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1120   1.3     oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1121   1.3     oster 
   1122   1.3     oster 	/* walk through the PDAs and range-restrict each SU to the region of
   1123   1.3     oster 	 * the SU touched on the failed PDA.  also compute total data buffer
   1124   1.3     oster 	 * space requirements in this step.  Ignore the parity for now. */
   1125  1.35     oster 	/* Also count nodes to find out how many bufs need to be xored together */
   1126  1.35     oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1127  1.35     oster 				 * case, 1 is for failed data */
   1128   1.3     oster 
   1129   1.3     oster 	if (new_asm_h[0]) {
   1130   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1131   1.3     oster 		dag_h->asmList = new_asm_h[0];
   1132   1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1133   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1134  1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1135   1.3     oster 		}
   1136  1.35     oster 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1137   1.3     oster 	}
   1138   1.3     oster 	if (new_asm_h[1]) {
   1139   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1140   1.3     oster 		dag_h->asmList = new_asm_h[1];
   1141   1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1142   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1143  1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1144   1.3     oster 		}
   1145   1.3     oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1146   1.3     oster 	}
   1147  1.45     perry 
   1148  1.35     oster 	/* allocate a buffer for parity */
   1149  1.45     perry 	if (rpBufPtr)
   1150  1.44     oster 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1151   1.3     oster 
   1152   1.3     oster 	/* the last step is to figure out how many more distinct buffers need
   1153   1.3     oster 	 * to get xor'd to produce the missing unit.  there's one for each
   1154   1.3     oster 	 * user-data read node that overlaps the portion of the failed unit
   1155   1.3     oster 	 * being accessed */
   1156   1.3     oster 
   1157   1.3     oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1158   1.3     oster 		if (pda == failedPDA) {
   1159   1.3     oster 			i--;
   1160   1.3     oster 			foundit = 1;
   1161   1.3     oster 			continue;
   1162   1.3     oster 		}
   1163   1.3     oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1164   1.3     oster 			overlappingPDAs[i] = 1;
   1165   1.3     oster 			(*nXorBufs)++;
   1166   1.3     oster 		}
   1167   1.3     oster 	}
   1168   1.3     oster 	if (!foundit) {
   1169   1.3     oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1170   1.3     oster 		RF_ASSERT(0);
   1171   1.3     oster 	}
   1172  1.31     oster #if RF_DEBUG_DAG
   1173   1.3     oster 	if (rf_degDagDebug) {
   1174   1.3     oster 		if (new_asm_h[0]) {
   1175   1.3     oster 			printf("First asm:\n");
   1176   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1177   1.3     oster 		}
   1178   1.3     oster 		if (new_asm_h[1]) {
   1179   1.3     oster 			printf("Second asm:\n");
   1180   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1181   1.3     oster 		}
   1182   1.3     oster 	}
   1183  1.31     oster #endif
   1184   1.1     oster }
   1185   1.1     oster 
   1186   1.1     oster 
   1187   1.1     oster /* adjusts the offset and number of sectors in the destination pda so that
   1188   1.1     oster  * it covers at most the region of the SU covered by the source PDA.  This
   1189   1.1     oster  * is exclusively a restriction:  the number of sectors indicated by the
   1190   1.1     oster  * target PDA can only shrink.
   1191   1.1     oster  *
   1192   1.1     oster  * For example:  s = sectors within SU indicated by source PDA
   1193   1.1     oster  *               d = sectors within SU indicated by dest PDA
   1194   1.1     oster  *               r = results, stored in dest PDA
   1195   1.1     oster  *
   1196   1.1     oster  * |--------------- one stripe unit ---------------------|
   1197   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1198   1.1     oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1199   1.1     oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1200   1.1     oster  *
   1201   1.1     oster  * Another example:
   1202   1.1     oster  *
   1203   1.1     oster  * |--------------- one stripe unit ---------------------|
   1204   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1205   1.1     oster  * |    ddddddddddddddddddddddd                          |
   1206   1.1     oster  * |           rrrrrrrrrrrrrrrr                          |
   1207   1.1     oster  *
   1208   1.1     oster  */
   1209  1.45     perry void
   1210  1.23     oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1211  1.23     oster 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1212   1.3     oster {
   1213   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1214   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1215   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1216   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1217   1.3     oster 													 * stay within SU */
   1218   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1219   1.3     oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1220   1.3     oster 
   1221   1.3     oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1222   1.3     oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1223   1.3     oster 
   1224   1.3     oster 	if (dobuffer)
   1225   1.3     oster 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1226   1.3     oster 	if (doraidaddr) {
   1227   1.3     oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1228   1.3     oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1229   1.3     oster 	}
   1230   1.1     oster }
   1231  1.11     oster 
   1232  1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1233  1.11     oster 
   1234   1.1     oster /*
   1235   1.1     oster  * Want the highest of these primes to be the largest one
   1236   1.1     oster  * less than the max expected number of columns (won't hurt
   1237   1.1     oster  * to be too small or too large, but won't be optimal, either)
   1238   1.1     oster  * --jimz
   1239   1.1     oster  */
   1240   1.1     oster #define NLOWPRIMES 8
   1241   1.3     oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1242   1.1     oster /*****************************************************************************
   1243   1.1     oster  * compute the workload shift factor.  (chained declustering)
   1244   1.1     oster  *
   1245   1.1     oster  * return nonzero if access should shift to secondary, otherwise,
   1246   1.1     oster  * access is to primary
   1247   1.1     oster  *****************************************************************************/
   1248  1.45     perry int
   1249  1.23     oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1250   1.3     oster {
   1251   1.3     oster 	/*
   1252   1.3     oster          * variables:
   1253   1.3     oster          *  d   = column of disk containing primary
   1254   1.3     oster          *  f   = column of failed disk
   1255   1.3     oster          *  n   = number of disks in array
   1256   1.3     oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1257   1.3     oster          *  v   = numerator of redirection ratio
   1258   1.3     oster          *  k   = denominator of redirection ratio
   1259   1.3     oster          */
   1260  1.21     oster 	RF_RowCol_t d, f, sd, n;
   1261   1.3     oster 	int     k, v, ret, i;
   1262   1.3     oster 
   1263   1.3     oster 	n = raidPtr->numCol;
   1264   1.3     oster 
   1265   1.3     oster 	/* assign column of primary copy to d */
   1266   1.3     oster 	d = pda->col;
   1267   1.3     oster 
   1268   1.3     oster 	/* assign column of dead disk to f */
   1269  1.21     oster 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1270   1.3     oster 
   1271   1.3     oster 	RF_ASSERT(f < n);
   1272   1.3     oster 	RF_ASSERT(f != d);
   1273   1.3     oster 
   1274   1.3     oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1275   1.3     oster 	RF_ASSERT(sd < n);
   1276   1.3     oster 
   1277   1.3     oster 	/*
   1278   1.3     oster          * v of every k accesses should be redirected
   1279   1.3     oster          *
   1280   1.3     oster          * v/k := (n-1-sd)/(n-1)
   1281   1.3     oster          */
   1282   1.3     oster 	v = (n - 1 - sd);
   1283   1.3     oster 	k = (n - 1);
   1284   1.1     oster 
   1285   1.1     oster #if 1
   1286   1.3     oster 	/*
   1287   1.3     oster          * XXX
   1288   1.3     oster          * Is this worth it?
   1289   1.3     oster          *
   1290   1.3     oster          * Now reduce the fraction, by repeatedly factoring
   1291   1.3     oster          * out primes (just like they teach in elementary school!)
   1292   1.3     oster          */
   1293   1.3     oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1294   1.3     oster 		if (lowprimes[i] > v)
   1295   1.3     oster 			break;
   1296   1.3     oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1297   1.3     oster 			v /= lowprimes[i];
   1298   1.3     oster 			k /= lowprimes[i];
   1299   1.3     oster 		}
   1300   1.3     oster 	}
   1301   1.1     oster #endif
   1302   1.1     oster 
   1303  1.21     oster 	raidPtr->hist_diskreq[d]++;
   1304  1.21     oster 	if (raidPtr->hist_diskreq[d] > v) {
   1305   1.3     oster 		ret = 0;	/* do not redirect */
   1306   1.3     oster 	} else {
   1307   1.3     oster 		ret = 1;	/* redirect */
   1308   1.3     oster 	}
   1309   1.1     oster 
   1310   1.1     oster #if 0
   1311   1.3     oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1312  1.21     oster 	    raidPtr->hist_diskreq[d]);
   1313   1.1     oster #endif
   1314   1.1     oster 
   1315  1.21     oster 	if (raidPtr->hist_diskreq[d] >= k) {
   1316   1.3     oster 		/* reset counter */
   1317  1.21     oster 		raidPtr->hist_diskreq[d] = 0;
   1318   1.3     oster 	}
   1319   1.3     oster 	return (ret);
   1320   1.1     oster }
   1321  1.11     oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1322  1.11     oster 
   1323   1.1     oster /*
   1324   1.1     oster  * Disk selection routines
   1325   1.1     oster  */
   1326   1.1     oster 
   1327   1.1     oster /*
   1328   1.1     oster  * Selects the disk with the shortest queue from a mirror pair.
   1329   1.1     oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1330   1.1     oster  * disk are counted as members of the "queue"
   1331   1.1     oster  */
   1332  1.45     perry void
   1333   1.3     oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1334   1.1     oster {
   1335   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1336  1.21     oster 	RF_RowCol_t colData, colMirror;
   1337   1.3     oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1338   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1339   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1340   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1341  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1342  1.21     oster 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1343   1.3     oster 
   1344   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1345   1.3     oster 	colData = data_pda->col;
   1346   1.3     oster 	colMirror = mirror_pda->col;
   1347  1.21     oster 	dataQueue = &(dqs[colData]);
   1348  1.21     oster 	mirrorQueue = &(dqs[colMirror]);
   1349   1.1     oster 
   1350   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1351   1.3     oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1352   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1353   1.3     oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1354   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1355   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1356   1.3     oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1357   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1358   1.3     oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1359   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1360   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1361   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1362   1.1     oster 
   1363   1.3     oster 	usemirror = 0;
   1364  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1365   1.3     oster 		usemirror = 0;
   1366   1.3     oster 	} else
   1367  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1368   1.3     oster 			usemirror = 1;
   1369   1.3     oster 		} else
   1370   1.5     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1371   1.5     oster 				/* Trust only the main disk */
   1372   1.3     oster 				usemirror = 0;
   1373   1.3     oster 			} else
   1374   1.5     oster 				if (dataQueueLength < mirrorQueueLength) {
   1375   1.5     oster 					usemirror = 0;
   1376   1.5     oster 				} else
   1377   1.5     oster 					if (mirrorQueueLength < dataQueueLength) {
   1378   1.5     oster 						usemirror = 1;
   1379   1.3     oster 					} else {
   1380   1.5     oster 						/* queues are equal length. attempt
   1381   1.5     oster 						 * cleverness. */
   1382   1.5     oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1383   1.5     oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1384   1.5     oster 							usemirror = 0;
   1385   1.5     oster 						} else {
   1386   1.5     oster 							usemirror = 1;
   1387   1.5     oster 						}
   1388   1.3     oster 					}
   1389   1.3     oster 
   1390   1.3     oster 	if (usemirror) {
   1391   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1392   1.3     oster 		tmp_pda = data_pda;
   1393   1.3     oster 		node->params[0].p = mirror_pda;
   1394   1.3     oster 		node->params[4].p = tmp_pda;
   1395   1.3     oster 	} else {
   1396   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1397   1.3     oster 	}
   1398   1.3     oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1399   1.3     oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1400   1.1     oster }
   1401  1.19     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1402   1.1     oster /*
   1403   1.1     oster  * Do simple partitioning. This assumes that
   1404   1.1     oster  * the data and parity disks are laid out identically.
   1405   1.1     oster  */
   1406  1.45     perry void
   1407   1.3     oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1408   1.1     oster {
   1409   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1410  1.21     oster 	RF_RowCol_t colData, colMirror;
   1411   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1412   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1413   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1414  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1415   1.3     oster 	int     usemirror;
   1416   1.3     oster 
   1417   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1418   1.3     oster 	colData = data_pda->col;
   1419   1.3     oster 	colMirror = mirror_pda->col;
   1420   1.3     oster 
   1421   1.3     oster 	usemirror = 0;
   1422  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1423   1.3     oster 		usemirror = 0;
   1424   1.3     oster 	} else
   1425  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1426   1.3     oster 			usemirror = 1;
   1427  1.45     perry 		} else
   1428   1.6     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1429   1.6     oster 				/* Trust only the main disk */
   1430   1.3     oster 				usemirror = 0;
   1431   1.6     oster 			} else
   1432  1.45     perry 				if (data_pda->startSector <
   1433  1.21     oster 				    (disks[colData].numBlocks / 2)) {
   1434   1.6     oster 					usemirror = 0;
   1435   1.6     oster 				} else {
   1436   1.6     oster 					usemirror = 1;
   1437   1.6     oster 				}
   1438   1.3     oster 
   1439   1.3     oster 	if (usemirror) {
   1440   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1441   1.3     oster 		tmp_pda = data_pda;
   1442   1.3     oster 		node->params[0].p = mirror_pda;
   1443   1.3     oster 		node->params[4].p = tmp_pda;
   1444   1.3     oster 	} else {
   1445   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1446   1.3     oster 	}
   1447   1.1     oster }
   1448  1.19     oster #endif
   1449