Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.47.2.1
      1  1.47.2.1      yamt /*	$NetBSD: rf_dagutils.c,v 1.47.2.1 2006/01/15 10:02:56 yamt Exp $	*/
      2       1.1     oster /*
      3       1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4       1.1     oster  * All rights reserved.
      5       1.1     oster  *
      6       1.1     oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7       1.1     oster  *
      8       1.1     oster  * Permission to use, copy, modify and distribute this software and
      9       1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10       1.1     oster  * notice and this permission notice appear in all copies of the
     11       1.1     oster  * software, derivative works or modified versions, and any portions
     12       1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13       1.1     oster  *
     14       1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15       1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16       1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17       1.1     oster  *
     18       1.1     oster  * Carnegie Mellon requests users of this software to return to
     19       1.1     oster  *
     20       1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21       1.1     oster  *  School of Computer Science
     22       1.1     oster  *  Carnegie Mellon University
     23       1.1     oster  *  Pittsburgh PA 15213-3890
     24       1.1     oster  *
     25       1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26       1.1     oster  * rights to redistribute these changes.
     27       1.1     oster  */
     28       1.1     oster 
     29       1.1     oster /******************************************************************************
     30       1.1     oster  *
     31       1.1     oster  * rf_dagutils.c -- utility routines for manipulating dags
     32       1.1     oster  *
     33       1.1     oster  *****************************************************************************/
     34       1.9     lukem 
     35       1.9     lukem #include <sys/cdefs.h>
     36  1.47.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.47.2.1 2006/01/15 10:02:56 yamt Exp $");
     37       1.1     oster 
     38       1.8     oster #include <dev/raidframe/raidframevar.h>
     39       1.8     oster 
     40       1.1     oster #include "rf_archs.h"
     41       1.1     oster #include "rf_threadstuff.h"
     42       1.1     oster #include "rf_raid.h"
     43       1.1     oster #include "rf_dag.h"
     44       1.1     oster #include "rf_dagutils.h"
     45       1.1     oster #include "rf_dagfuncs.h"
     46       1.1     oster #include "rf_general.h"
     47       1.1     oster #include "rf_map.h"
     48       1.1     oster #include "rf_shutdown.h"
     49       1.1     oster 
     50       1.1     oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51       1.1     oster 
     52      1.20  jdolecek const RF_RedFuncs_t rf_xorFuncs = {
     53       1.1     oster 	rf_RegularXorFunc, "Reg Xr",
     54      1.32     oster 	rf_SimpleXorFunc, "Simple Xr"};
     55       1.1     oster 
     56      1.20  jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57       1.1     oster 	rf_RecoveryXorFunc, "Recovery Xr",
     58      1.32     oster 	rf_RecoveryXorFunc, "Recovery Xr"};
     59       1.1     oster 
     60      1.13     oster #if RF_DEBUG_VALIDATE_DAG
     61       1.1     oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62       1.1     oster static void rf_PrintDAG(RF_DagHeader_t *);
     63      1.12     oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64      1.12     oster 			     RF_DagNode_t **, int);
     65       1.1     oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66       1.1     oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67      1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
     68       1.1     oster 
     69      1.40     oster /* The maximum number of nodes in a DAG is bounded by
     70      1.40     oster 
     71      1.45     perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72      1.40     oster 	(1 * 2 * layoutPtr->numParityCol) + 3
     73      1.40     oster 
     74      1.40     oster which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75      1.40     oster 
     76      1.40     oster For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77      1.45     perry on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78      1.45     perry would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79      1.40     oster have a few kicking around.
     80      1.40     oster */
     81      1.40     oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82      1.40     oster 
     83      1.40     oster 
     84       1.1     oster /******************************************************************************
     85       1.1     oster  *
     86       1.1     oster  * InitNode - initialize a dag node
     87       1.1     oster  *
     88       1.1     oster  * the size of the propList array is always the same as that of the
     89       1.1     oster  * successors array.
     90       1.1     oster  *
     91       1.1     oster  *****************************************************************************/
     92      1.40     oster void
     93      1.23     oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94      1.23     oster     int (*doFunc) (RF_DagNode_t *node),
     95      1.23     oster     int (*undoFunc) (RF_DagNode_t *node),
     96      1.23     oster     int (*wakeFunc) (RF_DagNode_t *node, int status),
     97      1.23     oster     int nSucc, int nAnte, int nParam, int nResult,
     98      1.46  christos     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99       1.3     oster {
    100       1.3     oster 	void  **ptrs;
    101       1.3     oster 	int     nptrs;
    102       1.3     oster 
    103       1.3     oster 	if (nAnte > RF_MAX_ANTECEDENTS)
    104       1.3     oster 		RF_PANIC();
    105       1.3     oster 	node->status = initstatus;
    106       1.3     oster 	node->commitNode = commit;
    107       1.3     oster 	node->doFunc = doFunc;
    108       1.3     oster 	node->undoFunc = undoFunc;
    109       1.3     oster 	node->wakeFunc = wakeFunc;
    110       1.3     oster 	node->numParams = nParam;
    111       1.3     oster 	node->numResults = nResult;
    112       1.3     oster 	node->numAntecedents = nAnte;
    113       1.3     oster 	node->numAntDone = 0;
    114       1.3     oster 	node->next = NULL;
    115      1.45     perry 	/* node->list_next = NULL */  /* Don't touch this here!
    116      1.45     perry 	                                 It may already be
    117      1.38     oster 					 in use by the caller! */
    118       1.3     oster 	node->numSuccedents = nSucc;
    119       1.3     oster 	node->name = name;
    120       1.3     oster 	node->dagHdr = hdr;
    121      1.40     oster 	node->big_dag_ptrs = NULL;
    122      1.40     oster 	node->big_dag_params = NULL;
    123       1.3     oster 	node->visited = 0;
    124       1.3     oster 
    125       1.3     oster 	/* allocate all the pointers with one call to malloc */
    126       1.3     oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    127       1.3     oster 
    128       1.3     oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    129       1.3     oster 		/*
    130       1.3     oster 	         * The dag_ptrs field of the node is basically some scribble
    131       1.3     oster 	         * space to be used here. We could get rid of it, and always
    132       1.3     oster 	         * allocate the range of pointers, but that's expensive. So,
    133       1.3     oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    134       1.3     oster 	         * we'll find that:
    135       1.3     oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    136       1.3     oster 	         *     only a little bit (least efficient case)
    137       1.3     oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    138       1.3     oster 	         *     (wasted memory)
    139       1.3     oster 	         */
    140       1.3     oster 		ptrs = (void **) node->dag_ptrs;
    141      1.40     oster 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    142      1.40     oster 		node->big_dag_ptrs = rf_AllocDAGPCache();
    143      1.40     oster 		ptrs = (void **) node->big_dag_ptrs;
    144       1.3     oster 	} else {
    145      1.45     perry 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    146      1.22     oster 				(void **), alist);
    147       1.3     oster 	}
    148       1.3     oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    149       1.3     oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    150       1.3     oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    151       1.3     oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    152       1.3     oster 
    153       1.3     oster 	if (nParam) {
    154       1.3     oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    155       1.3     oster 			node->params = (RF_DagParam_t *) node->dag_params;
    156      1.40     oster 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    157      1.40     oster 			node->big_dag_params = rf_AllocDAGPCache();
    158      1.40     oster 			node->params = node->big_dag_params;
    159       1.3     oster 		} else {
    160      1.45     perry 			RF_MallocAndAdd(node->params,
    161      1.45     perry 					nParam * sizeof(RF_DagParam_t),
    162      1.22     oster 					(RF_DagParam_t *), alist);
    163       1.3     oster 		}
    164       1.3     oster 	} else {
    165       1.3     oster 		node->params = NULL;
    166       1.3     oster 	}
    167       1.1     oster }
    168       1.1     oster 
    169       1.1     oster 
    170       1.1     oster 
    171       1.1     oster /******************************************************************************
    172       1.1     oster  *
    173       1.1     oster  * allocation and deallocation routines
    174       1.1     oster  *
    175       1.1     oster  *****************************************************************************/
    176       1.1     oster 
    177      1.45     perry void
    178      1.23     oster rf_FreeDAG(RF_DagHeader_t *dag_h)
    179       1.3     oster {
    180       1.3     oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    181      1.39     oster 	RF_PhysDiskAddr_t *pda;
    182      1.38     oster 	RF_DagNode_t *tmpnode;
    183       1.3     oster 	RF_DagHeader_t *nextDag;
    184       1.3     oster 
    185       1.3     oster 	while (dag_h) {
    186       1.3     oster 		nextDag = dag_h->next;
    187       1.3     oster 		rf_FreeAllocList(dag_h->allocList);
    188       1.3     oster 		for (asmap = dag_h->asmList; asmap;) {
    189       1.3     oster 			t_asmap = asmap;
    190       1.3     oster 			asmap = asmap->next;
    191       1.3     oster 			rf_FreeAccessStripeMap(t_asmap);
    192       1.3     oster 		}
    193      1.39     oster 		while (dag_h->pda_cleanup_list) {
    194      1.39     oster 			pda = dag_h->pda_cleanup_list;
    195      1.39     oster 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    196      1.39     oster 			rf_FreePhysDiskAddr(pda);
    197      1.39     oster 		}
    198      1.39     oster 		while (dag_h->nodes) {
    199      1.38     oster 			tmpnode = dag_h->nodes;
    200      1.38     oster 			dag_h->nodes = dag_h->nodes->list_next;
    201      1.38     oster 			rf_FreeDAGNode(tmpnode);
    202      1.38     oster 		}
    203       1.3     oster 		rf_FreeDAGHeader(dag_h);
    204       1.3     oster 		dag_h = nextDag;
    205       1.3     oster 	}
    206       1.3     oster }
    207       1.3     oster 
    208       1.1     oster #define RF_MAX_FREE_DAGH 128
    209      1.30     oster #define RF_MIN_FREE_DAGH  32
    210       1.1     oster 
    211      1.38     oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    212      1.38     oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    213      1.38     oster 
    214      1.25     oster #define RF_MAX_FREE_DAGLIST 128
    215      1.30     oster #define RF_MIN_FREE_DAGLIST  32
    216      1.25     oster 
    217      1.40     oster #define RF_MAX_FREE_DAGPCACHE 128
    218      1.40     oster #define RF_MIN_FREE_DAGPCACHE   8
    219      1.40     oster 
    220      1.27     oster #define RF_MAX_FREE_FUNCLIST 128
    221      1.30     oster #define RF_MIN_FREE_FUNCLIST  32
    222      1.25     oster 
    223      1.41     oster #define RF_MAX_FREE_BUFFERS 128
    224      1.41     oster #define RF_MIN_FREE_BUFFERS  32
    225      1.41     oster 
    226       1.1     oster static void rf_ShutdownDAGs(void *);
    227      1.45     perry static void
    228      1.23     oster rf_ShutdownDAGs(void *ignored)
    229       1.1     oster {
    230      1.36     oster 	pool_destroy(&rf_pools.dagh);
    231      1.38     oster 	pool_destroy(&rf_pools.dagnode);
    232      1.36     oster 	pool_destroy(&rf_pools.daglist);
    233      1.40     oster 	pool_destroy(&rf_pools.dagpcache);
    234      1.36     oster 	pool_destroy(&rf_pools.funclist);
    235       1.1     oster }
    236       1.1     oster 
    237      1.45     perry int
    238      1.23     oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    239       1.1     oster {
    240       1.1     oster 
    241      1.38     oster 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    242      1.38     oster 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    243      1.36     oster 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    244      1.36     oster 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    245      1.36     oster 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    246      1.36     oster 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    247      1.40     oster 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    248      1.40     oster 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    249      1.36     oster 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    250      1.36     oster 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    251      1.29     oster 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    252      1.29     oster 
    253       1.3     oster 	return (0);
    254       1.1     oster }
    255       1.1     oster 
    256       1.3     oster RF_DagHeader_t *
    257       1.3     oster rf_AllocDAGHeader()
    258       1.1     oster {
    259       1.1     oster 	RF_DagHeader_t *dh;
    260       1.1     oster 
    261      1.36     oster 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    262      1.28     oster 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    263       1.3     oster 	return (dh);
    264       1.1     oster }
    265       1.1     oster 
    266      1.45     perry void
    267       1.3     oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    268       1.1     oster {
    269      1.36     oster 	pool_put(&rf_pools.dagh, dh);
    270       1.1     oster }
    271      1.25     oster 
    272      1.38     oster RF_DagNode_t *
    273      1.38     oster rf_AllocDAGNode()
    274      1.38     oster {
    275      1.38     oster 	RF_DagNode_t *node;
    276      1.38     oster 
    277      1.38     oster 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    278      1.38     oster 	memset(node, 0, sizeof(RF_DagNode_t));
    279      1.38     oster 	return (node);
    280      1.38     oster }
    281      1.38     oster 
    282      1.38     oster void
    283      1.38     oster rf_FreeDAGNode(RF_DagNode_t *node)
    284      1.38     oster {
    285      1.40     oster 	if (node->big_dag_ptrs) {
    286      1.40     oster 		rf_FreeDAGPCache(node->big_dag_ptrs);
    287      1.40     oster 	}
    288      1.40     oster 	if (node->big_dag_params) {
    289      1.40     oster 		rf_FreeDAGPCache(node->big_dag_params);
    290      1.40     oster 	}
    291      1.38     oster 	pool_put(&rf_pools.dagnode, node);
    292      1.38     oster }
    293      1.38     oster 
    294      1.25     oster RF_DagList_t *
    295      1.25     oster rf_AllocDAGList()
    296      1.25     oster {
    297      1.25     oster 	RF_DagList_t *dagList;
    298      1.25     oster 
    299      1.36     oster 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    300      1.25     oster 	memset(dagList, 0, sizeof(RF_DagList_t));
    301      1.25     oster 
    302      1.25     oster 	return (dagList);
    303      1.25     oster }
    304      1.25     oster 
    305      1.25     oster void
    306      1.25     oster rf_FreeDAGList(RF_DagList_t *dagList)
    307      1.25     oster {
    308      1.36     oster 	pool_put(&rf_pools.daglist, dagList);
    309      1.25     oster }
    310      1.25     oster 
    311      1.40     oster void *
    312      1.40     oster rf_AllocDAGPCache()
    313      1.40     oster {
    314      1.40     oster 	void *p;
    315      1.40     oster 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    316      1.40     oster 	memset(p, 0, RF_DAGPCACHE_SIZE);
    317      1.45     perry 
    318      1.40     oster 	return (p);
    319      1.40     oster }
    320      1.40     oster 
    321      1.40     oster void
    322      1.40     oster rf_FreeDAGPCache(void *p)
    323      1.40     oster {
    324      1.40     oster 	pool_put(&rf_pools.dagpcache, p);
    325      1.40     oster }
    326      1.40     oster 
    327      1.27     oster RF_FuncList_t *
    328      1.27     oster rf_AllocFuncList()
    329      1.27     oster {
    330      1.27     oster 	RF_FuncList_t *funcList;
    331      1.27     oster 
    332      1.36     oster 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    333      1.27     oster 	memset(funcList, 0, sizeof(RF_FuncList_t));
    334      1.45     perry 
    335      1.27     oster 	return (funcList);
    336      1.27     oster }
    337      1.27     oster 
    338      1.27     oster void
    339      1.27     oster rf_FreeFuncList(RF_FuncList_t *funcList)
    340      1.27     oster {
    341      1.36     oster 	pool_put(&rf_pools.funclist, funcList);
    342      1.27     oster }
    343      1.25     oster 
    344      1.44     oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
    345      1.45     perry    in an entire stripe.
    346      1.44     oster */
    347      1.44     oster 
    348      1.44     oster void *
    349      1.44     oster rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    350      1.44     oster {
    351      1.44     oster 	RF_VoidPointerListElem_t *vple;
    352      1.44     oster 	void *p;
    353      1.44     oster 
    354      1.45     perry 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    355      1.44     oster 					       raidPtr->logBytesPerSector))));
    356      1.44     oster 
    357      1.45     perry 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    358      1.45     perry 					raidPtr->logBytesPerSector),
    359      1.44     oster 		     M_RAIDFRAME, M_NOWAIT);
    360      1.44     oster 	if (!p) {
    361      1.44     oster 		RF_LOCK_MUTEX(raidPtr->mutex);
    362      1.44     oster 		if (raidPtr->stripebuf_count > 0) {
    363      1.44     oster 			vple = raidPtr->stripebuf;
    364      1.44     oster 			raidPtr->stripebuf = vple->next;
    365      1.44     oster 			p = vple->p;
    366      1.44     oster 			rf_FreeVPListElem(vple);
    367      1.44     oster 			raidPtr->stripebuf_count--;
    368      1.44     oster 		} else {
    369      1.44     oster #ifdef DIAGNOSTIC
    370      1.44     oster 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    371      1.44     oster #endif
    372      1.44     oster 		}
    373      1.44     oster 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    374      1.44     oster 		if (!p) {
    375      1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    376      1.44     oster 			   and hope that someone frees up memory for us.. */
    377      1.45     perry 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    378      1.44     oster 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    379      1.44     oster 		}
    380      1.44     oster 	}
    381      1.44     oster 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    382      1.44     oster 
    383      1.44     oster 	vple = rf_AllocVPListElem();
    384      1.44     oster 	vple->p = p;
    385      1.44     oster         vple->next = dag_h->desc->stripebufs;
    386      1.44     oster         dag_h->desc->stripebufs = vple;
    387      1.44     oster 
    388      1.44     oster 	return (p);
    389      1.44     oster }
    390      1.44     oster 
    391      1.25     oster 
    392      1.44     oster void
    393      1.44     oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    394      1.44     oster {
    395      1.44     oster 	RF_LOCK_MUTEX(raidPtr->mutex);
    396      1.44     oster 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    397      1.44     oster 		/* just tack it in */
    398      1.44     oster 		vple->next = raidPtr->stripebuf;
    399      1.44     oster 		raidPtr->stripebuf = vple;
    400      1.44     oster 		raidPtr->stripebuf_count++;
    401      1.44     oster 	} else {
    402      1.44     oster 		free(vple->p, M_RAIDFRAME);
    403      1.44     oster 		rf_FreeVPListElem(vple);
    404      1.44     oster 	}
    405      1.44     oster 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    406      1.44     oster }
    407      1.25     oster 
    408      1.42     oster /* allocates a buffer big enough to hold the data described by the
    409      1.42     oster caller (ie. the data of the associated PDA).  Glue this buffer
    410      1.42     oster into our dag_h cleanup structure. */
    411      1.42     oster 
    412      1.43     oster void *
    413      1.44     oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    414       1.3     oster {
    415      1.42     oster 	RF_VoidPointerListElem_t *vple;
    416      1.42     oster 	void *p;
    417       1.3     oster 
    418      1.42     oster 	p = rf_AllocIOBuffer(raidPtr, size);
    419      1.42     oster 	vple = rf_AllocVPListElem();
    420      1.42     oster 	vple->p = p;
    421      1.44     oster 	vple->next = dag_h->desc->iobufs;
    422      1.44     oster 	dag_h->desc->iobufs = vple;
    423      1.42     oster 
    424      1.42     oster 	return (p);
    425       1.1     oster }
    426      1.41     oster 
    427      1.41     oster void *
    428      1.41     oster rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    429      1.41     oster {
    430      1.44     oster 	RF_VoidPointerListElem_t *vple;
    431      1.41     oster 	void *p;
    432      1.41     oster 
    433      1.45     perry 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    434      1.44     oster 			   raidPtr->logBytesPerSector)));
    435      1.41     oster 
    436      1.45     perry 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    437      1.45     perry 				 raidPtr->logBytesPerSector,
    438      1.41     oster 				 M_RAIDFRAME, M_NOWAIT);
    439      1.41     oster 	if (!p) {
    440      1.41     oster 		RF_LOCK_MUTEX(raidPtr->mutex);
    441      1.41     oster 		if (raidPtr->iobuf_count > 0) {
    442      1.44     oster 			vple = raidPtr->iobuf;
    443      1.44     oster 			raidPtr->iobuf = vple->next;
    444      1.44     oster 			p = vple->p;
    445      1.44     oster 			rf_FreeVPListElem(vple);
    446      1.41     oster 			raidPtr->iobuf_count--;
    447      1.41     oster 		} else {
    448      1.41     oster #ifdef DIAGNOSTIC
    449      1.41     oster 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    450      1.41     oster #endif
    451      1.41     oster 		}
    452      1.41     oster 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    453      1.41     oster 		if (!p) {
    454      1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    455      1.41     oster 			   and hope that someone frees up memory for us.. */
    456      1.45     perry 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    457      1.45     perry 				    raidPtr->logBytesPerSector,
    458      1.41     oster 				    M_RAIDFRAME, M_WAITOK);
    459      1.41     oster 		}
    460      1.41     oster 	}
    461      1.44     oster 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    462      1.41     oster 	return (p);
    463      1.41     oster }
    464      1.41     oster 
    465      1.41     oster void
    466      1.44     oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    467      1.41     oster {
    468      1.41     oster 	RF_LOCK_MUTEX(raidPtr->mutex);
    469      1.41     oster 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    470      1.44     oster 		/* just tack it in */
    471      1.44     oster 		vple->next = raidPtr->iobuf;
    472      1.44     oster 		raidPtr->iobuf = vple;
    473      1.41     oster 		raidPtr->iobuf_count++;
    474      1.41     oster 	} else {
    475      1.44     oster 		free(vple->p, M_RAIDFRAME);
    476      1.44     oster 		rf_FreeVPListElem(vple);
    477      1.41     oster 	}
    478      1.41     oster 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    479      1.41     oster }
    480      1.41     oster 
    481      1.41     oster 
    482      1.41     oster 
    483      1.13     oster #if RF_DEBUG_VALIDATE_DAG
    484       1.1     oster /******************************************************************************
    485       1.1     oster  *
    486       1.1     oster  * debug routines
    487       1.1     oster  *
    488       1.1     oster  *****************************************************************************/
    489       1.1     oster 
    490       1.3     oster char   *
    491      1.23     oster rf_NodeStatusString(RF_DagNode_t *node)
    492       1.1     oster {
    493       1.3     oster 	switch (node->status) {
    494      1.34     oster 	case rf_wait:
    495      1.34     oster 		return ("wait");
    496       1.3     oster 	case rf_fired:
    497       1.3     oster 		return ("fired");
    498       1.3     oster 	case rf_good:
    499       1.3     oster 		return ("good");
    500       1.3     oster 	case rf_bad:
    501       1.3     oster 		return ("bad");
    502       1.3     oster 	default:
    503       1.3     oster 		return ("?");
    504       1.3     oster 	}
    505       1.3     oster }
    506       1.1     oster 
    507      1.45     perry void
    508      1.23     oster rf_PrintNodeInfoString(RF_DagNode_t *node)
    509       1.3     oster {
    510       1.3     oster 	RF_PhysDiskAddr_t *pda;
    511       1.3     oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    512       1.3     oster 	int     i, lk, unlk;
    513       1.3     oster 	void   *bufPtr;
    514       1.3     oster 
    515       1.3     oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    516       1.3     oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    517       1.3     oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    518       1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    519       1.3     oster 		bufPtr = (void *) node->params[1].p;
    520      1.24     oster 		lk = 0;
    521      1.24     oster 		unlk = 0;
    522       1.3     oster 		RF_ASSERT(!(lk && unlk));
    523      1.21     oster 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    524       1.3     oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    525       1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    526       1.3     oster 		return;
    527       1.3     oster 	}
    528       1.3     oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    529       1.3     oster 	    || (df == rf_RecoveryXorFunc)) {
    530       1.3     oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    531       1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    532       1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    533       1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    534      1.21     oster 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    535      1.21     oster 			    (long) bufPtr, pda->col,
    536       1.3     oster 			    (long) pda->startSector, (int) pda->numSector);
    537       1.3     oster 		}
    538       1.3     oster 		return;
    539       1.3     oster 	}
    540       1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    541       1.3     oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    542       1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    543       1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    544       1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    545      1.21     oster 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    546      1.21     oster 			    pda->col, (long) pda->startSector,
    547       1.3     oster 			    (int) pda->numSector, (long) bufPtr);
    548       1.3     oster 		}
    549       1.3     oster 		return;
    550       1.3     oster 	}
    551       1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    552       1.3     oster 
    553       1.3     oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    554       1.3     oster 		printf("\n");
    555       1.3     oster 		return;
    556       1.3     oster 	}
    557       1.3     oster 	printf("?\n");
    558       1.3     oster }
    559      1.16     oster #ifdef DEBUG
    560      1.45     perry static void
    561      1.23     oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    562       1.3     oster {
    563       1.3     oster 	char   *anttype;
    564       1.3     oster 	int     i;
    565       1.3     oster 
    566       1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    567       1.3     oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    568       1.3     oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    569       1.3     oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    570       1.3     oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    571       1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    572       1.3     oster 		printf("%d%s", node->succedents[i]->nodeNum,
    573       1.3     oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    574       1.3     oster 	}
    575       1.3     oster 	printf("} A{");
    576       1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    577       1.3     oster 		switch (node->antType[i]) {
    578       1.3     oster 		case rf_trueData:
    579       1.3     oster 			anttype = "T";
    580       1.3     oster 			break;
    581       1.3     oster 		case rf_antiData:
    582       1.3     oster 			anttype = "A";
    583       1.3     oster 			break;
    584       1.3     oster 		case rf_outputData:
    585       1.3     oster 			anttype = "O";
    586       1.3     oster 			break;
    587       1.3     oster 		case rf_control:
    588       1.3     oster 			anttype = "C";
    589       1.3     oster 			break;
    590       1.3     oster 		default:
    591       1.3     oster 			anttype = "?";
    592       1.3     oster 			break;
    593       1.3     oster 		}
    594       1.3     oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    595       1.3     oster 	}
    596       1.3     oster 	printf("}; ");
    597       1.3     oster 	rf_PrintNodeInfoString(node);
    598       1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    599       1.3     oster 		if (node->succedents[i]->visited == unvisited)
    600       1.3     oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    601       1.3     oster 	}
    602       1.1     oster }
    603       1.1     oster 
    604      1.45     perry static void
    605      1.23     oster rf_PrintDAG(RF_DagHeader_t *dag_h)
    606       1.3     oster {
    607       1.3     oster 	int     unvisited, i;
    608       1.3     oster 	char   *status;
    609       1.3     oster 
    610       1.3     oster 	/* set dag status */
    611       1.3     oster 	switch (dag_h->status) {
    612       1.3     oster 	case rf_enable:
    613       1.3     oster 		status = "enable";
    614       1.3     oster 		break;
    615       1.3     oster 	case rf_rollForward:
    616       1.3     oster 		status = "rollForward";
    617       1.3     oster 		break;
    618       1.3     oster 	case rf_rollBackward:
    619       1.3     oster 		status = "rollBackward";
    620       1.3     oster 		break;
    621       1.3     oster 	default:
    622       1.3     oster 		status = "illegal!";
    623       1.3     oster 		break;
    624       1.3     oster 	}
    625       1.3     oster 	/* find out if visited bits are currently set or clear */
    626       1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    627       1.3     oster 
    628       1.3     oster 	printf("DAG type:  %s\n", dag_h->creator);
    629       1.3     oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    630       1.3     oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    631       1.3     oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    632       1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    633       1.3     oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    634       1.3     oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    635       1.3     oster 	}
    636       1.3     oster 	printf("};\n");
    637       1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    638       1.3     oster 		if (dag_h->succedents[i]->visited == unvisited)
    639       1.3     oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    640       1.3     oster 	}
    641       1.3     oster }
    642      1.16     oster #endif
    643       1.1     oster /* assigns node numbers */
    644      1.45     perry int
    645       1.3     oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    646       1.1     oster {
    647       1.3     oster 	int     unvisited, i, nnum;
    648       1.3     oster 	RF_DagNode_t *node;
    649       1.1     oster 
    650       1.3     oster 	nnum = 0;
    651       1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    652       1.3     oster 
    653       1.3     oster 	dag_h->nodeNum = nnum++;
    654       1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    655       1.3     oster 		node = dag_h->succedents[i];
    656       1.3     oster 		if (node->visited == unvisited) {
    657       1.3     oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    658       1.3     oster 		}
    659       1.3     oster 	}
    660       1.3     oster 	return (nnum);
    661       1.1     oster }
    662       1.1     oster 
    663      1.45     perry int
    664      1.23     oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    665       1.3     oster {
    666       1.3     oster 	int     i;
    667       1.3     oster 
    668       1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    669       1.3     oster 
    670       1.3     oster 	node->nodeNum = num++;
    671       1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    672       1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    673       1.3     oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    674       1.3     oster 		}
    675       1.3     oster 	}
    676       1.3     oster 	return (num);
    677       1.3     oster }
    678       1.1     oster /* set the header pointers in each node to "newptr" */
    679      1.45     perry void
    680      1.23     oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    681       1.3     oster {
    682       1.3     oster 	int     i;
    683       1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    684       1.3     oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    685       1.3     oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    686       1.1     oster }
    687       1.1     oster 
    688      1.45     perry void
    689      1.23     oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    690       1.1     oster {
    691       1.3     oster 	int     i;
    692       1.3     oster 	node->dagHdr = newptr;
    693       1.3     oster 	for (i = 0; i < node->numSuccedents; i++)
    694       1.3     oster 		if (node->succedents[i]->dagHdr != newptr)
    695       1.3     oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    696       1.3     oster }
    697       1.1     oster 
    698       1.1     oster 
    699      1.45     perry void
    700       1.3     oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    701       1.3     oster {
    702       1.3     oster 	int     i = 0;
    703       1.3     oster 
    704       1.3     oster 	for (; dag_h; dag_h = dag_h->next) {
    705       1.3     oster 		rf_AssignNodeNums(dag_h);
    706       1.3     oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    707       1.3     oster 		rf_PrintDAG(dag_h);
    708       1.3     oster 	}
    709       1.1     oster }
    710       1.1     oster 
    711      1.45     perry static int
    712      1.23     oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    713      1.23     oster 		  RF_DagNode_t **nodes, int unvisited)
    714       1.3     oster {
    715       1.3     oster 	int     i, retcode = 0;
    716       1.3     oster 
    717       1.3     oster 	/* construct an array of node pointers indexed by node num */
    718       1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    719       1.3     oster 	nodes[node->nodeNum] = node;
    720       1.3     oster 
    721       1.3     oster 	if (node->next != NULL) {
    722       1.3     oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    723       1.3     oster 		retcode = 1;
    724       1.3     oster 	}
    725       1.3     oster 	if (node->status != rf_wait) {
    726       1.3     oster 		printf("INVALID DAG: Node status is not wait\n");
    727       1.3     oster 		retcode = 1;
    728       1.3     oster 	}
    729       1.3     oster 	if (node->numAntDone != 0) {
    730       1.3     oster 		printf("INVALID DAG: numAntDone is not zero\n");
    731       1.3     oster 		retcode = 1;
    732       1.3     oster 	}
    733       1.3     oster 	if (node->doFunc == rf_TerminateFunc) {
    734       1.3     oster 		if (node->numSuccedents != 0) {
    735       1.3     oster 			printf("INVALID DAG: Terminator node has succedents\n");
    736       1.3     oster 			retcode = 1;
    737       1.3     oster 		}
    738       1.3     oster 	} else {
    739       1.3     oster 		if (node->numSuccedents == 0) {
    740       1.3     oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    741       1.3     oster 			retcode = 1;
    742       1.3     oster 		}
    743       1.3     oster 	}
    744       1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    745       1.3     oster 		if (!node->succedents[i]) {
    746       1.3     oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    747       1.3     oster 			retcode = 1;
    748       1.3     oster 		}
    749       1.3     oster 		scount[node->succedents[i]->nodeNum]++;
    750       1.3     oster 	}
    751       1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    752       1.3     oster 		if (!node->antecedents[i]) {
    753       1.3     oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    754       1.3     oster 			retcode = 1;
    755       1.3     oster 		}
    756       1.3     oster 		acount[node->antecedents[i]->nodeNum]++;
    757       1.3     oster 	}
    758       1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    759       1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    760       1.3     oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    761       1.3     oster 				acount, nodes, unvisited)) {
    762       1.3     oster 				retcode = 1;
    763       1.3     oster 			}
    764       1.3     oster 		}
    765       1.3     oster 	}
    766       1.3     oster 	return (retcode);
    767       1.3     oster }
    768       1.3     oster 
    769      1.45     perry static void
    770      1.23     oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    771       1.3     oster {
    772       1.3     oster 	int     i;
    773       1.3     oster 
    774       1.3     oster 	RF_ASSERT(node->visited == unvisited);
    775       1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    776       1.3     oster 		if (node->succedents[i] == NULL) {
    777       1.3     oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    778       1.3     oster 			RF_ASSERT(0);
    779       1.3     oster 		}
    780       1.3     oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    781       1.3     oster 	}
    782       1.3     oster }
    783       1.3     oster /* NOTE:  never call this on a big dag, because it is exponential
    784       1.3     oster  * in execution time
    785       1.3     oster  */
    786      1.45     perry static void
    787      1.23     oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    788       1.3     oster {
    789       1.3     oster 	int     i, unvisited;
    790       1.3     oster 
    791       1.3     oster 	unvisited = dag->succedents[0]->visited;
    792       1.3     oster 
    793       1.3     oster 	for (i = 0; i < dag->numSuccedents; i++) {
    794       1.3     oster 		if (dag->succedents[i] == NULL) {
    795       1.3     oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    796       1.3     oster 			RF_ASSERT(0);
    797       1.3     oster 		}
    798       1.3     oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    799       1.3     oster 	}
    800       1.3     oster }
    801       1.1     oster /* validate a DAG.  _at entry_ verify that:
    802       1.1     oster  *   -- numNodesCompleted is zero
    803       1.1     oster  *   -- node queue is null
    804       1.1     oster  *   -- dag status is rf_enable
    805       1.1     oster  *   -- next pointer is null on every node
    806       1.1     oster  *   -- all nodes have status wait
    807       1.1     oster  *   -- numAntDone is zero in all nodes
    808       1.1     oster  *   -- terminator node has zero successors
    809       1.1     oster  *   -- no other node besides terminator has zero successors
    810       1.1     oster  *   -- no successor or antecedent pointer in a node is NULL
    811       1.1     oster  *   -- number of times that each node appears as a successor of another node
    812       1.1     oster  *      is equal to the antecedent count on that node
    813       1.1     oster  *   -- number of times that each node appears as an antecedent of another node
    814       1.1     oster  *      is equal to the succedent count on that node
    815       1.1     oster  *   -- what else?
    816       1.1     oster  */
    817      1.45     perry int
    818      1.23     oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
    819       1.3     oster {
    820       1.3     oster 	int     i, nodecount;
    821       1.3     oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    822       1.3     oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    823       1.3     oster 	int     retcode = 0;
    824       1.3     oster 	int     unvisited;
    825       1.3     oster 	int     commitNodeCount = 0;
    826       1.3     oster 
    827       1.3     oster 	if (rf_validateVisitedDebug)
    828       1.3     oster 		rf_ValidateVisitedBits(dag_h);
    829       1.3     oster 
    830       1.3     oster 	if (dag_h->numNodesCompleted != 0) {
    831       1.3     oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    832       1.3     oster 		retcode = 1;
    833       1.3     oster 		goto validate_dag_bad;
    834       1.3     oster 	}
    835       1.3     oster 	if (dag_h->status != rf_enable) {
    836       1.3     oster 		printf("INVALID DAG: not enabled\n");
    837       1.3     oster 		retcode = 1;
    838       1.3     oster 		goto validate_dag_bad;
    839       1.3     oster 	}
    840       1.3     oster 	if (dag_h->numCommits != 0) {
    841       1.3     oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    842       1.3     oster 		retcode = 1;
    843       1.3     oster 		goto validate_dag_bad;
    844       1.3     oster 	}
    845       1.3     oster 	if (dag_h->numSuccedents != 1) {
    846       1.3     oster 		/* currently, all dags must have only one succedent */
    847       1.3     oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    848       1.3     oster 		retcode = 1;
    849       1.3     oster 		goto validate_dag_bad;
    850       1.3     oster 	}
    851       1.3     oster 	nodecount = rf_AssignNodeNums(dag_h);
    852       1.3     oster 
    853       1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    854       1.3     oster 
    855      1.22     oster 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    856      1.22     oster 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    857      1.45     perry 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    858      1.22     oster 		  (RF_DagNode_t **));
    859       1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    860       1.3     oster 		if ((dag_h->succedents[i]->visited == unvisited)
    861       1.3     oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    862       1.3     oster 			acount, nodes, unvisited)) {
    863       1.3     oster 			retcode = 1;
    864       1.3     oster 		}
    865       1.3     oster 	}
    866       1.3     oster 	/* start at 1 to skip the header node */
    867       1.3     oster 	for (i = 1; i < nodecount; i++) {
    868       1.3     oster 		if (nodes[i]->commitNode)
    869       1.3     oster 			commitNodeCount++;
    870       1.3     oster 		if (nodes[i]->doFunc == NULL) {
    871       1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    872       1.3     oster 			retcode = 1;
    873       1.3     oster 			goto validate_dag_out;
    874       1.3     oster 		}
    875       1.3     oster 		if (nodes[i]->undoFunc == NULL) {
    876       1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    877       1.3     oster 			retcode = 1;
    878       1.3     oster 			goto validate_dag_out;
    879       1.3     oster 		}
    880       1.3     oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    881       1.3     oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    882       1.3     oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    883       1.3     oster 			retcode = 1;
    884       1.3     oster 			goto validate_dag_out;
    885       1.3     oster 		}
    886       1.3     oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    887       1.3     oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    888       1.3     oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    889       1.3     oster 			retcode = 1;
    890       1.3     oster 			goto validate_dag_out;
    891       1.3     oster 		}
    892       1.3     oster 	}
    893       1.1     oster 
    894       1.3     oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    895       1.3     oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    896       1.3     oster 		    dag_h->numCommitNodes, commitNodeCount);
    897       1.3     oster 		retcode = 1;
    898       1.3     oster 		goto validate_dag_out;
    899       1.3     oster 	}
    900       1.1     oster validate_dag_out:
    901       1.3     oster 	RF_Free(scount, nodecount * sizeof(int));
    902       1.3     oster 	RF_Free(acount, nodecount * sizeof(int));
    903       1.3     oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    904       1.3     oster 	if (retcode)
    905       1.3     oster 		rf_PrintDAGList(dag_h);
    906       1.3     oster 
    907       1.3     oster 	if (rf_validateVisitedDebug)
    908       1.3     oster 		rf_ValidateVisitedBits(dag_h);
    909       1.3     oster 
    910       1.3     oster 	return (retcode);
    911       1.1     oster 
    912       1.1     oster validate_dag_bad:
    913       1.3     oster 	rf_PrintDAGList(dag_h);
    914       1.3     oster 	return (retcode);
    915       1.1     oster }
    916       1.1     oster 
    917      1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
    918       1.1     oster 
    919       1.1     oster /******************************************************************************
    920       1.1     oster  *
    921       1.1     oster  * misc construction routines
    922       1.1     oster  *
    923       1.1     oster  *****************************************************************************/
    924       1.1     oster 
    925      1.45     perry void
    926      1.23     oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    927       1.3     oster {
    928       1.3     oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    929      1.21     oster 	int     fcol = raidPtr->reconControl->fcol;
    930      1.21     oster 	int     scol = raidPtr->reconControl->spareCol;
    931       1.3     oster 	RF_PhysDiskAddr_t *pda;
    932       1.3     oster 
    933      1.21     oster 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    934       1.3     oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    935       1.3     oster 		if (pda->col == fcol) {
    936      1.31     oster #if RF_DEBUG_DAG
    937       1.3     oster 			if (rf_dagDebug) {
    938      1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    939       1.3     oster 					pda->startSector)) {
    940       1.3     oster 					RF_PANIC();
    941       1.3     oster 				}
    942       1.3     oster 			}
    943      1.31     oster #endif
    944       1.3     oster 			/* printf("Remapped data for large write\n"); */
    945       1.3     oster 			if (ds) {
    946       1.3     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    947      1.21     oster 				    &pda->col, &pda->startSector, RF_REMAP);
    948       1.3     oster 			} else {
    949       1.3     oster 				pda->col = scol;
    950       1.3     oster 			}
    951       1.3     oster 		}
    952       1.3     oster 	}
    953       1.3     oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    954       1.3     oster 		if (pda->col == fcol) {
    955      1.31     oster #if RF_DEBUG_DAG
    956       1.3     oster 			if (rf_dagDebug) {
    957      1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    958       1.3     oster 					RF_PANIC();
    959       1.3     oster 				}
    960       1.3     oster 			}
    961      1.31     oster #endif
    962       1.3     oster 		}
    963       1.3     oster 		if (ds) {
    964      1.21     oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    965       1.3     oster 		} else {
    966       1.3     oster 			pda->col = scol;
    967       1.3     oster 		}
    968       1.3     oster 	}
    969       1.1     oster }
    970       1.1     oster 
    971       1.1     oster 
    972       1.1     oster /* this routine allocates read buffers and generates stripe maps for the
    973       1.1     oster  * regions of the array from the start of the stripe to the start of the
    974       1.1     oster  * access, and from the end of the access to the end of the stripe.  It also
    975       1.1     oster  * computes and returns the number of DAG nodes needed to read all this data.
    976       1.1     oster  * Note that this routine does the wrong thing if the access is fully
    977       1.1     oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    978       1.1     oster  * start.
    979      1.45     perry  *
    980      1.23     oster  * layoutPtr - in: layout information
    981      1.23     oster  * asmap     - in: access stripe map
    982      1.23     oster  * dag_h     - in: header of the dag to create
    983      1.23     oster  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    984      1.23     oster  * nRodNodes - out: num nodes to be generated to read unaccessed data
    985      1.23     oster  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    986       1.1     oster  */
    987      1.45     perry void
    988      1.23     oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    989      1.23     oster 				RF_RaidLayout_t *layoutPtr,
    990      1.23     oster 				RF_AccessStripeMap_t *asmap,
    991      1.23     oster 				RF_DagHeader_t *dag_h,
    992      1.23     oster 				RF_AccessStripeMapHeader_t **new_asm_h,
    993      1.45     perry 				int *nRodNodes,
    994      1.23     oster 				char **sosBuffer, char **eosBuffer,
    995      1.23     oster 				RF_AllocListElem_t *allocList)
    996       1.3     oster {
    997       1.3     oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    998       1.3     oster 	RF_SectorNum_t sosNumSector, eosNumSector;
    999       1.3     oster 
   1000       1.3     oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
   1001       1.3     oster 	/* generate an access map for the region of the array from start of
   1002       1.3     oster 	 * stripe to start of access */
   1003       1.3     oster 	new_asm_h[0] = new_asm_h[1] = NULL;
   1004       1.3     oster 	*nRodNodes = 0;
   1005       1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
   1006       1.3     oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1007       1.3     oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
   1008      1.44     oster 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
   1009       1.3     oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
   1010       1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1011       1.3     oster 		dag_h->asmList = new_asm_h[0];
   1012       1.3     oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1013       1.3     oster 
   1014       1.3     oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1015       1.3     oster 		/* we're totally within one stripe here */
   1016       1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1017       1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1018       1.3     oster 	}
   1019       1.3     oster 	/* generate an access map for the region of the array from end of
   1020       1.3     oster 	 * access to end of stripe */
   1021       1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1022       1.3     oster 		eosRaidAddress = asmap->endRaidAddress;
   1023       1.3     oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1024      1.44     oster 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1025       1.3     oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1026       1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1027       1.3     oster 		dag_h->asmList = new_asm_h[1];
   1028       1.3     oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1029       1.3     oster 
   1030       1.3     oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1031       1.3     oster 		/* we're totally within one stripe here */
   1032       1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1033       1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1034       1.3     oster 	}
   1035       1.1     oster }
   1036       1.1     oster 
   1037       1.1     oster 
   1038       1.1     oster 
   1039       1.1     oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1040      1.45     perry int
   1041      1.45     perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1042      1.23     oster 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1043       1.3     oster {
   1044       1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1045       1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1046       1.3     oster 	/* use -1 to be sure we stay within SU */
   1047       1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1048       1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1049       1.3     oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1050       1.1     oster }
   1051       1.1     oster 
   1052       1.1     oster 
   1053       1.1     oster /* GenerateFailedAccessASMs
   1054       1.1     oster  *
   1055       1.1     oster  * this routine figures out what portion of the stripe needs to be read
   1056       1.1     oster  * to effect the degraded read or write operation.  It's primary function
   1057       1.1     oster  * is to identify everything required to recover the data, and then
   1058       1.1     oster  * eliminate anything that is already being accessed by the user.
   1059       1.1     oster  *
   1060       1.1     oster  * The main result is two new ASMs, one for the region from the start of the
   1061       1.1     oster  * stripe to the start of the access, and one for the region from the end of
   1062       1.1     oster  * the access to the end of the stripe.  These ASMs describe everything that
   1063       1.1     oster  * needs to be read to effect the degraded access.  Other results are:
   1064       1.1     oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1065       1.1     oster  *                recover the lost data,
   1066       1.1     oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1067       1.1     oster  *                at entry, not allocated.
   1068       1.1     oster  *    overlappingPDAs --
   1069       1.1     oster  *                describes which of the non-failed PDAs in the user access
   1070       1.1     oster  *                overlap data that needs to be read to effect recovery.
   1071       1.1     oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1072       1.1     oster  *                PDA, the ith pda in the input asm overlaps data that needs
   1073       1.1     oster  *                to be read for recovery.
   1074       1.1     oster  */
   1075       1.1     oster  /* in: asm - ASM for the actual access, one stripe only */
   1076      1.10       wiz  /* in: failedPDA - which component of the access has failed */
   1077       1.1     oster  /* in: dag_h - header of the DAG we're going to create */
   1078       1.1     oster  /* out: new_asm_h - the two new ASMs */
   1079       1.1     oster  /* out: nXorBufs - the total number of xor bufs required */
   1080       1.1     oster  /* out: rpBufPtr - a buffer for the parity read */
   1081      1.45     perry void
   1082      1.23     oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1083      1.23     oster 			    RF_PhysDiskAddr_t *failedPDA,
   1084      1.23     oster 			    RF_DagHeader_t *dag_h,
   1085      1.23     oster 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1086      1.23     oster 			    int *nXorBufs, char **rpBufPtr,
   1087      1.23     oster 			    char *overlappingPDAs,
   1088      1.23     oster 			    RF_AllocListElem_t *allocList)
   1089       1.3     oster {
   1090       1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1091       1.3     oster 
   1092       1.3     oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1093       1.3     oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1094       1.3     oster 	RF_PhysDiskAddr_t *pda;
   1095       1.3     oster 	int     foundit, i;
   1096       1.3     oster 
   1097       1.3     oster 	foundit = 0;
   1098       1.3     oster 	/* first compute the following raid addresses: start of stripe,
   1099       1.3     oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1100       1.3     oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1101       1.3     oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1102       1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1103       1.3     oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1104       1.3     oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1105       1.3     oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1106       1.3     oster 
   1107       1.3     oster 	/* now generate access stripe maps for each of the above regions of
   1108       1.3     oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1109       1.3     oster 
   1110       1.3     oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1111       1.3     oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1112       1.3     oster 
   1113       1.3     oster 	/* walk through the PDAs and range-restrict each SU to the region of
   1114       1.3     oster 	 * the SU touched on the failed PDA.  also compute total data buffer
   1115       1.3     oster 	 * space requirements in this step.  Ignore the parity for now. */
   1116      1.35     oster 	/* Also count nodes to find out how many bufs need to be xored together */
   1117      1.35     oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1118      1.35     oster 				 * case, 1 is for failed data */
   1119       1.3     oster 
   1120       1.3     oster 	if (new_asm_h[0]) {
   1121       1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1122       1.3     oster 		dag_h->asmList = new_asm_h[0];
   1123       1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1124       1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1125      1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1126       1.3     oster 		}
   1127      1.35     oster 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1128       1.3     oster 	}
   1129       1.3     oster 	if (new_asm_h[1]) {
   1130       1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1131       1.3     oster 		dag_h->asmList = new_asm_h[1];
   1132       1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1133       1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1134      1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1135       1.3     oster 		}
   1136       1.3     oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1137       1.3     oster 	}
   1138      1.45     perry 
   1139      1.35     oster 	/* allocate a buffer for parity */
   1140      1.45     perry 	if (rpBufPtr)
   1141      1.44     oster 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1142       1.3     oster 
   1143       1.3     oster 	/* the last step is to figure out how many more distinct buffers need
   1144       1.3     oster 	 * to get xor'd to produce the missing unit.  there's one for each
   1145       1.3     oster 	 * user-data read node that overlaps the portion of the failed unit
   1146       1.3     oster 	 * being accessed */
   1147       1.3     oster 
   1148       1.3     oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1149       1.3     oster 		if (pda == failedPDA) {
   1150       1.3     oster 			i--;
   1151       1.3     oster 			foundit = 1;
   1152       1.3     oster 			continue;
   1153       1.3     oster 		}
   1154       1.3     oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1155       1.3     oster 			overlappingPDAs[i] = 1;
   1156       1.3     oster 			(*nXorBufs)++;
   1157       1.3     oster 		}
   1158       1.3     oster 	}
   1159       1.3     oster 	if (!foundit) {
   1160       1.3     oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1161       1.3     oster 		RF_ASSERT(0);
   1162       1.3     oster 	}
   1163      1.31     oster #if RF_DEBUG_DAG
   1164       1.3     oster 	if (rf_degDagDebug) {
   1165       1.3     oster 		if (new_asm_h[0]) {
   1166       1.3     oster 			printf("First asm:\n");
   1167       1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1168       1.3     oster 		}
   1169       1.3     oster 		if (new_asm_h[1]) {
   1170       1.3     oster 			printf("Second asm:\n");
   1171       1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1172       1.3     oster 		}
   1173       1.3     oster 	}
   1174      1.31     oster #endif
   1175       1.1     oster }
   1176       1.1     oster 
   1177       1.1     oster 
   1178       1.1     oster /* adjusts the offset and number of sectors in the destination pda so that
   1179       1.1     oster  * it covers at most the region of the SU covered by the source PDA.  This
   1180       1.1     oster  * is exclusively a restriction:  the number of sectors indicated by the
   1181       1.1     oster  * target PDA can only shrink.
   1182       1.1     oster  *
   1183       1.1     oster  * For example:  s = sectors within SU indicated by source PDA
   1184       1.1     oster  *               d = sectors within SU indicated by dest PDA
   1185       1.1     oster  *               r = results, stored in dest PDA
   1186       1.1     oster  *
   1187       1.1     oster  * |--------------- one stripe unit ---------------------|
   1188       1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1189       1.1     oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1190       1.1     oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1191       1.1     oster  *
   1192       1.1     oster  * Another example:
   1193       1.1     oster  *
   1194       1.1     oster  * |--------------- one stripe unit ---------------------|
   1195       1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1196       1.1     oster  * |    ddddddddddddddddddddddd                          |
   1197       1.1     oster  * |           rrrrrrrrrrrrrrrr                          |
   1198       1.1     oster  *
   1199       1.1     oster  */
   1200      1.45     perry void
   1201      1.23     oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1202      1.23     oster 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1203       1.3     oster {
   1204       1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1205       1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1206       1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1207       1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1208       1.3     oster 													 * stay within SU */
   1209       1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1210       1.3     oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1211       1.3     oster 
   1212       1.3     oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1213       1.3     oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1214       1.3     oster 
   1215       1.3     oster 	if (dobuffer)
   1216       1.3     oster 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1217       1.3     oster 	if (doraidaddr) {
   1218       1.3     oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1219       1.3     oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1220       1.3     oster 	}
   1221       1.1     oster }
   1222      1.11     oster 
   1223      1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1224      1.11     oster 
   1225       1.1     oster /*
   1226       1.1     oster  * Want the highest of these primes to be the largest one
   1227       1.1     oster  * less than the max expected number of columns (won't hurt
   1228       1.1     oster  * to be too small or too large, but won't be optimal, either)
   1229       1.1     oster  * --jimz
   1230       1.1     oster  */
   1231       1.1     oster #define NLOWPRIMES 8
   1232       1.3     oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1233       1.1     oster /*****************************************************************************
   1234       1.1     oster  * compute the workload shift factor.  (chained declustering)
   1235       1.1     oster  *
   1236       1.1     oster  * return nonzero if access should shift to secondary, otherwise,
   1237       1.1     oster  * access is to primary
   1238       1.1     oster  *****************************************************************************/
   1239      1.45     perry int
   1240      1.23     oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1241       1.3     oster {
   1242       1.3     oster 	/*
   1243       1.3     oster          * variables:
   1244       1.3     oster          *  d   = column of disk containing primary
   1245       1.3     oster          *  f   = column of failed disk
   1246       1.3     oster          *  n   = number of disks in array
   1247       1.3     oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1248       1.3     oster          *  v   = numerator of redirection ratio
   1249       1.3     oster          *  k   = denominator of redirection ratio
   1250       1.3     oster          */
   1251      1.21     oster 	RF_RowCol_t d, f, sd, n;
   1252       1.3     oster 	int     k, v, ret, i;
   1253       1.3     oster 
   1254       1.3     oster 	n = raidPtr->numCol;
   1255       1.3     oster 
   1256       1.3     oster 	/* assign column of primary copy to d */
   1257       1.3     oster 	d = pda->col;
   1258       1.3     oster 
   1259       1.3     oster 	/* assign column of dead disk to f */
   1260      1.21     oster 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1261       1.3     oster 
   1262       1.3     oster 	RF_ASSERT(f < n);
   1263       1.3     oster 	RF_ASSERT(f != d);
   1264       1.3     oster 
   1265       1.3     oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1266       1.3     oster 	RF_ASSERT(sd < n);
   1267       1.3     oster 
   1268       1.3     oster 	/*
   1269       1.3     oster          * v of every k accesses should be redirected
   1270       1.3     oster          *
   1271       1.3     oster          * v/k := (n-1-sd)/(n-1)
   1272       1.3     oster          */
   1273       1.3     oster 	v = (n - 1 - sd);
   1274       1.3     oster 	k = (n - 1);
   1275       1.1     oster 
   1276       1.1     oster #if 1
   1277       1.3     oster 	/*
   1278       1.3     oster          * XXX
   1279       1.3     oster          * Is this worth it?
   1280       1.3     oster          *
   1281       1.3     oster          * Now reduce the fraction, by repeatedly factoring
   1282       1.3     oster          * out primes (just like they teach in elementary school!)
   1283       1.3     oster          */
   1284       1.3     oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1285       1.3     oster 		if (lowprimes[i] > v)
   1286       1.3     oster 			break;
   1287       1.3     oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1288       1.3     oster 			v /= lowprimes[i];
   1289       1.3     oster 			k /= lowprimes[i];
   1290       1.3     oster 		}
   1291       1.3     oster 	}
   1292       1.1     oster #endif
   1293       1.1     oster 
   1294      1.21     oster 	raidPtr->hist_diskreq[d]++;
   1295      1.21     oster 	if (raidPtr->hist_diskreq[d] > v) {
   1296       1.3     oster 		ret = 0;	/* do not redirect */
   1297       1.3     oster 	} else {
   1298       1.3     oster 		ret = 1;	/* redirect */
   1299       1.3     oster 	}
   1300       1.1     oster 
   1301       1.1     oster #if 0
   1302       1.3     oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1303      1.21     oster 	    raidPtr->hist_diskreq[d]);
   1304       1.1     oster #endif
   1305       1.1     oster 
   1306      1.21     oster 	if (raidPtr->hist_diskreq[d] >= k) {
   1307       1.3     oster 		/* reset counter */
   1308      1.21     oster 		raidPtr->hist_diskreq[d] = 0;
   1309       1.3     oster 	}
   1310       1.3     oster 	return (ret);
   1311       1.1     oster }
   1312      1.11     oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1313      1.11     oster 
   1314       1.1     oster /*
   1315       1.1     oster  * Disk selection routines
   1316       1.1     oster  */
   1317       1.1     oster 
   1318       1.1     oster /*
   1319       1.1     oster  * Selects the disk with the shortest queue from a mirror pair.
   1320       1.1     oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1321       1.1     oster  * disk are counted as members of the "queue"
   1322       1.1     oster  */
   1323      1.45     perry void
   1324       1.3     oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1325       1.1     oster {
   1326       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1327      1.21     oster 	RF_RowCol_t colData, colMirror;
   1328       1.3     oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1329       1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1330       1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1331       1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1332      1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1333      1.21     oster 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1334       1.3     oster 
   1335       1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1336       1.3     oster 	colData = data_pda->col;
   1337       1.3     oster 	colMirror = mirror_pda->col;
   1338      1.21     oster 	dataQueue = &(dqs[colData]);
   1339      1.21     oster 	mirrorQueue = &(dqs[colMirror]);
   1340       1.1     oster 
   1341       1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1342       1.3     oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1343       1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1344       1.3     oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1345       1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1346       1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1347       1.3     oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1348       1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1349       1.3     oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1350       1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1351       1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1352       1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1353       1.1     oster 
   1354       1.3     oster 	usemirror = 0;
   1355      1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1356       1.3     oster 		usemirror = 0;
   1357       1.3     oster 	} else
   1358      1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1359       1.3     oster 			usemirror = 1;
   1360       1.3     oster 		} else
   1361       1.5     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1362       1.5     oster 				/* Trust only the main disk */
   1363       1.3     oster 				usemirror = 0;
   1364       1.3     oster 			} else
   1365       1.5     oster 				if (dataQueueLength < mirrorQueueLength) {
   1366       1.5     oster 					usemirror = 0;
   1367       1.5     oster 				} else
   1368       1.5     oster 					if (mirrorQueueLength < dataQueueLength) {
   1369       1.5     oster 						usemirror = 1;
   1370       1.3     oster 					} else {
   1371       1.5     oster 						/* queues are equal length. attempt
   1372       1.5     oster 						 * cleverness. */
   1373       1.5     oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1374       1.5     oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1375       1.5     oster 							usemirror = 0;
   1376       1.5     oster 						} else {
   1377       1.5     oster 							usemirror = 1;
   1378       1.5     oster 						}
   1379       1.3     oster 					}
   1380       1.3     oster 
   1381       1.3     oster 	if (usemirror) {
   1382       1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1383       1.3     oster 		tmp_pda = data_pda;
   1384       1.3     oster 		node->params[0].p = mirror_pda;
   1385       1.3     oster 		node->params[4].p = tmp_pda;
   1386       1.3     oster 	} else {
   1387       1.3     oster 		/* use data disk, leave param 0 unchanged */
   1388       1.3     oster 	}
   1389       1.3     oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1390       1.3     oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1391       1.1     oster }
   1392      1.19     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1393       1.1     oster /*
   1394       1.1     oster  * Do simple partitioning. This assumes that
   1395       1.1     oster  * the data and parity disks are laid out identically.
   1396       1.1     oster  */
   1397      1.45     perry void
   1398       1.3     oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1399       1.1     oster {
   1400       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1401      1.21     oster 	RF_RowCol_t colData, colMirror;
   1402       1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1403       1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1404       1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1405      1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1406       1.3     oster 	int     usemirror;
   1407       1.3     oster 
   1408       1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1409       1.3     oster 	colData = data_pda->col;
   1410       1.3     oster 	colMirror = mirror_pda->col;
   1411       1.3     oster 
   1412       1.3     oster 	usemirror = 0;
   1413      1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1414       1.3     oster 		usemirror = 0;
   1415       1.3     oster 	} else
   1416      1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1417       1.3     oster 			usemirror = 1;
   1418      1.45     perry 		} else
   1419       1.6     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1420       1.6     oster 				/* Trust only the main disk */
   1421       1.3     oster 				usemirror = 0;
   1422       1.6     oster 			} else
   1423      1.45     perry 				if (data_pda->startSector <
   1424      1.21     oster 				    (disks[colData].numBlocks / 2)) {
   1425       1.6     oster 					usemirror = 0;
   1426       1.6     oster 				} else {
   1427       1.6     oster 					usemirror = 1;
   1428       1.6     oster 				}
   1429       1.3     oster 
   1430       1.3     oster 	if (usemirror) {
   1431       1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1432       1.3     oster 		tmp_pda = data_pda;
   1433       1.3     oster 		node->params[0].p = mirror_pda;
   1434       1.3     oster 		node->params[4].p = tmp_pda;
   1435       1.3     oster 	} else {
   1436       1.3     oster 		/* use data disk, leave param 0 unchanged */
   1437       1.3     oster 	}
   1438       1.1     oster }
   1439      1.19     oster #endif
   1440