Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.53.32.1
      1  1.53.32.1     skrll /*	$NetBSD: rf_dagutils.c,v 1.53.32.1 2016/03/19 11:30:19 skrll Exp $	*/
      2        1.1     oster /*
      3        1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4        1.1     oster  * All rights reserved.
      5        1.1     oster  *
      6        1.1     oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7        1.1     oster  *
      8        1.1     oster  * Permission to use, copy, modify and distribute this software and
      9        1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10        1.1     oster  * notice and this permission notice appear in all copies of the
     11        1.1     oster  * software, derivative works or modified versions, and any portions
     12        1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13        1.1     oster  *
     14        1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15        1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16        1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17        1.1     oster  *
     18        1.1     oster  * Carnegie Mellon requests users of this software to return to
     19        1.1     oster  *
     20        1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21        1.1     oster  *  School of Computer Science
     22        1.1     oster  *  Carnegie Mellon University
     23        1.1     oster  *  Pittsburgh PA 15213-3890
     24        1.1     oster  *
     25        1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26        1.1     oster  * rights to redistribute these changes.
     27        1.1     oster  */
     28        1.1     oster 
     29        1.1     oster /******************************************************************************
     30        1.1     oster  *
     31        1.1     oster  * rf_dagutils.c -- utility routines for manipulating dags
     32        1.1     oster  *
     33        1.1     oster  *****************************************************************************/
     34        1.9     lukem 
     35        1.9     lukem #include <sys/cdefs.h>
     36  1.53.32.1     skrll __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.53.32.1 2016/03/19 11:30:19 skrll Exp $");
     37        1.1     oster 
     38        1.8     oster #include <dev/raidframe/raidframevar.h>
     39        1.8     oster 
     40        1.1     oster #include "rf_archs.h"
     41        1.1     oster #include "rf_threadstuff.h"
     42        1.1     oster #include "rf_raid.h"
     43        1.1     oster #include "rf_dag.h"
     44        1.1     oster #include "rf_dagutils.h"
     45        1.1     oster #include "rf_dagfuncs.h"
     46        1.1     oster #include "rf_general.h"
     47        1.1     oster #include "rf_map.h"
     48        1.1     oster #include "rf_shutdown.h"
     49        1.1     oster 
     50        1.1     oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51        1.1     oster 
     52       1.20  jdolecek const RF_RedFuncs_t rf_xorFuncs = {
     53        1.1     oster 	rf_RegularXorFunc, "Reg Xr",
     54       1.32     oster 	rf_SimpleXorFunc, "Simple Xr"};
     55        1.1     oster 
     56       1.20  jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57        1.1     oster 	rf_RecoveryXorFunc, "Recovery Xr",
     58       1.32     oster 	rf_RecoveryXorFunc, "Recovery Xr"};
     59        1.1     oster 
     60       1.13     oster #if RF_DEBUG_VALIDATE_DAG
     61        1.1     oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62        1.1     oster static void rf_PrintDAG(RF_DagHeader_t *);
     63       1.12     oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64       1.12     oster 			     RF_DagNode_t **, int);
     65        1.1     oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66        1.1     oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67       1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
     68        1.1     oster 
     69       1.40     oster /* The maximum number of nodes in a DAG is bounded by
     70       1.40     oster 
     71       1.45     perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72       1.40     oster 	(1 * 2 * layoutPtr->numParityCol) + 3
     73       1.40     oster 
     74       1.40     oster which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75       1.40     oster 
     76       1.40     oster For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77       1.45     perry on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78       1.45     perry would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79       1.40     oster have a few kicking around.
     80       1.40     oster */
     81       1.40     oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82       1.40     oster 
     83       1.40     oster 
     84        1.1     oster /******************************************************************************
     85        1.1     oster  *
     86        1.1     oster  * InitNode - initialize a dag node
     87        1.1     oster  *
     88        1.1     oster  * the size of the propList array is always the same as that of the
     89        1.1     oster  * successors array.
     90        1.1     oster  *
     91        1.1     oster  *****************************************************************************/
     92       1.40     oster void
     93       1.23     oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94       1.23     oster     int (*doFunc) (RF_DagNode_t *node),
     95       1.23     oster     int (*undoFunc) (RF_DagNode_t *node),
     96       1.23     oster     int (*wakeFunc) (RF_DagNode_t *node, int status),
     97       1.23     oster     int nSucc, int nAnte, int nParam, int nResult,
     98       1.46  christos     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99        1.3     oster {
    100        1.3     oster 	void  **ptrs;
    101        1.3     oster 	int     nptrs;
    102        1.3     oster 
    103        1.3     oster 	if (nAnte > RF_MAX_ANTECEDENTS)
    104        1.3     oster 		RF_PANIC();
    105        1.3     oster 	node->status = initstatus;
    106        1.3     oster 	node->commitNode = commit;
    107        1.3     oster 	node->doFunc = doFunc;
    108        1.3     oster 	node->undoFunc = undoFunc;
    109        1.3     oster 	node->wakeFunc = wakeFunc;
    110        1.3     oster 	node->numParams = nParam;
    111        1.3     oster 	node->numResults = nResult;
    112        1.3     oster 	node->numAntecedents = nAnte;
    113        1.3     oster 	node->numAntDone = 0;
    114        1.3     oster 	node->next = NULL;
    115       1.45     perry 	/* node->list_next = NULL */  /* Don't touch this here!
    116       1.45     perry 	                                 It may already be
    117       1.38     oster 					 in use by the caller! */
    118        1.3     oster 	node->numSuccedents = nSucc;
    119        1.3     oster 	node->name = name;
    120        1.3     oster 	node->dagHdr = hdr;
    121       1.40     oster 	node->big_dag_ptrs = NULL;
    122       1.40     oster 	node->big_dag_params = NULL;
    123        1.3     oster 	node->visited = 0;
    124        1.3     oster 
    125        1.3     oster 	/* allocate all the pointers with one call to malloc */
    126        1.3     oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    127        1.3     oster 
    128        1.3     oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    129        1.3     oster 		/*
    130        1.3     oster 	         * The dag_ptrs field of the node is basically some scribble
    131        1.3     oster 	         * space to be used here. We could get rid of it, and always
    132        1.3     oster 	         * allocate the range of pointers, but that's expensive. So,
    133        1.3     oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    134        1.3     oster 	         * we'll find that:
    135        1.3     oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    136        1.3     oster 	         *     only a little bit (least efficient case)
    137        1.3     oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    138        1.3     oster 	         *     (wasted memory)
    139        1.3     oster 	         */
    140        1.3     oster 		ptrs = (void **) node->dag_ptrs;
    141       1.40     oster 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    142       1.40     oster 		node->big_dag_ptrs = rf_AllocDAGPCache();
    143       1.40     oster 		ptrs = (void **) node->big_dag_ptrs;
    144        1.3     oster 	} else {
    145       1.45     perry 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    146       1.22     oster 				(void **), alist);
    147        1.3     oster 	}
    148        1.3     oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    149        1.3     oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    150        1.3     oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    151        1.3     oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    152        1.3     oster 
    153        1.3     oster 	if (nParam) {
    154        1.3     oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    155        1.3     oster 			node->params = (RF_DagParam_t *) node->dag_params;
    156       1.40     oster 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    157       1.40     oster 			node->big_dag_params = rf_AllocDAGPCache();
    158       1.40     oster 			node->params = node->big_dag_params;
    159        1.3     oster 		} else {
    160       1.45     perry 			RF_MallocAndAdd(node->params,
    161       1.45     perry 					nParam * sizeof(RF_DagParam_t),
    162       1.22     oster 					(RF_DagParam_t *), alist);
    163        1.3     oster 		}
    164        1.3     oster 	} else {
    165        1.3     oster 		node->params = NULL;
    166        1.3     oster 	}
    167        1.1     oster }
    168        1.1     oster 
    169        1.1     oster 
    170        1.1     oster 
    171        1.1     oster /******************************************************************************
    172        1.1     oster  *
    173        1.1     oster  * allocation and deallocation routines
    174        1.1     oster  *
    175        1.1     oster  *****************************************************************************/
    176        1.1     oster 
    177       1.45     perry void
    178       1.23     oster rf_FreeDAG(RF_DagHeader_t *dag_h)
    179        1.3     oster {
    180        1.3     oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    181       1.39     oster 	RF_PhysDiskAddr_t *pda;
    182       1.38     oster 	RF_DagNode_t *tmpnode;
    183        1.3     oster 	RF_DagHeader_t *nextDag;
    184        1.3     oster 
    185        1.3     oster 	while (dag_h) {
    186        1.3     oster 		nextDag = dag_h->next;
    187        1.3     oster 		rf_FreeAllocList(dag_h->allocList);
    188        1.3     oster 		for (asmap = dag_h->asmList; asmap;) {
    189        1.3     oster 			t_asmap = asmap;
    190        1.3     oster 			asmap = asmap->next;
    191        1.3     oster 			rf_FreeAccessStripeMap(t_asmap);
    192        1.3     oster 		}
    193       1.39     oster 		while (dag_h->pda_cleanup_list) {
    194       1.39     oster 			pda = dag_h->pda_cleanup_list;
    195       1.39     oster 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    196       1.39     oster 			rf_FreePhysDiskAddr(pda);
    197       1.39     oster 		}
    198       1.39     oster 		while (dag_h->nodes) {
    199       1.38     oster 			tmpnode = dag_h->nodes;
    200       1.38     oster 			dag_h->nodes = dag_h->nodes->list_next;
    201       1.38     oster 			rf_FreeDAGNode(tmpnode);
    202       1.38     oster 		}
    203        1.3     oster 		rf_FreeDAGHeader(dag_h);
    204        1.3     oster 		dag_h = nextDag;
    205        1.3     oster 	}
    206        1.3     oster }
    207        1.3     oster 
    208        1.1     oster #define RF_MAX_FREE_DAGH 128
    209       1.30     oster #define RF_MIN_FREE_DAGH  32
    210        1.1     oster 
    211       1.38     oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    212       1.38     oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    213       1.38     oster 
    214       1.25     oster #define RF_MAX_FREE_DAGLIST 128
    215       1.30     oster #define RF_MIN_FREE_DAGLIST  32
    216       1.25     oster 
    217       1.40     oster #define RF_MAX_FREE_DAGPCACHE 128
    218       1.40     oster #define RF_MIN_FREE_DAGPCACHE   8
    219       1.40     oster 
    220       1.27     oster #define RF_MAX_FREE_FUNCLIST 128
    221       1.30     oster #define RF_MIN_FREE_FUNCLIST  32
    222       1.25     oster 
    223       1.41     oster #define RF_MAX_FREE_BUFFERS 128
    224       1.41     oster #define RF_MIN_FREE_BUFFERS  32
    225       1.41     oster 
    226        1.1     oster static void rf_ShutdownDAGs(void *);
    227       1.45     perry static void
    228       1.50  christos rf_ShutdownDAGs(void *ignored)
    229        1.1     oster {
    230       1.36     oster 	pool_destroy(&rf_pools.dagh);
    231       1.38     oster 	pool_destroy(&rf_pools.dagnode);
    232       1.36     oster 	pool_destroy(&rf_pools.daglist);
    233       1.40     oster 	pool_destroy(&rf_pools.dagpcache);
    234       1.36     oster 	pool_destroy(&rf_pools.funclist);
    235        1.1     oster }
    236        1.1     oster 
    237       1.45     perry int
    238       1.23     oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    239        1.1     oster {
    240        1.1     oster 
    241       1.38     oster 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    242       1.38     oster 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    243       1.36     oster 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    244       1.36     oster 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    245       1.36     oster 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    246       1.36     oster 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    247       1.40     oster 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    248       1.40     oster 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    249       1.36     oster 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    250       1.36     oster 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    251       1.29     oster 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    252       1.29     oster 
    253        1.3     oster 	return (0);
    254        1.1     oster }
    255        1.1     oster 
    256        1.3     oster RF_DagHeader_t *
    257       1.52    cegger rf_AllocDAGHeader(void)
    258        1.1     oster {
    259        1.1     oster 	RF_DagHeader_t *dh;
    260        1.1     oster 
    261       1.36     oster 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    262       1.28     oster 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    263        1.3     oster 	return (dh);
    264        1.1     oster }
    265        1.1     oster 
    266       1.45     perry void
    267        1.3     oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    268        1.1     oster {
    269       1.36     oster 	pool_put(&rf_pools.dagh, dh);
    270        1.1     oster }
    271       1.25     oster 
    272       1.38     oster RF_DagNode_t *
    273       1.52    cegger rf_AllocDAGNode(void)
    274       1.38     oster {
    275       1.38     oster 	RF_DagNode_t *node;
    276       1.38     oster 
    277       1.38     oster 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    278       1.38     oster 	memset(node, 0, sizeof(RF_DagNode_t));
    279       1.38     oster 	return (node);
    280       1.38     oster }
    281       1.38     oster 
    282       1.38     oster void
    283       1.38     oster rf_FreeDAGNode(RF_DagNode_t *node)
    284       1.38     oster {
    285       1.40     oster 	if (node->big_dag_ptrs) {
    286       1.40     oster 		rf_FreeDAGPCache(node->big_dag_ptrs);
    287       1.40     oster 	}
    288       1.40     oster 	if (node->big_dag_params) {
    289       1.40     oster 		rf_FreeDAGPCache(node->big_dag_params);
    290       1.40     oster 	}
    291       1.38     oster 	pool_put(&rf_pools.dagnode, node);
    292       1.38     oster }
    293       1.38     oster 
    294       1.25     oster RF_DagList_t *
    295       1.52    cegger rf_AllocDAGList(void)
    296       1.25     oster {
    297       1.25     oster 	RF_DagList_t *dagList;
    298       1.25     oster 
    299       1.36     oster 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    300       1.25     oster 	memset(dagList, 0, sizeof(RF_DagList_t));
    301       1.25     oster 
    302       1.25     oster 	return (dagList);
    303       1.25     oster }
    304       1.25     oster 
    305       1.25     oster void
    306       1.25     oster rf_FreeDAGList(RF_DagList_t *dagList)
    307       1.25     oster {
    308       1.36     oster 	pool_put(&rf_pools.daglist, dagList);
    309       1.25     oster }
    310       1.25     oster 
    311       1.40     oster void *
    312       1.52    cegger rf_AllocDAGPCache(void)
    313       1.40     oster {
    314       1.40     oster 	void *p;
    315       1.40     oster 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    316       1.40     oster 	memset(p, 0, RF_DAGPCACHE_SIZE);
    317       1.45     perry 
    318       1.40     oster 	return (p);
    319       1.40     oster }
    320       1.40     oster 
    321       1.40     oster void
    322       1.40     oster rf_FreeDAGPCache(void *p)
    323       1.40     oster {
    324       1.40     oster 	pool_put(&rf_pools.dagpcache, p);
    325       1.40     oster }
    326       1.40     oster 
    327       1.27     oster RF_FuncList_t *
    328       1.52    cegger rf_AllocFuncList(void)
    329       1.27     oster {
    330       1.27     oster 	RF_FuncList_t *funcList;
    331       1.27     oster 
    332       1.36     oster 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    333       1.27     oster 	memset(funcList, 0, sizeof(RF_FuncList_t));
    334       1.45     perry 
    335       1.27     oster 	return (funcList);
    336       1.27     oster }
    337       1.27     oster 
    338       1.27     oster void
    339       1.27     oster rf_FreeFuncList(RF_FuncList_t *funcList)
    340       1.27     oster {
    341       1.36     oster 	pool_put(&rf_pools.funclist, funcList);
    342       1.27     oster }
    343       1.25     oster 
    344       1.44     oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
    345       1.45     perry    in an entire stripe.
    346       1.44     oster */
    347       1.44     oster 
    348       1.44     oster void *
    349       1.49  christos rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    350       1.50  christos     int size)
    351       1.44     oster {
    352       1.44     oster 	RF_VoidPointerListElem_t *vple;
    353       1.44     oster 	void *p;
    354       1.44     oster 
    355       1.45     perry 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    356       1.44     oster 					       raidPtr->logBytesPerSector))));
    357       1.44     oster 
    358       1.45     perry 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    359       1.45     perry 					raidPtr->logBytesPerSector),
    360       1.44     oster 		     M_RAIDFRAME, M_NOWAIT);
    361       1.44     oster 	if (!p) {
    362       1.53       mrg 		rf_lock_mutex2(raidPtr->mutex);
    363       1.44     oster 		if (raidPtr->stripebuf_count > 0) {
    364       1.44     oster 			vple = raidPtr->stripebuf;
    365       1.44     oster 			raidPtr->stripebuf = vple->next;
    366       1.44     oster 			p = vple->p;
    367       1.44     oster 			rf_FreeVPListElem(vple);
    368       1.44     oster 			raidPtr->stripebuf_count--;
    369       1.44     oster 		} else {
    370       1.44     oster #ifdef DIAGNOSTIC
    371       1.44     oster 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    372       1.44     oster #endif
    373       1.44     oster 		}
    374       1.53       mrg 		rf_unlock_mutex2(raidPtr->mutex);
    375       1.44     oster 		if (!p) {
    376       1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    377       1.44     oster 			   and hope that someone frees up memory for us.. */
    378       1.45     perry 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    379       1.44     oster 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    380       1.44     oster 		}
    381       1.44     oster 	}
    382       1.44     oster 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    383       1.44     oster 
    384       1.44     oster 	vple = rf_AllocVPListElem();
    385       1.44     oster 	vple->p = p;
    386       1.44     oster         vple->next = dag_h->desc->stripebufs;
    387       1.44     oster         dag_h->desc->stripebufs = vple;
    388       1.44     oster 
    389       1.44     oster 	return (p);
    390       1.44     oster }
    391       1.44     oster 
    392       1.25     oster 
    393       1.44     oster void
    394       1.44     oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    395       1.44     oster {
    396       1.53       mrg 	rf_lock_mutex2(raidPtr->mutex);
    397       1.44     oster 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    398       1.44     oster 		/* just tack it in */
    399       1.44     oster 		vple->next = raidPtr->stripebuf;
    400       1.44     oster 		raidPtr->stripebuf = vple;
    401       1.44     oster 		raidPtr->stripebuf_count++;
    402       1.44     oster 	} else {
    403       1.44     oster 		free(vple->p, M_RAIDFRAME);
    404       1.44     oster 		rf_FreeVPListElem(vple);
    405       1.44     oster 	}
    406       1.53       mrg 	rf_unlock_mutex2(raidPtr->mutex);
    407       1.44     oster }
    408       1.25     oster 
    409       1.42     oster /* allocates a buffer big enough to hold the data described by the
    410       1.42     oster caller (ie. the data of the associated PDA).  Glue this buffer
    411       1.42     oster into our dag_h cleanup structure. */
    412       1.42     oster 
    413       1.43     oster void *
    414       1.44     oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    415        1.3     oster {
    416       1.42     oster 	RF_VoidPointerListElem_t *vple;
    417       1.42     oster 	void *p;
    418        1.3     oster 
    419       1.42     oster 	p = rf_AllocIOBuffer(raidPtr, size);
    420       1.42     oster 	vple = rf_AllocVPListElem();
    421       1.42     oster 	vple->p = p;
    422       1.44     oster 	vple->next = dag_h->desc->iobufs;
    423       1.44     oster 	dag_h->desc->iobufs = vple;
    424       1.42     oster 
    425       1.42     oster 	return (p);
    426        1.1     oster }
    427       1.41     oster 
    428       1.41     oster void *
    429       1.50  christos rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    430       1.41     oster {
    431       1.44     oster 	RF_VoidPointerListElem_t *vple;
    432       1.41     oster 	void *p;
    433       1.41     oster 
    434       1.45     perry 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    435       1.44     oster 			   raidPtr->logBytesPerSector)));
    436       1.41     oster 
    437       1.45     perry 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    438       1.45     perry 				 raidPtr->logBytesPerSector,
    439       1.41     oster 				 M_RAIDFRAME, M_NOWAIT);
    440       1.41     oster 	if (!p) {
    441       1.53       mrg 		rf_lock_mutex2(raidPtr->mutex);
    442       1.41     oster 		if (raidPtr->iobuf_count > 0) {
    443       1.44     oster 			vple = raidPtr->iobuf;
    444       1.44     oster 			raidPtr->iobuf = vple->next;
    445       1.44     oster 			p = vple->p;
    446       1.44     oster 			rf_FreeVPListElem(vple);
    447       1.41     oster 			raidPtr->iobuf_count--;
    448       1.41     oster 		} else {
    449       1.41     oster #ifdef DIAGNOSTIC
    450       1.41     oster 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    451       1.41     oster #endif
    452       1.41     oster 		}
    453       1.53       mrg 		rf_unlock_mutex2(raidPtr->mutex);
    454       1.41     oster 		if (!p) {
    455       1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    456       1.41     oster 			   and hope that someone frees up memory for us.. */
    457       1.45     perry 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    458       1.45     perry 				    raidPtr->logBytesPerSector,
    459       1.41     oster 				    M_RAIDFRAME, M_WAITOK);
    460       1.41     oster 		}
    461       1.41     oster 	}
    462       1.44     oster 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    463       1.41     oster 	return (p);
    464       1.41     oster }
    465       1.41     oster 
    466       1.41     oster void
    467       1.44     oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    468       1.41     oster {
    469       1.53       mrg 	rf_lock_mutex2(raidPtr->mutex);
    470       1.41     oster 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    471       1.44     oster 		/* just tack it in */
    472       1.44     oster 		vple->next = raidPtr->iobuf;
    473       1.44     oster 		raidPtr->iobuf = vple;
    474       1.41     oster 		raidPtr->iobuf_count++;
    475       1.41     oster 	} else {
    476       1.44     oster 		free(vple->p, M_RAIDFRAME);
    477       1.44     oster 		rf_FreeVPListElem(vple);
    478       1.41     oster 	}
    479       1.53       mrg 	rf_unlock_mutex2(raidPtr->mutex);
    480       1.41     oster }
    481       1.41     oster 
    482       1.41     oster 
    483       1.41     oster 
    484       1.13     oster #if RF_DEBUG_VALIDATE_DAG
    485        1.1     oster /******************************************************************************
    486        1.1     oster  *
    487        1.1     oster  * debug routines
    488        1.1     oster  *
    489        1.1     oster  *****************************************************************************/
    490        1.1     oster 
    491        1.3     oster char   *
    492       1.23     oster rf_NodeStatusString(RF_DagNode_t *node)
    493        1.1     oster {
    494        1.3     oster 	switch (node->status) {
    495       1.34     oster 	case rf_wait:
    496       1.34     oster 		return ("wait");
    497        1.3     oster 	case rf_fired:
    498        1.3     oster 		return ("fired");
    499        1.3     oster 	case rf_good:
    500        1.3     oster 		return ("good");
    501        1.3     oster 	case rf_bad:
    502        1.3     oster 		return ("bad");
    503        1.3     oster 	default:
    504        1.3     oster 		return ("?");
    505        1.3     oster 	}
    506        1.3     oster }
    507        1.1     oster 
    508       1.45     perry void
    509       1.23     oster rf_PrintNodeInfoString(RF_DagNode_t *node)
    510        1.3     oster {
    511        1.3     oster 	RF_PhysDiskAddr_t *pda;
    512        1.3     oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    513        1.3     oster 	int     i, lk, unlk;
    514        1.3     oster 	void   *bufPtr;
    515        1.3     oster 
    516        1.3     oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    517        1.3     oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    518        1.3     oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    519        1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    520        1.3     oster 		bufPtr = (void *) node->params[1].p;
    521       1.24     oster 		lk = 0;
    522       1.24     oster 		unlk = 0;
    523        1.3     oster 		RF_ASSERT(!(lk && unlk));
    524       1.21     oster 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    525        1.3     oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    526        1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    527        1.3     oster 		return;
    528        1.3     oster 	}
    529        1.3     oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    530        1.3     oster 	    || (df == rf_RecoveryXorFunc)) {
    531        1.3     oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    532        1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    533        1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    534        1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    535       1.21     oster 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    536       1.21     oster 			    (long) bufPtr, pda->col,
    537        1.3     oster 			    (long) pda->startSector, (int) pda->numSector);
    538        1.3     oster 		}
    539        1.3     oster 		return;
    540        1.3     oster 	}
    541        1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    542        1.3     oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    543        1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    544        1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    545        1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    546       1.21     oster 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    547       1.21     oster 			    pda->col, (long) pda->startSector,
    548        1.3     oster 			    (int) pda->numSector, (long) bufPtr);
    549        1.3     oster 		}
    550        1.3     oster 		return;
    551        1.3     oster 	}
    552        1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    553        1.3     oster 
    554        1.3     oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    555        1.3     oster 		printf("\n");
    556        1.3     oster 		return;
    557        1.3     oster 	}
    558        1.3     oster 	printf("?\n");
    559        1.3     oster }
    560       1.16     oster #ifdef DEBUG
    561       1.45     perry static void
    562       1.23     oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    563        1.3     oster {
    564        1.3     oster 	char   *anttype;
    565        1.3     oster 	int     i;
    566        1.3     oster 
    567        1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    568        1.3     oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    569        1.3     oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    570        1.3     oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    571        1.3     oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    572        1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    573        1.3     oster 		printf("%d%s", node->succedents[i]->nodeNum,
    574        1.3     oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    575        1.3     oster 	}
    576        1.3     oster 	printf("} A{");
    577        1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    578        1.3     oster 		switch (node->antType[i]) {
    579        1.3     oster 		case rf_trueData:
    580        1.3     oster 			anttype = "T";
    581        1.3     oster 			break;
    582        1.3     oster 		case rf_antiData:
    583        1.3     oster 			anttype = "A";
    584        1.3     oster 			break;
    585        1.3     oster 		case rf_outputData:
    586        1.3     oster 			anttype = "O";
    587        1.3     oster 			break;
    588        1.3     oster 		case rf_control:
    589        1.3     oster 			anttype = "C";
    590        1.3     oster 			break;
    591        1.3     oster 		default:
    592        1.3     oster 			anttype = "?";
    593        1.3     oster 			break;
    594        1.3     oster 		}
    595        1.3     oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    596        1.3     oster 	}
    597        1.3     oster 	printf("}; ");
    598        1.3     oster 	rf_PrintNodeInfoString(node);
    599        1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    600        1.3     oster 		if (node->succedents[i]->visited == unvisited)
    601        1.3     oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    602        1.3     oster 	}
    603        1.1     oster }
    604        1.1     oster 
    605       1.45     perry static void
    606       1.23     oster rf_PrintDAG(RF_DagHeader_t *dag_h)
    607        1.3     oster {
    608        1.3     oster 	int     unvisited, i;
    609        1.3     oster 	char   *status;
    610        1.3     oster 
    611        1.3     oster 	/* set dag status */
    612        1.3     oster 	switch (dag_h->status) {
    613        1.3     oster 	case rf_enable:
    614        1.3     oster 		status = "enable";
    615        1.3     oster 		break;
    616        1.3     oster 	case rf_rollForward:
    617        1.3     oster 		status = "rollForward";
    618        1.3     oster 		break;
    619        1.3     oster 	case rf_rollBackward:
    620        1.3     oster 		status = "rollBackward";
    621        1.3     oster 		break;
    622        1.3     oster 	default:
    623        1.3     oster 		status = "illegal!";
    624        1.3     oster 		break;
    625        1.3     oster 	}
    626        1.3     oster 	/* find out if visited bits are currently set or clear */
    627        1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    628        1.3     oster 
    629        1.3     oster 	printf("DAG type:  %s\n", dag_h->creator);
    630        1.3     oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    631        1.3     oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    632        1.3     oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    633        1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    634        1.3     oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    635        1.3     oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    636        1.3     oster 	}
    637        1.3     oster 	printf("};\n");
    638        1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    639        1.3     oster 		if (dag_h->succedents[i]->visited == unvisited)
    640        1.3     oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    641        1.3     oster 	}
    642        1.3     oster }
    643       1.16     oster #endif
    644        1.1     oster /* assigns node numbers */
    645       1.45     perry int
    646        1.3     oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    647        1.1     oster {
    648        1.3     oster 	int     unvisited, i, nnum;
    649        1.3     oster 	RF_DagNode_t *node;
    650        1.1     oster 
    651        1.3     oster 	nnum = 0;
    652        1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    653        1.3     oster 
    654        1.3     oster 	dag_h->nodeNum = nnum++;
    655        1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    656        1.3     oster 		node = dag_h->succedents[i];
    657        1.3     oster 		if (node->visited == unvisited) {
    658        1.3     oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    659        1.3     oster 		}
    660        1.3     oster 	}
    661        1.3     oster 	return (nnum);
    662        1.1     oster }
    663        1.1     oster 
    664       1.45     perry int
    665       1.23     oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    666        1.3     oster {
    667        1.3     oster 	int     i;
    668        1.3     oster 
    669        1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    670        1.3     oster 
    671        1.3     oster 	node->nodeNum = num++;
    672        1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    673        1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    674        1.3     oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    675        1.3     oster 		}
    676        1.3     oster 	}
    677        1.3     oster 	return (num);
    678        1.3     oster }
    679        1.1     oster /* set the header pointers in each node to "newptr" */
    680       1.45     perry void
    681       1.23     oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    682        1.3     oster {
    683        1.3     oster 	int     i;
    684        1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    685        1.3     oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    686        1.3     oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    687        1.1     oster }
    688        1.1     oster 
    689       1.45     perry void
    690       1.23     oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    691        1.1     oster {
    692        1.3     oster 	int     i;
    693        1.3     oster 	node->dagHdr = newptr;
    694        1.3     oster 	for (i = 0; i < node->numSuccedents; i++)
    695        1.3     oster 		if (node->succedents[i]->dagHdr != newptr)
    696        1.3     oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    697        1.3     oster }
    698        1.1     oster 
    699        1.1     oster 
    700       1.45     perry void
    701        1.3     oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    702        1.3     oster {
    703        1.3     oster 	int     i = 0;
    704        1.3     oster 
    705        1.3     oster 	for (; dag_h; dag_h = dag_h->next) {
    706        1.3     oster 		rf_AssignNodeNums(dag_h);
    707        1.3     oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    708        1.3     oster 		rf_PrintDAG(dag_h);
    709        1.3     oster 	}
    710        1.1     oster }
    711        1.1     oster 
    712       1.45     perry static int
    713       1.23     oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    714       1.23     oster 		  RF_DagNode_t **nodes, int unvisited)
    715        1.3     oster {
    716        1.3     oster 	int     i, retcode = 0;
    717        1.3     oster 
    718        1.3     oster 	/* construct an array of node pointers indexed by node num */
    719        1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    720        1.3     oster 	nodes[node->nodeNum] = node;
    721        1.3     oster 
    722        1.3     oster 	if (node->next != NULL) {
    723        1.3     oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    724        1.3     oster 		retcode = 1;
    725        1.3     oster 	}
    726        1.3     oster 	if (node->status != rf_wait) {
    727        1.3     oster 		printf("INVALID DAG: Node status is not wait\n");
    728        1.3     oster 		retcode = 1;
    729        1.3     oster 	}
    730        1.3     oster 	if (node->numAntDone != 0) {
    731        1.3     oster 		printf("INVALID DAG: numAntDone is not zero\n");
    732        1.3     oster 		retcode = 1;
    733        1.3     oster 	}
    734        1.3     oster 	if (node->doFunc == rf_TerminateFunc) {
    735        1.3     oster 		if (node->numSuccedents != 0) {
    736        1.3     oster 			printf("INVALID DAG: Terminator node has succedents\n");
    737        1.3     oster 			retcode = 1;
    738        1.3     oster 		}
    739        1.3     oster 	} else {
    740        1.3     oster 		if (node->numSuccedents == 0) {
    741        1.3     oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    742        1.3     oster 			retcode = 1;
    743        1.3     oster 		}
    744        1.3     oster 	}
    745        1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    746        1.3     oster 		if (!node->succedents[i]) {
    747        1.3     oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    748        1.3     oster 			retcode = 1;
    749        1.3     oster 		}
    750        1.3     oster 		scount[node->succedents[i]->nodeNum]++;
    751        1.3     oster 	}
    752        1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    753        1.3     oster 		if (!node->antecedents[i]) {
    754        1.3     oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    755        1.3     oster 			retcode = 1;
    756        1.3     oster 		}
    757        1.3     oster 		acount[node->antecedents[i]->nodeNum]++;
    758        1.3     oster 	}
    759        1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    760        1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    761        1.3     oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    762        1.3     oster 				acount, nodes, unvisited)) {
    763        1.3     oster 				retcode = 1;
    764        1.3     oster 			}
    765        1.3     oster 		}
    766        1.3     oster 	}
    767        1.3     oster 	return (retcode);
    768        1.3     oster }
    769        1.3     oster 
    770       1.45     perry static void
    771       1.23     oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    772        1.3     oster {
    773        1.3     oster 	int     i;
    774        1.3     oster 
    775        1.3     oster 	RF_ASSERT(node->visited == unvisited);
    776        1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    777        1.3     oster 		if (node->succedents[i] == NULL) {
    778        1.3     oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    779        1.3     oster 			RF_ASSERT(0);
    780        1.3     oster 		}
    781        1.3     oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    782        1.3     oster 	}
    783        1.3     oster }
    784        1.3     oster /* NOTE:  never call this on a big dag, because it is exponential
    785        1.3     oster  * in execution time
    786        1.3     oster  */
    787       1.45     perry static void
    788       1.23     oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    789        1.3     oster {
    790        1.3     oster 	int     i, unvisited;
    791        1.3     oster 
    792        1.3     oster 	unvisited = dag->succedents[0]->visited;
    793        1.3     oster 
    794        1.3     oster 	for (i = 0; i < dag->numSuccedents; i++) {
    795        1.3     oster 		if (dag->succedents[i] == NULL) {
    796        1.3     oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    797        1.3     oster 			RF_ASSERT(0);
    798        1.3     oster 		}
    799        1.3     oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    800        1.3     oster 	}
    801        1.3     oster }
    802        1.1     oster /* validate a DAG.  _at entry_ verify that:
    803        1.1     oster  *   -- numNodesCompleted is zero
    804        1.1     oster  *   -- node queue is null
    805        1.1     oster  *   -- dag status is rf_enable
    806        1.1     oster  *   -- next pointer is null on every node
    807        1.1     oster  *   -- all nodes have status wait
    808        1.1     oster  *   -- numAntDone is zero in all nodes
    809        1.1     oster  *   -- terminator node has zero successors
    810        1.1     oster  *   -- no other node besides terminator has zero successors
    811        1.1     oster  *   -- no successor or antecedent pointer in a node is NULL
    812        1.1     oster  *   -- number of times that each node appears as a successor of another node
    813        1.1     oster  *      is equal to the antecedent count on that node
    814        1.1     oster  *   -- number of times that each node appears as an antecedent of another node
    815        1.1     oster  *      is equal to the succedent count on that node
    816        1.1     oster  *   -- what else?
    817        1.1     oster  */
    818       1.45     perry int
    819       1.23     oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
    820        1.3     oster {
    821        1.3     oster 	int     i, nodecount;
    822        1.3     oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    823        1.3     oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    824        1.3     oster 	int     retcode = 0;
    825        1.3     oster 	int     unvisited;
    826        1.3     oster 	int     commitNodeCount = 0;
    827        1.3     oster 
    828        1.3     oster 	if (rf_validateVisitedDebug)
    829        1.3     oster 		rf_ValidateVisitedBits(dag_h);
    830        1.3     oster 
    831        1.3     oster 	if (dag_h->numNodesCompleted != 0) {
    832        1.3     oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    833        1.3     oster 		retcode = 1;
    834        1.3     oster 		goto validate_dag_bad;
    835        1.3     oster 	}
    836        1.3     oster 	if (dag_h->status != rf_enable) {
    837        1.3     oster 		printf("INVALID DAG: not enabled\n");
    838        1.3     oster 		retcode = 1;
    839        1.3     oster 		goto validate_dag_bad;
    840        1.3     oster 	}
    841        1.3     oster 	if (dag_h->numCommits != 0) {
    842        1.3     oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    843        1.3     oster 		retcode = 1;
    844        1.3     oster 		goto validate_dag_bad;
    845        1.3     oster 	}
    846        1.3     oster 	if (dag_h->numSuccedents != 1) {
    847        1.3     oster 		/* currently, all dags must have only one succedent */
    848        1.3     oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    849        1.3     oster 		retcode = 1;
    850        1.3     oster 		goto validate_dag_bad;
    851        1.3     oster 	}
    852        1.3     oster 	nodecount = rf_AssignNodeNums(dag_h);
    853        1.3     oster 
    854        1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    855        1.3     oster 
    856       1.22     oster 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    857       1.22     oster 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    858       1.45     perry 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    859       1.22     oster 		  (RF_DagNode_t **));
    860        1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    861        1.3     oster 		if ((dag_h->succedents[i]->visited == unvisited)
    862        1.3     oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    863        1.3     oster 			acount, nodes, unvisited)) {
    864        1.3     oster 			retcode = 1;
    865        1.3     oster 		}
    866        1.3     oster 	}
    867        1.3     oster 	/* start at 1 to skip the header node */
    868        1.3     oster 	for (i = 1; i < nodecount; i++) {
    869        1.3     oster 		if (nodes[i]->commitNode)
    870        1.3     oster 			commitNodeCount++;
    871        1.3     oster 		if (nodes[i]->doFunc == NULL) {
    872        1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    873        1.3     oster 			retcode = 1;
    874        1.3     oster 			goto validate_dag_out;
    875        1.3     oster 		}
    876        1.3     oster 		if (nodes[i]->undoFunc == NULL) {
    877        1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    878        1.3     oster 			retcode = 1;
    879        1.3     oster 			goto validate_dag_out;
    880        1.3     oster 		}
    881        1.3     oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    882        1.3     oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    883        1.3     oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    884        1.3     oster 			retcode = 1;
    885        1.3     oster 			goto validate_dag_out;
    886        1.3     oster 		}
    887        1.3     oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    888        1.3     oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    889        1.3     oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    890        1.3     oster 			retcode = 1;
    891        1.3     oster 			goto validate_dag_out;
    892        1.3     oster 		}
    893        1.3     oster 	}
    894        1.1     oster 
    895        1.3     oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    896        1.3     oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    897        1.3     oster 		    dag_h->numCommitNodes, commitNodeCount);
    898        1.3     oster 		retcode = 1;
    899        1.3     oster 		goto validate_dag_out;
    900        1.3     oster 	}
    901        1.1     oster validate_dag_out:
    902        1.3     oster 	RF_Free(scount, nodecount * sizeof(int));
    903        1.3     oster 	RF_Free(acount, nodecount * sizeof(int));
    904        1.3     oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    905        1.3     oster 	if (retcode)
    906        1.3     oster 		rf_PrintDAGList(dag_h);
    907        1.3     oster 
    908        1.3     oster 	if (rf_validateVisitedDebug)
    909        1.3     oster 		rf_ValidateVisitedBits(dag_h);
    910        1.3     oster 
    911        1.3     oster 	return (retcode);
    912        1.1     oster 
    913        1.1     oster validate_dag_bad:
    914        1.3     oster 	rf_PrintDAGList(dag_h);
    915        1.3     oster 	return (retcode);
    916        1.1     oster }
    917        1.1     oster 
    918       1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
    919        1.1     oster 
    920        1.1     oster /******************************************************************************
    921        1.1     oster  *
    922        1.1     oster  * misc construction routines
    923        1.1     oster  *
    924        1.1     oster  *****************************************************************************/
    925        1.1     oster 
    926       1.45     perry void
    927       1.23     oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    928        1.3     oster {
    929        1.3     oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    930       1.21     oster 	int     fcol = raidPtr->reconControl->fcol;
    931       1.21     oster 	int     scol = raidPtr->reconControl->spareCol;
    932        1.3     oster 	RF_PhysDiskAddr_t *pda;
    933        1.3     oster 
    934       1.21     oster 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    935        1.3     oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    936        1.3     oster 		if (pda->col == fcol) {
    937       1.31     oster #if RF_DEBUG_DAG
    938        1.3     oster 			if (rf_dagDebug) {
    939       1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    940        1.3     oster 					pda->startSector)) {
    941        1.3     oster 					RF_PANIC();
    942        1.3     oster 				}
    943        1.3     oster 			}
    944       1.31     oster #endif
    945        1.3     oster 			/* printf("Remapped data for large write\n"); */
    946        1.3     oster 			if (ds) {
    947        1.3     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    948       1.21     oster 				    &pda->col, &pda->startSector, RF_REMAP);
    949        1.3     oster 			} else {
    950        1.3     oster 				pda->col = scol;
    951        1.3     oster 			}
    952        1.3     oster 		}
    953        1.3     oster 	}
    954        1.3     oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    955        1.3     oster 		if (pda->col == fcol) {
    956       1.31     oster #if RF_DEBUG_DAG
    957        1.3     oster 			if (rf_dagDebug) {
    958       1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    959        1.3     oster 					RF_PANIC();
    960        1.3     oster 				}
    961        1.3     oster 			}
    962       1.31     oster #endif
    963        1.3     oster 		}
    964        1.3     oster 		if (ds) {
    965       1.21     oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    966        1.3     oster 		} else {
    967        1.3     oster 			pda->col = scol;
    968        1.3     oster 		}
    969        1.3     oster 	}
    970        1.1     oster }
    971        1.1     oster 
    972        1.1     oster 
    973        1.1     oster /* this routine allocates read buffers and generates stripe maps for the
    974        1.1     oster  * regions of the array from the start of the stripe to the start of the
    975        1.1     oster  * access, and from the end of the access to the end of the stripe.  It also
    976        1.1     oster  * computes and returns the number of DAG nodes needed to read all this data.
    977        1.1     oster  * Note that this routine does the wrong thing if the access is fully
    978        1.1     oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    979        1.1     oster  * start.
    980       1.45     perry  *
    981       1.23     oster  * layoutPtr - in: layout information
    982       1.23     oster  * asmap     - in: access stripe map
    983       1.23     oster  * dag_h     - in: header of the dag to create
    984       1.23     oster  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    985       1.23     oster  * nRodNodes - out: num nodes to be generated to read unaccessed data
    986       1.23     oster  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    987        1.1     oster  */
    988       1.45     perry void
    989       1.23     oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    990       1.23     oster 				RF_RaidLayout_t *layoutPtr,
    991       1.23     oster 				RF_AccessStripeMap_t *asmap,
    992       1.23     oster 				RF_DagHeader_t *dag_h,
    993       1.23     oster 				RF_AccessStripeMapHeader_t **new_asm_h,
    994       1.45     perry 				int *nRodNodes,
    995       1.23     oster 				char **sosBuffer, char **eosBuffer,
    996       1.50  christos 				RF_AllocListElem_t *allocList)
    997        1.3     oster {
    998        1.3     oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    999        1.3     oster 	RF_SectorNum_t sosNumSector, eosNumSector;
   1000        1.3     oster 
   1001        1.3     oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
   1002        1.3     oster 	/* generate an access map for the region of the array from start of
   1003        1.3     oster 	 * stripe to start of access */
   1004        1.3     oster 	new_asm_h[0] = new_asm_h[1] = NULL;
   1005        1.3     oster 	*nRodNodes = 0;
   1006        1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
   1007        1.3     oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1008        1.3     oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
   1009       1.44     oster 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
   1010        1.3     oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
   1011        1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1012        1.3     oster 		dag_h->asmList = new_asm_h[0];
   1013        1.3     oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1014        1.3     oster 
   1015        1.3     oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1016        1.3     oster 		/* we're totally within one stripe here */
   1017        1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1018        1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1019        1.3     oster 	}
   1020        1.3     oster 	/* generate an access map for the region of the array from end of
   1021        1.3     oster 	 * access to end of stripe */
   1022        1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1023        1.3     oster 		eosRaidAddress = asmap->endRaidAddress;
   1024        1.3     oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1025       1.44     oster 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1026        1.3     oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1027        1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1028        1.3     oster 		dag_h->asmList = new_asm_h[1];
   1029        1.3     oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1030        1.3     oster 
   1031        1.3     oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1032        1.3     oster 		/* we're totally within one stripe here */
   1033        1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1034        1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1035        1.3     oster 	}
   1036        1.1     oster }
   1037        1.1     oster 
   1038        1.1     oster 
   1039        1.1     oster 
   1040        1.1     oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1041       1.45     perry int
   1042       1.45     perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1043       1.23     oster 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1044        1.3     oster {
   1045        1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1046        1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1047        1.3     oster 	/* use -1 to be sure we stay within SU */
   1048        1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1049        1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1050        1.3     oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1051        1.1     oster }
   1052        1.1     oster 
   1053        1.1     oster 
   1054        1.1     oster /* GenerateFailedAccessASMs
   1055        1.1     oster  *
   1056        1.1     oster  * this routine figures out what portion of the stripe needs to be read
   1057        1.1     oster  * to effect the degraded read or write operation.  It's primary function
   1058        1.1     oster  * is to identify everything required to recover the data, and then
   1059        1.1     oster  * eliminate anything that is already being accessed by the user.
   1060        1.1     oster  *
   1061        1.1     oster  * The main result is two new ASMs, one for the region from the start of the
   1062        1.1     oster  * stripe to the start of the access, and one for the region from the end of
   1063        1.1     oster  * the access to the end of the stripe.  These ASMs describe everything that
   1064        1.1     oster  * needs to be read to effect the degraded access.  Other results are:
   1065        1.1     oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1066        1.1     oster  *                recover the lost data,
   1067        1.1     oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1068        1.1     oster  *                at entry, not allocated.
   1069        1.1     oster  *    overlappingPDAs --
   1070        1.1     oster  *                describes which of the non-failed PDAs in the user access
   1071        1.1     oster  *                overlap data that needs to be read to effect recovery.
   1072        1.1     oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1073        1.1     oster  *                PDA, the ith pda in the input asm overlaps data that needs
   1074        1.1     oster  *                to be read for recovery.
   1075        1.1     oster  */
   1076        1.1     oster  /* in: asm - ASM for the actual access, one stripe only */
   1077       1.10       wiz  /* in: failedPDA - which component of the access has failed */
   1078        1.1     oster  /* in: dag_h - header of the DAG we're going to create */
   1079        1.1     oster  /* out: new_asm_h - the two new ASMs */
   1080        1.1     oster  /* out: nXorBufs - the total number of xor bufs required */
   1081        1.1     oster  /* out: rpBufPtr - a buffer for the parity read */
   1082       1.45     perry void
   1083       1.23     oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1084       1.23     oster 			    RF_PhysDiskAddr_t *failedPDA,
   1085       1.23     oster 			    RF_DagHeader_t *dag_h,
   1086       1.23     oster 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1087       1.23     oster 			    int *nXorBufs, char **rpBufPtr,
   1088       1.23     oster 			    char *overlappingPDAs,
   1089       1.50  christos 			    RF_AllocListElem_t *allocList)
   1090        1.3     oster {
   1091        1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1092        1.3     oster 
   1093        1.3     oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1094        1.3     oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1095        1.3     oster 	RF_PhysDiskAddr_t *pda;
   1096        1.3     oster 	int     foundit, i;
   1097        1.3     oster 
   1098        1.3     oster 	foundit = 0;
   1099        1.3     oster 	/* first compute the following raid addresses: start of stripe,
   1100        1.3     oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1101        1.3     oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1102        1.3     oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1103        1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1104        1.3     oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1105        1.3     oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1106        1.3     oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1107        1.3     oster 
   1108        1.3     oster 	/* now generate access stripe maps for each of the above regions of
   1109        1.3     oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1110        1.3     oster 
   1111        1.3     oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1112        1.3     oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1113        1.3     oster 
   1114        1.3     oster 	/* walk through the PDAs and range-restrict each SU to the region of
   1115        1.3     oster 	 * the SU touched on the failed PDA.  also compute total data buffer
   1116        1.3     oster 	 * space requirements in this step.  Ignore the parity for now. */
   1117       1.35     oster 	/* Also count nodes to find out how many bufs need to be xored together */
   1118       1.35     oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1119       1.35     oster 				 * case, 1 is for failed data */
   1120        1.3     oster 
   1121        1.3     oster 	if (new_asm_h[0]) {
   1122        1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1123        1.3     oster 		dag_h->asmList = new_asm_h[0];
   1124        1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1125        1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1126       1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1127        1.3     oster 		}
   1128       1.35     oster 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1129        1.3     oster 	}
   1130        1.3     oster 	if (new_asm_h[1]) {
   1131        1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1132        1.3     oster 		dag_h->asmList = new_asm_h[1];
   1133        1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1134        1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1135       1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1136        1.3     oster 		}
   1137        1.3     oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1138        1.3     oster 	}
   1139       1.45     perry 
   1140       1.35     oster 	/* allocate a buffer for parity */
   1141       1.45     perry 	if (rpBufPtr)
   1142       1.44     oster 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1143        1.3     oster 
   1144        1.3     oster 	/* the last step is to figure out how many more distinct buffers need
   1145        1.3     oster 	 * to get xor'd to produce the missing unit.  there's one for each
   1146        1.3     oster 	 * user-data read node that overlaps the portion of the failed unit
   1147        1.3     oster 	 * being accessed */
   1148        1.3     oster 
   1149        1.3     oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1150        1.3     oster 		if (pda == failedPDA) {
   1151        1.3     oster 			i--;
   1152        1.3     oster 			foundit = 1;
   1153        1.3     oster 			continue;
   1154        1.3     oster 		}
   1155        1.3     oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1156        1.3     oster 			overlappingPDAs[i] = 1;
   1157        1.3     oster 			(*nXorBufs)++;
   1158        1.3     oster 		}
   1159        1.3     oster 	}
   1160        1.3     oster 	if (!foundit) {
   1161        1.3     oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1162        1.3     oster 		RF_ASSERT(0);
   1163        1.3     oster 	}
   1164       1.31     oster #if RF_DEBUG_DAG
   1165        1.3     oster 	if (rf_degDagDebug) {
   1166        1.3     oster 		if (new_asm_h[0]) {
   1167        1.3     oster 			printf("First asm:\n");
   1168        1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1169        1.3     oster 		}
   1170        1.3     oster 		if (new_asm_h[1]) {
   1171        1.3     oster 			printf("Second asm:\n");
   1172        1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1173        1.3     oster 		}
   1174        1.3     oster 	}
   1175       1.31     oster #endif
   1176        1.1     oster }
   1177        1.1     oster 
   1178        1.1     oster 
   1179        1.1     oster /* adjusts the offset and number of sectors in the destination pda so that
   1180        1.1     oster  * it covers at most the region of the SU covered by the source PDA.  This
   1181        1.1     oster  * is exclusively a restriction:  the number of sectors indicated by the
   1182        1.1     oster  * target PDA can only shrink.
   1183        1.1     oster  *
   1184        1.1     oster  * For example:  s = sectors within SU indicated by source PDA
   1185        1.1     oster  *               d = sectors within SU indicated by dest PDA
   1186        1.1     oster  *               r = results, stored in dest PDA
   1187        1.1     oster  *
   1188        1.1     oster  * |--------------- one stripe unit ---------------------|
   1189        1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1190        1.1     oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1191        1.1     oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1192        1.1     oster  *
   1193        1.1     oster  * Another example:
   1194        1.1     oster  *
   1195        1.1     oster  * |--------------- one stripe unit ---------------------|
   1196        1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1197        1.1     oster  * |    ddddddddddddddddddddddd                          |
   1198        1.1     oster  * |           rrrrrrrrrrrrrrrr                          |
   1199        1.1     oster  *
   1200        1.1     oster  */
   1201       1.45     perry void
   1202       1.23     oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1203       1.23     oster 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1204        1.3     oster {
   1205        1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1206        1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1207        1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1208        1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1209        1.3     oster 													 * stay within SU */
   1210        1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1211        1.3     oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1212        1.3     oster 
   1213        1.3     oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1214        1.3     oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1215        1.3     oster 
   1216        1.3     oster 	if (dobuffer)
   1217       1.51  christos 		dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
   1218        1.3     oster 	if (doraidaddr) {
   1219        1.3     oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1220        1.3     oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1221        1.3     oster 	}
   1222        1.1     oster }
   1223       1.11     oster 
   1224       1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1225       1.11     oster 
   1226        1.1     oster /*
   1227        1.1     oster  * Want the highest of these primes to be the largest one
   1228        1.1     oster  * less than the max expected number of columns (won't hurt
   1229        1.1     oster  * to be too small or too large, but won't be optimal, either)
   1230        1.1     oster  * --jimz
   1231        1.1     oster  */
   1232        1.1     oster #define NLOWPRIMES 8
   1233        1.3     oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1234        1.1     oster /*****************************************************************************
   1235        1.1     oster  * compute the workload shift factor.  (chained declustering)
   1236        1.1     oster  *
   1237        1.1     oster  * return nonzero if access should shift to secondary, otherwise,
   1238        1.1     oster  * access is to primary
   1239        1.1     oster  *****************************************************************************/
   1240       1.45     perry int
   1241       1.23     oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1242        1.3     oster {
   1243        1.3     oster 	/*
   1244        1.3     oster          * variables:
   1245        1.3     oster          *  d   = column of disk containing primary
   1246        1.3     oster          *  f   = column of failed disk
   1247        1.3     oster          *  n   = number of disks in array
   1248        1.3     oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1249        1.3     oster          *  v   = numerator of redirection ratio
   1250        1.3     oster          *  k   = denominator of redirection ratio
   1251        1.3     oster          */
   1252       1.21     oster 	RF_RowCol_t d, f, sd, n;
   1253        1.3     oster 	int     k, v, ret, i;
   1254        1.3     oster 
   1255        1.3     oster 	n = raidPtr->numCol;
   1256        1.3     oster 
   1257        1.3     oster 	/* assign column of primary copy to d */
   1258        1.3     oster 	d = pda->col;
   1259        1.3     oster 
   1260        1.3     oster 	/* assign column of dead disk to f */
   1261  1.53.32.1     skrll 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
   1262  1.53.32.1     skrll 		continue;
   1263        1.3     oster 
   1264        1.3     oster 	RF_ASSERT(f < n);
   1265        1.3     oster 	RF_ASSERT(f != d);
   1266        1.3     oster 
   1267        1.3     oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1268        1.3     oster 	RF_ASSERT(sd < n);
   1269        1.3     oster 
   1270        1.3     oster 	/*
   1271        1.3     oster          * v of every k accesses should be redirected
   1272        1.3     oster          *
   1273        1.3     oster          * v/k := (n-1-sd)/(n-1)
   1274        1.3     oster          */
   1275        1.3     oster 	v = (n - 1 - sd);
   1276        1.3     oster 	k = (n - 1);
   1277        1.1     oster 
   1278        1.1     oster #if 1
   1279        1.3     oster 	/*
   1280        1.3     oster          * XXX
   1281        1.3     oster          * Is this worth it?
   1282        1.3     oster          *
   1283        1.3     oster          * Now reduce the fraction, by repeatedly factoring
   1284        1.3     oster          * out primes (just like they teach in elementary school!)
   1285        1.3     oster          */
   1286        1.3     oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1287        1.3     oster 		if (lowprimes[i] > v)
   1288        1.3     oster 			break;
   1289        1.3     oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1290        1.3     oster 			v /= lowprimes[i];
   1291        1.3     oster 			k /= lowprimes[i];
   1292        1.3     oster 		}
   1293        1.3     oster 	}
   1294        1.1     oster #endif
   1295        1.1     oster 
   1296       1.21     oster 	raidPtr->hist_diskreq[d]++;
   1297       1.21     oster 	if (raidPtr->hist_diskreq[d] > v) {
   1298        1.3     oster 		ret = 0;	/* do not redirect */
   1299        1.3     oster 	} else {
   1300        1.3     oster 		ret = 1;	/* redirect */
   1301        1.3     oster 	}
   1302        1.1     oster 
   1303        1.1     oster #if 0
   1304        1.3     oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1305       1.21     oster 	    raidPtr->hist_diskreq[d]);
   1306        1.1     oster #endif
   1307        1.1     oster 
   1308       1.21     oster 	if (raidPtr->hist_diskreq[d] >= k) {
   1309        1.3     oster 		/* reset counter */
   1310       1.21     oster 		raidPtr->hist_diskreq[d] = 0;
   1311        1.3     oster 	}
   1312        1.3     oster 	return (ret);
   1313        1.1     oster }
   1314       1.11     oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1315       1.11     oster 
   1316        1.1     oster /*
   1317        1.1     oster  * Disk selection routines
   1318        1.1     oster  */
   1319        1.1     oster 
   1320        1.1     oster /*
   1321        1.1     oster  * Selects the disk with the shortest queue from a mirror pair.
   1322        1.1     oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1323        1.1     oster  * disk are counted as members of the "queue"
   1324        1.1     oster  */
   1325       1.45     perry void
   1326        1.3     oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1327        1.1     oster {
   1328        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1329       1.21     oster 	RF_RowCol_t colData, colMirror;
   1330        1.3     oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1331        1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1332        1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1333        1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1334       1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1335       1.21     oster 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1336        1.3     oster 
   1337        1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1338        1.3     oster 	colData = data_pda->col;
   1339        1.3     oster 	colMirror = mirror_pda->col;
   1340       1.21     oster 	dataQueue = &(dqs[colData]);
   1341       1.21     oster 	mirrorQueue = &(dqs[colMirror]);
   1342        1.1     oster 
   1343        1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1344        1.3     oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1345        1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1346        1.3     oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1347        1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1348        1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1349        1.3     oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1350        1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1351        1.3     oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1352        1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1353        1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1354        1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1355        1.1     oster 
   1356        1.3     oster 	usemirror = 0;
   1357       1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1358        1.3     oster 		usemirror = 0;
   1359        1.3     oster 	} else
   1360       1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1361        1.3     oster 			usemirror = 1;
   1362        1.3     oster 		} else
   1363        1.5     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1364        1.5     oster 				/* Trust only the main disk */
   1365        1.3     oster 				usemirror = 0;
   1366        1.3     oster 			} else
   1367        1.5     oster 				if (dataQueueLength < mirrorQueueLength) {
   1368        1.5     oster 					usemirror = 0;
   1369        1.5     oster 				} else
   1370        1.5     oster 					if (mirrorQueueLength < dataQueueLength) {
   1371        1.5     oster 						usemirror = 1;
   1372        1.3     oster 					} else {
   1373        1.5     oster 						/* queues are equal length. attempt
   1374        1.5     oster 						 * cleverness. */
   1375        1.5     oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1376        1.5     oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1377        1.5     oster 							usemirror = 0;
   1378        1.5     oster 						} else {
   1379        1.5     oster 							usemirror = 1;
   1380        1.5     oster 						}
   1381        1.3     oster 					}
   1382        1.3     oster 
   1383        1.3     oster 	if (usemirror) {
   1384        1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1385        1.3     oster 		tmp_pda = data_pda;
   1386        1.3     oster 		node->params[0].p = mirror_pda;
   1387        1.3     oster 		node->params[4].p = tmp_pda;
   1388        1.3     oster 	} else {
   1389        1.3     oster 		/* use data disk, leave param 0 unchanged */
   1390        1.3     oster 	}
   1391        1.3     oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1392        1.3     oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1393        1.1     oster }
   1394       1.19     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1395        1.1     oster /*
   1396        1.1     oster  * Do simple partitioning. This assumes that
   1397        1.1     oster  * the data and parity disks are laid out identically.
   1398        1.1     oster  */
   1399       1.45     perry void
   1400        1.3     oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1401        1.1     oster {
   1402        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1403       1.21     oster 	RF_RowCol_t colData, colMirror;
   1404        1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1405        1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1406        1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1407       1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1408        1.3     oster 	int     usemirror;
   1409        1.3     oster 
   1410        1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1411        1.3     oster 	colData = data_pda->col;
   1412        1.3     oster 	colMirror = mirror_pda->col;
   1413        1.3     oster 
   1414        1.3     oster 	usemirror = 0;
   1415       1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1416        1.3     oster 		usemirror = 0;
   1417        1.3     oster 	} else
   1418       1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1419        1.3     oster 			usemirror = 1;
   1420       1.45     perry 		} else
   1421        1.6     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1422        1.6     oster 				/* Trust only the main disk */
   1423        1.3     oster 				usemirror = 0;
   1424        1.6     oster 			} else
   1425       1.45     perry 				if (data_pda->startSector <
   1426       1.21     oster 				    (disks[colData].numBlocks / 2)) {
   1427        1.6     oster 					usemirror = 0;
   1428        1.6     oster 				} else {
   1429        1.6     oster 					usemirror = 1;
   1430        1.6     oster 				}
   1431        1.3     oster 
   1432        1.3     oster 	if (usemirror) {
   1433        1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1434        1.3     oster 		tmp_pda = data_pda;
   1435        1.3     oster 		node->params[0].p = mirror_pda;
   1436        1.3     oster 		node->params[4].p = tmp_pda;
   1437        1.3     oster 	} else {
   1438        1.3     oster 		/* use data disk, leave param 0 unchanged */
   1439        1.3     oster 	}
   1440        1.1     oster }
   1441       1.19     oster #endif
   1442