Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.55
      1  1.55  christos /*	$NetBSD: rf_dagutils.c,v 1.55 2019/02/09 03:34:00 christos Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /******************************************************************************
     30   1.1     oster  *
     31   1.1     oster  * rf_dagutils.c -- utility routines for manipulating dags
     32   1.1     oster  *
     33   1.1     oster  *****************************************************************************/
     34   1.9     lukem 
     35   1.9     lukem #include <sys/cdefs.h>
     36  1.55  christos __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.55 2019/02/09 03:34:00 christos Exp $");
     37   1.1     oster 
     38   1.8     oster #include <dev/raidframe/raidframevar.h>
     39   1.8     oster 
     40   1.1     oster #include "rf_archs.h"
     41   1.1     oster #include "rf_threadstuff.h"
     42   1.1     oster #include "rf_raid.h"
     43   1.1     oster #include "rf_dag.h"
     44   1.1     oster #include "rf_dagutils.h"
     45   1.1     oster #include "rf_dagfuncs.h"
     46   1.1     oster #include "rf_general.h"
     47   1.1     oster #include "rf_map.h"
     48   1.1     oster #include "rf_shutdown.h"
     49   1.1     oster 
     50   1.1     oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51   1.1     oster 
     52  1.20  jdolecek const RF_RedFuncs_t rf_xorFuncs = {
     53   1.1     oster 	rf_RegularXorFunc, "Reg Xr",
     54  1.32     oster 	rf_SimpleXorFunc, "Simple Xr"};
     55   1.1     oster 
     56  1.20  jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57   1.1     oster 	rf_RecoveryXorFunc, "Recovery Xr",
     58  1.32     oster 	rf_RecoveryXorFunc, "Recovery Xr"};
     59   1.1     oster 
     60  1.13     oster #if RF_DEBUG_VALIDATE_DAG
     61   1.1     oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62   1.1     oster static void rf_PrintDAG(RF_DagHeader_t *);
     63  1.12     oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64  1.12     oster 			     RF_DagNode_t **, int);
     65   1.1     oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66   1.1     oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
     68   1.1     oster 
     69  1.40     oster /* The maximum number of nodes in a DAG is bounded by
     70  1.40     oster 
     71  1.45     perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72  1.40     oster 	(1 * 2 * layoutPtr->numParityCol) + 3
     73  1.40     oster 
     74  1.40     oster which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75  1.40     oster 
     76  1.40     oster For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77  1.45     perry on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78  1.45     perry would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79  1.40     oster have a few kicking around.
     80  1.40     oster */
     81  1.40     oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82  1.40     oster 
     83  1.40     oster 
     84   1.1     oster /******************************************************************************
     85   1.1     oster  *
     86   1.1     oster  * InitNode - initialize a dag node
     87   1.1     oster  *
     88   1.1     oster  * the size of the propList array is always the same as that of the
     89   1.1     oster  * successors array.
     90   1.1     oster  *
     91   1.1     oster  *****************************************************************************/
     92  1.40     oster void
     93  1.23     oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94  1.23     oster     int (*doFunc) (RF_DagNode_t *node),
     95  1.23     oster     int (*undoFunc) (RF_DagNode_t *node),
     96  1.23     oster     int (*wakeFunc) (RF_DagNode_t *node, int status),
     97  1.23     oster     int nSucc, int nAnte, int nParam, int nResult,
     98  1.46  christos     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99   1.3     oster {
    100   1.3     oster 	void  **ptrs;
    101   1.3     oster 	int     nptrs;
    102   1.3     oster 
    103   1.3     oster 	if (nAnte > RF_MAX_ANTECEDENTS)
    104   1.3     oster 		RF_PANIC();
    105   1.3     oster 	node->status = initstatus;
    106   1.3     oster 	node->commitNode = commit;
    107   1.3     oster 	node->doFunc = doFunc;
    108   1.3     oster 	node->undoFunc = undoFunc;
    109   1.3     oster 	node->wakeFunc = wakeFunc;
    110   1.3     oster 	node->numParams = nParam;
    111   1.3     oster 	node->numResults = nResult;
    112   1.3     oster 	node->numAntecedents = nAnte;
    113   1.3     oster 	node->numAntDone = 0;
    114   1.3     oster 	node->next = NULL;
    115  1.45     perry 	/* node->list_next = NULL */  /* Don't touch this here!
    116  1.45     perry 	                                 It may already be
    117  1.38     oster 					 in use by the caller! */
    118   1.3     oster 	node->numSuccedents = nSucc;
    119   1.3     oster 	node->name = name;
    120   1.3     oster 	node->dagHdr = hdr;
    121  1.40     oster 	node->big_dag_ptrs = NULL;
    122  1.40     oster 	node->big_dag_params = NULL;
    123   1.3     oster 	node->visited = 0;
    124   1.3     oster 
    125   1.3     oster 	/* allocate all the pointers with one call to malloc */
    126   1.3     oster 	nptrs = nSucc + nAnte + nResult + nSucc;
    127   1.3     oster 
    128   1.3     oster 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    129   1.3     oster 		/*
    130   1.3     oster 	         * The dag_ptrs field of the node is basically some scribble
    131   1.3     oster 	         * space to be used here. We could get rid of it, and always
    132   1.3     oster 	         * allocate the range of pointers, but that's expensive. So,
    133   1.3     oster 	         * we pick a "common case" size for the pointer cache. Hopefully,
    134   1.3     oster 	         * we'll find that:
    135   1.3     oster 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    136   1.3     oster 	         *     only a little bit (least efficient case)
    137   1.3     oster 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    138   1.3     oster 	         *     (wasted memory)
    139   1.3     oster 	         */
    140   1.3     oster 		ptrs = (void **) node->dag_ptrs;
    141  1.40     oster 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    142  1.40     oster 		node->big_dag_ptrs = rf_AllocDAGPCache();
    143  1.40     oster 		ptrs = (void **) node->big_dag_ptrs;
    144   1.3     oster 	} else {
    145  1.55  christos 		ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
    146   1.3     oster 	}
    147   1.3     oster 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    148   1.3     oster 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    149   1.3     oster 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    150   1.3     oster 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    151   1.3     oster 
    152   1.3     oster 	if (nParam) {
    153   1.3     oster 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    154   1.3     oster 			node->params = (RF_DagParam_t *) node->dag_params;
    155  1.40     oster 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    156  1.40     oster 			node->big_dag_params = rf_AllocDAGPCache();
    157  1.40     oster 			node->params = node->big_dag_params;
    158   1.3     oster 		} else {
    159  1.55  christos 			node->params = RF_MallocAndAdd(
    160  1.55  christos 			    nParam * sizeof(*node->params), alist);
    161   1.3     oster 		}
    162   1.3     oster 	} else {
    163   1.3     oster 		node->params = NULL;
    164   1.3     oster 	}
    165   1.1     oster }
    166   1.1     oster 
    167   1.1     oster 
    168   1.1     oster 
    169   1.1     oster /******************************************************************************
    170   1.1     oster  *
    171   1.1     oster  * allocation and deallocation routines
    172   1.1     oster  *
    173   1.1     oster  *****************************************************************************/
    174   1.1     oster 
    175  1.45     perry void
    176  1.23     oster rf_FreeDAG(RF_DagHeader_t *dag_h)
    177   1.3     oster {
    178   1.3     oster 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    179  1.39     oster 	RF_PhysDiskAddr_t *pda;
    180  1.38     oster 	RF_DagNode_t *tmpnode;
    181   1.3     oster 	RF_DagHeader_t *nextDag;
    182   1.3     oster 
    183   1.3     oster 	while (dag_h) {
    184   1.3     oster 		nextDag = dag_h->next;
    185   1.3     oster 		rf_FreeAllocList(dag_h->allocList);
    186   1.3     oster 		for (asmap = dag_h->asmList; asmap;) {
    187   1.3     oster 			t_asmap = asmap;
    188   1.3     oster 			asmap = asmap->next;
    189   1.3     oster 			rf_FreeAccessStripeMap(t_asmap);
    190   1.3     oster 		}
    191  1.39     oster 		while (dag_h->pda_cleanup_list) {
    192  1.39     oster 			pda = dag_h->pda_cleanup_list;
    193  1.39     oster 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    194  1.39     oster 			rf_FreePhysDiskAddr(pda);
    195  1.39     oster 		}
    196  1.39     oster 		while (dag_h->nodes) {
    197  1.38     oster 			tmpnode = dag_h->nodes;
    198  1.38     oster 			dag_h->nodes = dag_h->nodes->list_next;
    199  1.38     oster 			rf_FreeDAGNode(tmpnode);
    200  1.38     oster 		}
    201   1.3     oster 		rf_FreeDAGHeader(dag_h);
    202   1.3     oster 		dag_h = nextDag;
    203   1.3     oster 	}
    204   1.3     oster }
    205   1.3     oster 
    206   1.1     oster #define RF_MAX_FREE_DAGH 128
    207  1.30     oster #define RF_MIN_FREE_DAGH  32
    208   1.1     oster 
    209  1.38     oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    210  1.38     oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    211  1.38     oster 
    212  1.25     oster #define RF_MAX_FREE_DAGLIST 128
    213  1.30     oster #define RF_MIN_FREE_DAGLIST  32
    214  1.25     oster 
    215  1.40     oster #define RF_MAX_FREE_DAGPCACHE 128
    216  1.40     oster #define RF_MIN_FREE_DAGPCACHE   8
    217  1.40     oster 
    218  1.27     oster #define RF_MAX_FREE_FUNCLIST 128
    219  1.30     oster #define RF_MIN_FREE_FUNCLIST  32
    220  1.25     oster 
    221  1.41     oster #define RF_MAX_FREE_BUFFERS 128
    222  1.41     oster #define RF_MIN_FREE_BUFFERS  32
    223  1.41     oster 
    224   1.1     oster static void rf_ShutdownDAGs(void *);
    225  1.45     perry static void
    226  1.50  christos rf_ShutdownDAGs(void *ignored)
    227   1.1     oster {
    228  1.36     oster 	pool_destroy(&rf_pools.dagh);
    229  1.38     oster 	pool_destroy(&rf_pools.dagnode);
    230  1.36     oster 	pool_destroy(&rf_pools.daglist);
    231  1.40     oster 	pool_destroy(&rf_pools.dagpcache);
    232  1.36     oster 	pool_destroy(&rf_pools.funclist);
    233   1.1     oster }
    234   1.1     oster 
    235  1.45     perry int
    236  1.23     oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    237   1.1     oster {
    238   1.1     oster 
    239  1.38     oster 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    240  1.38     oster 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    241  1.36     oster 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    242  1.36     oster 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    243  1.36     oster 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    244  1.36     oster 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    245  1.40     oster 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    246  1.40     oster 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    247  1.36     oster 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    248  1.36     oster 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    249  1.29     oster 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    250  1.29     oster 
    251   1.3     oster 	return (0);
    252   1.1     oster }
    253   1.1     oster 
    254   1.3     oster RF_DagHeader_t *
    255  1.52    cegger rf_AllocDAGHeader(void)
    256   1.1     oster {
    257   1.1     oster 	RF_DagHeader_t *dh;
    258   1.1     oster 
    259  1.36     oster 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    260  1.55  christos 	memset(dh, 0, sizeof(*dh));
    261   1.3     oster 	return (dh);
    262   1.1     oster }
    263   1.1     oster 
    264  1.45     perry void
    265   1.3     oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
    266   1.1     oster {
    267  1.36     oster 	pool_put(&rf_pools.dagh, dh);
    268   1.1     oster }
    269  1.25     oster 
    270  1.38     oster RF_DagNode_t *
    271  1.52    cegger rf_AllocDAGNode(void)
    272  1.38     oster {
    273  1.38     oster 	RF_DagNode_t *node;
    274  1.38     oster 
    275  1.38     oster 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    276  1.55  christos 	memset(node, 0, sizeof(*node));
    277  1.38     oster 	return (node);
    278  1.38     oster }
    279  1.38     oster 
    280  1.38     oster void
    281  1.38     oster rf_FreeDAGNode(RF_DagNode_t *node)
    282  1.38     oster {
    283  1.40     oster 	if (node->big_dag_ptrs) {
    284  1.40     oster 		rf_FreeDAGPCache(node->big_dag_ptrs);
    285  1.40     oster 	}
    286  1.40     oster 	if (node->big_dag_params) {
    287  1.40     oster 		rf_FreeDAGPCache(node->big_dag_params);
    288  1.40     oster 	}
    289  1.38     oster 	pool_put(&rf_pools.dagnode, node);
    290  1.38     oster }
    291  1.38     oster 
    292  1.25     oster RF_DagList_t *
    293  1.52    cegger rf_AllocDAGList(void)
    294  1.25     oster {
    295  1.25     oster 	RF_DagList_t *dagList;
    296  1.25     oster 
    297  1.36     oster 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    298  1.55  christos 	memset(dagList, 0, sizeof(*dagList));
    299  1.25     oster 
    300  1.25     oster 	return (dagList);
    301  1.25     oster }
    302  1.25     oster 
    303  1.25     oster void
    304  1.25     oster rf_FreeDAGList(RF_DagList_t *dagList)
    305  1.25     oster {
    306  1.36     oster 	pool_put(&rf_pools.daglist, dagList);
    307  1.25     oster }
    308  1.25     oster 
    309  1.40     oster void *
    310  1.52    cegger rf_AllocDAGPCache(void)
    311  1.40     oster {
    312  1.40     oster 	void *p;
    313  1.40     oster 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    314  1.40     oster 	memset(p, 0, RF_DAGPCACHE_SIZE);
    315  1.45     perry 
    316  1.40     oster 	return (p);
    317  1.40     oster }
    318  1.40     oster 
    319  1.40     oster void
    320  1.40     oster rf_FreeDAGPCache(void *p)
    321  1.40     oster {
    322  1.40     oster 	pool_put(&rf_pools.dagpcache, p);
    323  1.40     oster }
    324  1.40     oster 
    325  1.27     oster RF_FuncList_t *
    326  1.52    cegger rf_AllocFuncList(void)
    327  1.27     oster {
    328  1.27     oster 	RF_FuncList_t *funcList;
    329  1.27     oster 
    330  1.36     oster 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    331  1.55  christos 	memset(funcList, 0, sizeof(*funcList));
    332  1.45     perry 
    333  1.27     oster 	return (funcList);
    334  1.27     oster }
    335  1.27     oster 
    336  1.27     oster void
    337  1.27     oster rf_FreeFuncList(RF_FuncList_t *funcList)
    338  1.27     oster {
    339  1.36     oster 	pool_put(&rf_pools.funclist, funcList);
    340  1.27     oster }
    341  1.25     oster 
    342  1.44     oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
    343  1.45     perry    in an entire stripe.
    344  1.44     oster */
    345  1.44     oster 
    346  1.44     oster void *
    347  1.49  christos rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    348  1.50  christos     int size)
    349  1.44     oster {
    350  1.44     oster 	RF_VoidPointerListElem_t *vple;
    351  1.44     oster 	void *p;
    352  1.44     oster 
    353  1.45     perry 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    354  1.44     oster 					       raidPtr->logBytesPerSector))));
    355  1.44     oster 
    356  1.45     perry 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    357  1.45     perry 					raidPtr->logBytesPerSector),
    358  1.44     oster 		     M_RAIDFRAME, M_NOWAIT);
    359  1.44     oster 	if (!p) {
    360  1.53       mrg 		rf_lock_mutex2(raidPtr->mutex);
    361  1.44     oster 		if (raidPtr->stripebuf_count > 0) {
    362  1.44     oster 			vple = raidPtr->stripebuf;
    363  1.44     oster 			raidPtr->stripebuf = vple->next;
    364  1.44     oster 			p = vple->p;
    365  1.44     oster 			rf_FreeVPListElem(vple);
    366  1.44     oster 			raidPtr->stripebuf_count--;
    367  1.44     oster 		} else {
    368  1.44     oster #ifdef DIAGNOSTIC
    369  1.44     oster 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    370  1.44     oster #endif
    371  1.44     oster 		}
    372  1.53       mrg 		rf_unlock_mutex2(raidPtr->mutex);
    373  1.44     oster 		if (!p) {
    374  1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    375  1.44     oster 			   and hope that someone frees up memory for us.. */
    376  1.45     perry 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    377  1.44     oster 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    378  1.44     oster 		}
    379  1.44     oster 	}
    380  1.44     oster 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    381  1.44     oster 
    382  1.44     oster 	vple = rf_AllocVPListElem();
    383  1.44     oster 	vple->p = p;
    384  1.44     oster         vple->next = dag_h->desc->stripebufs;
    385  1.44     oster         dag_h->desc->stripebufs = vple;
    386  1.44     oster 
    387  1.44     oster 	return (p);
    388  1.44     oster }
    389  1.44     oster 
    390  1.25     oster 
    391  1.44     oster void
    392  1.44     oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    393  1.44     oster {
    394  1.53       mrg 	rf_lock_mutex2(raidPtr->mutex);
    395  1.44     oster 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    396  1.44     oster 		/* just tack it in */
    397  1.44     oster 		vple->next = raidPtr->stripebuf;
    398  1.44     oster 		raidPtr->stripebuf = vple;
    399  1.44     oster 		raidPtr->stripebuf_count++;
    400  1.44     oster 	} else {
    401  1.44     oster 		free(vple->p, M_RAIDFRAME);
    402  1.44     oster 		rf_FreeVPListElem(vple);
    403  1.44     oster 	}
    404  1.53       mrg 	rf_unlock_mutex2(raidPtr->mutex);
    405  1.44     oster }
    406  1.25     oster 
    407  1.42     oster /* allocates a buffer big enough to hold the data described by the
    408  1.42     oster caller (ie. the data of the associated PDA).  Glue this buffer
    409  1.42     oster into our dag_h cleanup structure. */
    410  1.42     oster 
    411  1.43     oster void *
    412  1.44     oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    413   1.3     oster {
    414  1.42     oster 	RF_VoidPointerListElem_t *vple;
    415  1.42     oster 	void *p;
    416   1.3     oster 
    417  1.42     oster 	p = rf_AllocIOBuffer(raidPtr, size);
    418  1.42     oster 	vple = rf_AllocVPListElem();
    419  1.42     oster 	vple->p = p;
    420  1.44     oster 	vple->next = dag_h->desc->iobufs;
    421  1.44     oster 	dag_h->desc->iobufs = vple;
    422  1.42     oster 
    423  1.42     oster 	return (p);
    424   1.1     oster }
    425  1.41     oster 
    426  1.41     oster void *
    427  1.50  christos rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    428  1.41     oster {
    429  1.44     oster 	RF_VoidPointerListElem_t *vple;
    430  1.41     oster 	void *p;
    431  1.41     oster 
    432  1.45     perry 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    433  1.44     oster 			   raidPtr->logBytesPerSector)));
    434  1.41     oster 
    435  1.45     perry 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    436  1.45     perry 				 raidPtr->logBytesPerSector,
    437  1.41     oster 				 M_RAIDFRAME, M_NOWAIT);
    438  1.41     oster 	if (!p) {
    439  1.53       mrg 		rf_lock_mutex2(raidPtr->mutex);
    440  1.41     oster 		if (raidPtr->iobuf_count > 0) {
    441  1.44     oster 			vple = raidPtr->iobuf;
    442  1.44     oster 			raidPtr->iobuf = vple->next;
    443  1.44     oster 			p = vple->p;
    444  1.44     oster 			rf_FreeVPListElem(vple);
    445  1.41     oster 			raidPtr->iobuf_count--;
    446  1.41     oster 		} else {
    447  1.41     oster #ifdef DIAGNOSTIC
    448  1.41     oster 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    449  1.41     oster #endif
    450  1.41     oster 		}
    451  1.53       mrg 		rf_unlock_mutex2(raidPtr->mutex);
    452  1.41     oster 		if (!p) {
    453  1.45     perry 			/* We didn't get a buffer... not much we can do other than wait,
    454  1.41     oster 			   and hope that someone frees up memory for us.. */
    455  1.45     perry 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    456  1.45     perry 				    raidPtr->logBytesPerSector,
    457  1.41     oster 				    M_RAIDFRAME, M_WAITOK);
    458  1.41     oster 		}
    459  1.41     oster 	}
    460  1.44     oster 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    461  1.41     oster 	return (p);
    462  1.41     oster }
    463  1.41     oster 
    464  1.41     oster void
    465  1.44     oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    466  1.41     oster {
    467  1.53       mrg 	rf_lock_mutex2(raidPtr->mutex);
    468  1.41     oster 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    469  1.44     oster 		/* just tack it in */
    470  1.44     oster 		vple->next = raidPtr->iobuf;
    471  1.44     oster 		raidPtr->iobuf = vple;
    472  1.41     oster 		raidPtr->iobuf_count++;
    473  1.41     oster 	} else {
    474  1.44     oster 		free(vple->p, M_RAIDFRAME);
    475  1.44     oster 		rf_FreeVPListElem(vple);
    476  1.41     oster 	}
    477  1.53       mrg 	rf_unlock_mutex2(raidPtr->mutex);
    478  1.41     oster }
    479  1.41     oster 
    480  1.41     oster 
    481  1.41     oster 
    482  1.13     oster #if RF_DEBUG_VALIDATE_DAG
    483   1.1     oster /******************************************************************************
    484   1.1     oster  *
    485   1.1     oster  * debug routines
    486   1.1     oster  *
    487   1.1     oster  *****************************************************************************/
    488   1.1     oster 
    489   1.3     oster char   *
    490  1.23     oster rf_NodeStatusString(RF_DagNode_t *node)
    491   1.1     oster {
    492   1.3     oster 	switch (node->status) {
    493  1.34     oster 	case rf_wait:
    494  1.34     oster 		return ("wait");
    495   1.3     oster 	case rf_fired:
    496   1.3     oster 		return ("fired");
    497   1.3     oster 	case rf_good:
    498   1.3     oster 		return ("good");
    499   1.3     oster 	case rf_bad:
    500   1.3     oster 		return ("bad");
    501   1.3     oster 	default:
    502   1.3     oster 		return ("?");
    503   1.3     oster 	}
    504   1.3     oster }
    505   1.1     oster 
    506  1.45     perry void
    507  1.23     oster rf_PrintNodeInfoString(RF_DagNode_t *node)
    508   1.3     oster {
    509   1.3     oster 	RF_PhysDiskAddr_t *pda;
    510   1.3     oster 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    511   1.3     oster 	int     i, lk, unlk;
    512   1.3     oster 	void   *bufPtr;
    513   1.3     oster 
    514   1.3     oster 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    515   1.3     oster 	    || (df == rf_DiskReadMirrorIdleFunc)
    516   1.3     oster 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    517   1.3     oster 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    518   1.3     oster 		bufPtr = (void *) node->params[1].p;
    519  1.24     oster 		lk = 0;
    520  1.24     oster 		unlk = 0;
    521   1.3     oster 		RF_ASSERT(!(lk && unlk));
    522  1.21     oster 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    523   1.3     oster 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    524   1.3     oster 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    525   1.3     oster 		return;
    526   1.3     oster 	}
    527   1.3     oster 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    528   1.3     oster 	    || (df == rf_RecoveryXorFunc)) {
    529   1.3     oster 		printf("result buf 0x%lx\n", (long) node->results[0]);
    530   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    531   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    532   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    533  1.21     oster 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    534  1.21     oster 			    (long) bufPtr, pda->col,
    535   1.3     oster 			    (long) pda->startSector, (int) pda->numSector);
    536   1.3     oster 		}
    537   1.3     oster 		return;
    538   1.3     oster 	}
    539   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    540   1.3     oster 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    541   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2) {
    542   1.3     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    543   1.3     oster 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    544  1.21     oster 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    545  1.21     oster 			    pda->col, (long) pda->startSector,
    546   1.3     oster 			    (int) pda->numSector, (long) bufPtr);
    547   1.3     oster 		}
    548   1.3     oster 		return;
    549   1.3     oster 	}
    550   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    551   1.3     oster 
    552   1.3     oster 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    553   1.3     oster 		printf("\n");
    554   1.3     oster 		return;
    555   1.3     oster 	}
    556   1.3     oster 	printf("?\n");
    557   1.3     oster }
    558  1.16     oster #ifdef DEBUG
    559  1.45     perry static void
    560  1.23     oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    561   1.3     oster {
    562   1.3     oster 	char   *anttype;
    563   1.3     oster 	int     i;
    564   1.3     oster 
    565   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    566   1.3     oster 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    567   1.3     oster 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    568   1.3     oster 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    569   1.3     oster 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    570   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    571   1.3     oster 		printf("%d%s", node->succedents[i]->nodeNum,
    572   1.3     oster 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    573   1.3     oster 	}
    574   1.3     oster 	printf("} A{");
    575   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    576   1.3     oster 		switch (node->antType[i]) {
    577   1.3     oster 		case rf_trueData:
    578   1.3     oster 			anttype = "T";
    579   1.3     oster 			break;
    580   1.3     oster 		case rf_antiData:
    581   1.3     oster 			anttype = "A";
    582   1.3     oster 			break;
    583   1.3     oster 		case rf_outputData:
    584   1.3     oster 			anttype = "O";
    585   1.3     oster 			break;
    586   1.3     oster 		case rf_control:
    587   1.3     oster 			anttype = "C";
    588   1.3     oster 			break;
    589   1.3     oster 		default:
    590   1.3     oster 			anttype = "?";
    591   1.3     oster 			break;
    592   1.3     oster 		}
    593   1.3     oster 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    594   1.3     oster 	}
    595   1.3     oster 	printf("}; ");
    596   1.3     oster 	rf_PrintNodeInfoString(node);
    597   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    598   1.3     oster 		if (node->succedents[i]->visited == unvisited)
    599   1.3     oster 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    600   1.3     oster 	}
    601   1.1     oster }
    602   1.1     oster 
    603  1.45     perry static void
    604  1.23     oster rf_PrintDAG(RF_DagHeader_t *dag_h)
    605   1.3     oster {
    606   1.3     oster 	int     unvisited, i;
    607   1.3     oster 	char   *status;
    608   1.3     oster 
    609   1.3     oster 	/* set dag status */
    610   1.3     oster 	switch (dag_h->status) {
    611   1.3     oster 	case rf_enable:
    612   1.3     oster 		status = "enable";
    613   1.3     oster 		break;
    614   1.3     oster 	case rf_rollForward:
    615   1.3     oster 		status = "rollForward";
    616   1.3     oster 		break;
    617   1.3     oster 	case rf_rollBackward:
    618   1.3     oster 		status = "rollBackward";
    619   1.3     oster 		break;
    620   1.3     oster 	default:
    621   1.3     oster 		status = "illegal!";
    622   1.3     oster 		break;
    623   1.3     oster 	}
    624   1.3     oster 	/* find out if visited bits are currently set or clear */
    625   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    626   1.3     oster 
    627   1.3     oster 	printf("DAG type:  %s\n", dag_h->creator);
    628   1.3     oster 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    629   1.3     oster 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    630   1.3     oster 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    631   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    632   1.3     oster 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    633   1.3     oster 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    634   1.3     oster 	}
    635   1.3     oster 	printf("};\n");
    636   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    637   1.3     oster 		if (dag_h->succedents[i]->visited == unvisited)
    638   1.3     oster 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    639   1.3     oster 	}
    640   1.3     oster }
    641  1.16     oster #endif
    642   1.1     oster /* assigns node numbers */
    643  1.45     perry int
    644   1.3     oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    645   1.1     oster {
    646   1.3     oster 	int     unvisited, i, nnum;
    647   1.3     oster 	RF_DagNode_t *node;
    648   1.1     oster 
    649   1.3     oster 	nnum = 0;
    650   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    651   1.3     oster 
    652   1.3     oster 	dag_h->nodeNum = nnum++;
    653   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    654   1.3     oster 		node = dag_h->succedents[i];
    655   1.3     oster 		if (node->visited == unvisited) {
    656   1.3     oster 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    657   1.3     oster 		}
    658   1.3     oster 	}
    659   1.3     oster 	return (nnum);
    660   1.1     oster }
    661   1.1     oster 
    662  1.45     perry int
    663  1.23     oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    664   1.3     oster {
    665   1.3     oster 	int     i;
    666   1.3     oster 
    667   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    668   1.3     oster 
    669   1.3     oster 	node->nodeNum = num++;
    670   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    671   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    672   1.3     oster 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    673   1.3     oster 		}
    674   1.3     oster 	}
    675   1.3     oster 	return (num);
    676   1.3     oster }
    677   1.1     oster /* set the header pointers in each node to "newptr" */
    678  1.45     perry void
    679  1.23     oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    680   1.3     oster {
    681   1.3     oster 	int     i;
    682   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++)
    683   1.3     oster 		if (dag_h->succedents[i]->dagHdr != newptr)
    684   1.3     oster 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    685   1.1     oster }
    686   1.1     oster 
    687  1.45     perry void
    688  1.23     oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    689   1.1     oster {
    690   1.3     oster 	int     i;
    691   1.3     oster 	node->dagHdr = newptr;
    692   1.3     oster 	for (i = 0; i < node->numSuccedents; i++)
    693   1.3     oster 		if (node->succedents[i]->dagHdr != newptr)
    694   1.3     oster 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    695   1.3     oster }
    696   1.1     oster 
    697   1.1     oster 
    698  1.45     perry void
    699   1.3     oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
    700   1.3     oster {
    701   1.3     oster 	int     i = 0;
    702   1.3     oster 
    703   1.3     oster 	for (; dag_h; dag_h = dag_h->next) {
    704   1.3     oster 		rf_AssignNodeNums(dag_h);
    705   1.3     oster 		printf("\n\nDAG %d IN LIST:\n", i++);
    706   1.3     oster 		rf_PrintDAG(dag_h);
    707   1.3     oster 	}
    708   1.1     oster }
    709   1.1     oster 
    710  1.45     perry static int
    711  1.23     oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    712  1.23     oster 		  RF_DagNode_t **nodes, int unvisited)
    713   1.3     oster {
    714   1.3     oster 	int     i, retcode = 0;
    715   1.3     oster 
    716   1.3     oster 	/* construct an array of node pointers indexed by node num */
    717   1.3     oster 	node->visited = (unvisited) ? 0 : 1;
    718   1.3     oster 	nodes[node->nodeNum] = node;
    719   1.3     oster 
    720   1.3     oster 	if (node->next != NULL) {
    721   1.3     oster 		printf("INVALID DAG: next pointer in node is not NULL\n");
    722   1.3     oster 		retcode = 1;
    723   1.3     oster 	}
    724   1.3     oster 	if (node->status != rf_wait) {
    725   1.3     oster 		printf("INVALID DAG: Node status is not wait\n");
    726   1.3     oster 		retcode = 1;
    727   1.3     oster 	}
    728   1.3     oster 	if (node->numAntDone != 0) {
    729   1.3     oster 		printf("INVALID DAG: numAntDone is not zero\n");
    730   1.3     oster 		retcode = 1;
    731   1.3     oster 	}
    732   1.3     oster 	if (node->doFunc == rf_TerminateFunc) {
    733   1.3     oster 		if (node->numSuccedents != 0) {
    734   1.3     oster 			printf("INVALID DAG: Terminator node has succedents\n");
    735   1.3     oster 			retcode = 1;
    736   1.3     oster 		}
    737   1.3     oster 	} else {
    738   1.3     oster 		if (node->numSuccedents == 0) {
    739   1.3     oster 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    740   1.3     oster 			retcode = 1;
    741   1.3     oster 		}
    742   1.3     oster 	}
    743   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    744   1.3     oster 		if (!node->succedents[i]) {
    745   1.3     oster 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    746   1.3     oster 			retcode = 1;
    747   1.3     oster 		}
    748   1.3     oster 		scount[node->succedents[i]->nodeNum]++;
    749   1.3     oster 	}
    750   1.3     oster 	for (i = 0; i < node->numAntecedents; i++) {
    751   1.3     oster 		if (!node->antecedents[i]) {
    752   1.3     oster 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    753   1.3     oster 			retcode = 1;
    754   1.3     oster 		}
    755   1.3     oster 		acount[node->antecedents[i]->nodeNum]++;
    756   1.3     oster 	}
    757   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    758   1.3     oster 		if (node->succedents[i]->visited == unvisited) {
    759   1.3     oster 			if (rf_ValidateBranch(node->succedents[i], scount,
    760   1.3     oster 				acount, nodes, unvisited)) {
    761   1.3     oster 				retcode = 1;
    762   1.3     oster 			}
    763   1.3     oster 		}
    764   1.3     oster 	}
    765   1.3     oster 	return (retcode);
    766   1.3     oster }
    767   1.3     oster 
    768  1.45     perry static void
    769  1.23     oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    770   1.3     oster {
    771   1.3     oster 	int     i;
    772   1.3     oster 
    773   1.3     oster 	RF_ASSERT(node->visited == unvisited);
    774   1.3     oster 	for (i = 0; i < node->numSuccedents; i++) {
    775   1.3     oster 		if (node->succedents[i] == NULL) {
    776   1.3     oster 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    777   1.3     oster 			RF_ASSERT(0);
    778   1.3     oster 		}
    779   1.3     oster 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    780   1.3     oster 	}
    781   1.3     oster }
    782   1.3     oster /* NOTE:  never call this on a big dag, because it is exponential
    783   1.3     oster  * in execution time
    784   1.3     oster  */
    785  1.45     perry static void
    786  1.23     oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    787   1.3     oster {
    788   1.3     oster 	int     i, unvisited;
    789   1.3     oster 
    790   1.3     oster 	unvisited = dag->succedents[0]->visited;
    791   1.3     oster 
    792   1.3     oster 	for (i = 0; i < dag->numSuccedents; i++) {
    793   1.3     oster 		if (dag->succedents[i] == NULL) {
    794   1.3     oster 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    795   1.3     oster 			RF_ASSERT(0);
    796   1.3     oster 		}
    797   1.3     oster 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    798   1.3     oster 	}
    799   1.3     oster }
    800   1.1     oster /* validate a DAG.  _at entry_ verify that:
    801   1.1     oster  *   -- numNodesCompleted is zero
    802   1.1     oster  *   -- node queue is null
    803   1.1     oster  *   -- dag status is rf_enable
    804   1.1     oster  *   -- next pointer is null on every node
    805   1.1     oster  *   -- all nodes have status wait
    806   1.1     oster  *   -- numAntDone is zero in all nodes
    807   1.1     oster  *   -- terminator node has zero successors
    808   1.1     oster  *   -- no other node besides terminator has zero successors
    809   1.1     oster  *   -- no successor or antecedent pointer in a node is NULL
    810   1.1     oster  *   -- number of times that each node appears as a successor of another node
    811   1.1     oster  *      is equal to the antecedent count on that node
    812   1.1     oster  *   -- number of times that each node appears as an antecedent of another node
    813   1.1     oster  *      is equal to the succedent count on that node
    814   1.1     oster  *   -- what else?
    815   1.1     oster  */
    816  1.45     perry int
    817  1.23     oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
    818   1.3     oster {
    819   1.3     oster 	int     i, nodecount;
    820   1.3     oster 	int    *scount, *acount;/* per-node successor and antecedent counts */
    821   1.3     oster 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    822   1.3     oster 	int     retcode = 0;
    823   1.3     oster 	int     unvisited;
    824   1.3     oster 	int     commitNodeCount = 0;
    825   1.3     oster 
    826   1.3     oster 	if (rf_validateVisitedDebug)
    827   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    828   1.3     oster 
    829   1.3     oster 	if (dag_h->numNodesCompleted != 0) {
    830   1.3     oster 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    831   1.3     oster 		retcode = 1;
    832   1.3     oster 		goto validate_dag_bad;
    833   1.3     oster 	}
    834   1.3     oster 	if (dag_h->status != rf_enable) {
    835   1.3     oster 		printf("INVALID DAG: not enabled\n");
    836   1.3     oster 		retcode = 1;
    837   1.3     oster 		goto validate_dag_bad;
    838   1.3     oster 	}
    839   1.3     oster 	if (dag_h->numCommits != 0) {
    840   1.3     oster 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    841   1.3     oster 		retcode = 1;
    842   1.3     oster 		goto validate_dag_bad;
    843   1.3     oster 	}
    844   1.3     oster 	if (dag_h->numSuccedents != 1) {
    845   1.3     oster 		/* currently, all dags must have only one succedent */
    846   1.3     oster 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    847   1.3     oster 		retcode = 1;
    848   1.3     oster 		goto validate_dag_bad;
    849   1.3     oster 	}
    850   1.3     oster 	nodecount = rf_AssignNodeNums(dag_h);
    851   1.3     oster 
    852   1.3     oster 	unvisited = dag_h->succedents[0]->visited;
    853   1.3     oster 
    854  1.55  christos 	scount = RF_Malloc(nodecount * sizeof(*scount));
    855  1.55  christos 	acount = RF_Malloc(nodecount * sizeof(*acount));
    856  1.55  christos 	nodes = RF_Malloc(nodecount * sizeof(*nodes));
    857   1.3     oster 	for (i = 0; i < dag_h->numSuccedents; i++) {
    858   1.3     oster 		if ((dag_h->succedents[i]->visited == unvisited)
    859   1.3     oster 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    860   1.3     oster 			acount, nodes, unvisited)) {
    861   1.3     oster 			retcode = 1;
    862   1.3     oster 		}
    863   1.3     oster 	}
    864   1.3     oster 	/* start at 1 to skip the header node */
    865   1.3     oster 	for (i = 1; i < nodecount; i++) {
    866   1.3     oster 		if (nodes[i]->commitNode)
    867   1.3     oster 			commitNodeCount++;
    868   1.3     oster 		if (nodes[i]->doFunc == NULL) {
    869   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    870   1.3     oster 			retcode = 1;
    871   1.3     oster 			goto validate_dag_out;
    872   1.3     oster 		}
    873   1.3     oster 		if (nodes[i]->undoFunc == NULL) {
    874   1.3     oster 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    875   1.3     oster 			retcode = 1;
    876   1.3     oster 			goto validate_dag_out;
    877   1.3     oster 		}
    878   1.3     oster 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    879   1.3     oster 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    880   1.3     oster 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    881   1.3     oster 			retcode = 1;
    882   1.3     oster 			goto validate_dag_out;
    883   1.3     oster 		}
    884   1.3     oster 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    885   1.3     oster 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    886   1.3     oster 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    887   1.3     oster 			retcode = 1;
    888   1.3     oster 			goto validate_dag_out;
    889   1.3     oster 		}
    890   1.3     oster 	}
    891   1.1     oster 
    892   1.3     oster 	if (dag_h->numCommitNodes != commitNodeCount) {
    893   1.3     oster 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    894   1.3     oster 		    dag_h->numCommitNodes, commitNodeCount);
    895   1.3     oster 		retcode = 1;
    896   1.3     oster 		goto validate_dag_out;
    897   1.3     oster 	}
    898   1.1     oster validate_dag_out:
    899   1.3     oster 	RF_Free(scount, nodecount * sizeof(int));
    900   1.3     oster 	RF_Free(acount, nodecount * sizeof(int));
    901   1.3     oster 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    902   1.3     oster 	if (retcode)
    903   1.3     oster 		rf_PrintDAGList(dag_h);
    904   1.3     oster 
    905   1.3     oster 	if (rf_validateVisitedDebug)
    906   1.3     oster 		rf_ValidateVisitedBits(dag_h);
    907   1.3     oster 
    908   1.3     oster 	return (retcode);
    909   1.1     oster 
    910   1.1     oster validate_dag_bad:
    911   1.3     oster 	rf_PrintDAGList(dag_h);
    912   1.3     oster 	return (retcode);
    913   1.1     oster }
    914   1.1     oster 
    915  1.13     oster #endif /* RF_DEBUG_VALIDATE_DAG */
    916   1.1     oster 
    917   1.1     oster /******************************************************************************
    918   1.1     oster  *
    919   1.1     oster  * misc construction routines
    920   1.1     oster  *
    921   1.1     oster  *****************************************************************************/
    922   1.1     oster 
    923  1.45     perry void
    924  1.23     oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    925   1.3     oster {
    926   1.3     oster 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    927  1.21     oster 	int     fcol = raidPtr->reconControl->fcol;
    928  1.21     oster 	int     scol = raidPtr->reconControl->spareCol;
    929   1.3     oster 	RF_PhysDiskAddr_t *pda;
    930   1.3     oster 
    931  1.21     oster 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    932   1.3     oster 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    933   1.3     oster 		if (pda->col == fcol) {
    934  1.31     oster #if RF_DEBUG_DAG
    935   1.3     oster 			if (rf_dagDebug) {
    936  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    937   1.3     oster 					pda->startSector)) {
    938   1.3     oster 					RF_PANIC();
    939   1.3     oster 				}
    940   1.3     oster 			}
    941  1.31     oster #endif
    942   1.3     oster 			/* printf("Remapped data for large write\n"); */
    943   1.3     oster 			if (ds) {
    944   1.3     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    945  1.21     oster 				    &pda->col, &pda->startSector, RF_REMAP);
    946   1.3     oster 			} else {
    947   1.3     oster 				pda->col = scol;
    948   1.3     oster 			}
    949   1.3     oster 		}
    950   1.3     oster 	}
    951   1.3     oster 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    952   1.3     oster 		if (pda->col == fcol) {
    953  1.31     oster #if RF_DEBUG_DAG
    954   1.3     oster 			if (rf_dagDebug) {
    955  1.21     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    956   1.3     oster 					RF_PANIC();
    957   1.3     oster 				}
    958   1.3     oster 			}
    959  1.31     oster #endif
    960   1.3     oster 		}
    961   1.3     oster 		if (ds) {
    962  1.21     oster 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    963   1.3     oster 		} else {
    964   1.3     oster 			pda->col = scol;
    965   1.3     oster 		}
    966   1.3     oster 	}
    967   1.1     oster }
    968   1.1     oster 
    969   1.1     oster 
    970   1.1     oster /* this routine allocates read buffers and generates stripe maps for the
    971   1.1     oster  * regions of the array from the start of the stripe to the start of the
    972   1.1     oster  * access, and from the end of the access to the end of the stripe.  It also
    973   1.1     oster  * computes and returns the number of DAG nodes needed to read all this data.
    974   1.1     oster  * Note that this routine does the wrong thing if the access is fully
    975   1.1     oster  * contained within one stripe unit, so we RF_ASSERT against this case at the
    976   1.1     oster  * start.
    977  1.45     perry  *
    978  1.23     oster  * layoutPtr - in: layout information
    979  1.23     oster  * asmap     - in: access stripe map
    980  1.23     oster  * dag_h     - in: header of the dag to create
    981  1.23     oster  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    982  1.23     oster  * nRodNodes - out: num nodes to be generated to read unaccessed data
    983  1.23     oster  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    984   1.1     oster  */
    985  1.45     perry void
    986  1.23     oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    987  1.23     oster 				RF_RaidLayout_t *layoutPtr,
    988  1.23     oster 				RF_AccessStripeMap_t *asmap,
    989  1.23     oster 				RF_DagHeader_t *dag_h,
    990  1.23     oster 				RF_AccessStripeMapHeader_t **new_asm_h,
    991  1.45     perry 				int *nRodNodes,
    992  1.23     oster 				char **sosBuffer, char **eosBuffer,
    993  1.50  christos 				RF_AllocListElem_t *allocList)
    994   1.3     oster {
    995   1.3     oster 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    996   1.3     oster 	RF_SectorNum_t sosNumSector, eosNumSector;
    997   1.3     oster 
    998   1.3     oster 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    999   1.3     oster 	/* generate an access map for the region of the array from start of
   1000   1.3     oster 	 * stripe to start of access */
   1001   1.3     oster 	new_asm_h[0] = new_asm_h[1] = NULL;
   1002   1.3     oster 	*nRodNodes = 0;
   1003   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
   1004   1.3     oster 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1005   1.3     oster 		sosNumSector = asmap->raidAddress - sosRaidAddress;
   1006  1.44     oster 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
   1007   1.3     oster 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
   1008   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1009   1.3     oster 		dag_h->asmList = new_asm_h[0];
   1010   1.3     oster 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1011   1.3     oster 
   1012   1.3     oster 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1013   1.3     oster 		/* we're totally within one stripe here */
   1014   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1015   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1016   1.3     oster 	}
   1017   1.3     oster 	/* generate an access map for the region of the array from end of
   1018   1.3     oster 	 * access to end of stripe */
   1019   1.3     oster 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1020   1.3     oster 		eosRaidAddress = asmap->endRaidAddress;
   1021   1.3     oster 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1022  1.44     oster 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1023   1.3     oster 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1024   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1025   1.3     oster 		dag_h->asmList = new_asm_h[1];
   1026   1.3     oster 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1027   1.3     oster 
   1028   1.3     oster 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1029   1.3     oster 		/* we're totally within one stripe here */
   1030   1.3     oster 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1031   1.3     oster 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1032   1.3     oster 	}
   1033   1.1     oster }
   1034   1.1     oster 
   1035   1.1     oster 
   1036   1.1     oster 
   1037   1.1     oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1038  1.45     perry int
   1039  1.45     perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1040  1.23     oster 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1041   1.3     oster {
   1042   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1043   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1044   1.3     oster 	/* use -1 to be sure we stay within SU */
   1045   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1046   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1047   1.3     oster 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1048   1.1     oster }
   1049   1.1     oster 
   1050   1.1     oster 
   1051   1.1     oster /* GenerateFailedAccessASMs
   1052   1.1     oster  *
   1053   1.1     oster  * this routine figures out what portion of the stripe needs to be read
   1054   1.1     oster  * to effect the degraded read or write operation.  It's primary function
   1055   1.1     oster  * is to identify everything required to recover the data, and then
   1056   1.1     oster  * eliminate anything that is already being accessed by the user.
   1057   1.1     oster  *
   1058   1.1     oster  * The main result is two new ASMs, one for the region from the start of the
   1059   1.1     oster  * stripe to the start of the access, and one for the region from the end of
   1060   1.1     oster  * the access to the end of the stripe.  These ASMs describe everything that
   1061   1.1     oster  * needs to be read to effect the degraded access.  Other results are:
   1062   1.1     oster  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1063   1.1     oster  *                recover the lost data,
   1064   1.1     oster  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1065   1.1     oster  *                at entry, not allocated.
   1066   1.1     oster  *    overlappingPDAs --
   1067   1.1     oster  *                describes which of the non-failed PDAs in the user access
   1068   1.1     oster  *                overlap data that needs to be read to effect recovery.
   1069   1.1     oster  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1070   1.1     oster  *                PDA, the ith pda in the input asm overlaps data that needs
   1071   1.1     oster  *                to be read for recovery.
   1072   1.1     oster  */
   1073   1.1     oster  /* in: asm - ASM for the actual access, one stripe only */
   1074  1.10       wiz  /* in: failedPDA - which component of the access has failed */
   1075   1.1     oster  /* in: dag_h - header of the DAG we're going to create */
   1076   1.1     oster  /* out: new_asm_h - the two new ASMs */
   1077   1.1     oster  /* out: nXorBufs - the total number of xor bufs required */
   1078   1.1     oster  /* out: rpBufPtr - a buffer for the parity read */
   1079  1.45     perry void
   1080  1.23     oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1081  1.23     oster 			    RF_PhysDiskAddr_t *failedPDA,
   1082  1.23     oster 			    RF_DagHeader_t *dag_h,
   1083  1.23     oster 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1084  1.23     oster 			    int *nXorBufs, char **rpBufPtr,
   1085  1.23     oster 			    char *overlappingPDAs,
   1086  1.50  christos 			    RF_AllocListElem_t *allocList)
   1087   1.3     oster {
   1088   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1089   1.3     oster 
   1090   1.3     oster 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1091   1.3     oster 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1092   1.3     oster 	RF_PhysDiskAddr_t *pda;
   1093   1.3     oster 	int     foundit, i;
   1094   1.3     oster 
   1095   1.3     oster 	foundit = 0;
   1096   1.3     oster 	/* first compute the following raid addresses: start of stripe,
   1097   1.3     oster 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1098   1.3     oster 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1099   1.3     oster 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1100   1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1101   1.3     oster 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1102   1.3     oster 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1103   1.3     oster 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1104   1.3     oster 
   1105   1.3     oster 	/* now generate access stripe maps for each of the above regions of
   1106   1.3     oster 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1107   1.3     oster 
   1108   1.3     oster 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1109   1.3     oster 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1110   1.3     oster 
   1111   1.3     oster 	/* walk through the PDAs and range-restrict each SU to the region of
   1112   1.3     oster 	 * the SU touched on the failed PDA.  also compute total data buffer
   1113   1.3     oster 	 * space requirements in this step.  Ignore the parity for now. */
   1114  1.35     oster 	/* Also count nodes to find out how many bufs need to be xored together */
   1115  1.35     oster 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1116  1.35     oster 				 * case, 1 is for failed data */
   1117   1.3     oster 
   1118   1.3     oster 	if (new_asm_h[0]) {
   1119   1.3     oster 		new_asm_h[0]->next = dag_h->asmList;
   1120   1.3     oster 		dag_h->asmList = new_asm_h[0];
   1121   1.3     oster 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1122   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1123  1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1124   1.3     oster 		}
   1125  1.35     oster 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1126   1.3     oster 	}
   1127   1.3     oster 	if (new_asm_h[1]) {
   1128   1.3     oster 		new_asm_h[1]->next = dag_h->asmList;
   1129   1.3     oster 		dag_h->asmList = new_asm_h[1];
   1130   1.3     oster 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1131   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1132  1.44     oster 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1133   1.3     oster 		}
   1134   1.3     oster 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1135   1.3     oster 	}
   1136  1.45     perry 
   1137  1.35     oster 	/* allocate a buffer for parity */
   1138  1.45     perry 	if (rpBufPtr)
   1139  1.44     oster 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1140   1.3     oster 
   1141   1.3     oster 	/* the last step is to figure out how many more distinct buffers need
   1142   1.3     oster 	 * to get xor'd to produce the missing unit.  there's one for each
   1143   1.3     oster 	 * user-data read node that overlaps the portion of the failed unit
   1144   1.3     oster 	 * being accessed */
   1145   1.3     oster 
   1146   1.3     oster 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1147   1.3     oster 		if (pda == failedPDA) {
   1148   1.3     oster 			i--;
   1149   1.3     oster 			foundit = 1;
   1150   1.3     oster 			continue;
   1151   1.3     oster 		}
   1152   1.3     oster 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1153   1.3     oster 			overlappingPDAs[i] = 1;
   1154   1.3     oster 			(*nXorBufs)++;
   1155   1.3     oster 		}
   1156   1.3     oster 	}
   1157   1.3     oster 	if (!foundit) {
   1158   1.3     oster 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1159   1.3     oster 		RF_ASSERT(0);
   1160   1.3     oster 	}
   1161  1.31     oster #if RF_DEBUG_DAG
   1162   1.3     oster 	if (rf_degDagDebug) {
   1163   1.3     oster 		if (new_asm_h[0]) {
   1164   1.3     oster 			printf("First asm:\n");
   1165   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1166   1.3     oster 		}
   1167   1.3     oster 		if (new_asm_h[1]) {
   1168   1.3     oster 			printf("Second asm:\n");
   1169   1.3     oster 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1170   1.3     oster 		}
   1171   1.3     oster 	}
   1172  1.31     oster #endif
   1173   1.1     oster }
   1174   1.1     oster 
   1175   1.1     oster 
   1176   1.1     oster /* adjusts the offset and number of sectors in the destination pda so that
   1177   1.1     oster  * it covers at most the region of the SU covered by the source PDA.  This
   1178   1.1     oster  * is exclusively a restriction:  the number of sectors indicated by the
   1179   1.1     oster  * target PDA can only shrink.
   1180   1.1     oster  *
   1181   1.1     oster  * For example:  s = sectors within SU indicated by source PDA
   1182   1.1     oster  *               d = sectors within SU indicated by dest PDA
   1183   1.1     oster  *               r = results, stored in dest PDA
   1184   1.1     oster  *
   1185   1.1     oster  * |--------------- one stripe unit ---------------------|
   1186   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1187   1.1     oster  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1188   1.1     oster  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1189   1.1     oster  *
   1190   1.1     oster  * Another example:
   1191   1.1     oster  *
   1192   1.1     oster  * |--------------- one stripe unit ---------------------|
   1193   1.1     oster  * |           sssssssssssssssssssssssssssssssss         |
   1194   1.1     oster  * |    ddddddddddddddddddddddd                          |
   1195   1.1     oster  * |           rrrrrrrrrrrrrrrr                          |
   1196   1.1     oster  *
   1197   1.1     oster  */
   1198  1.45     perry void
   1199  1.23     oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1200  1.23     oster 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1201   1.3     oster {
   1202   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1203   1.3     oster 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1204   1.3     oster 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1205   1.3     oster 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1206   1.3     oster 													 * stay within SU */
   1207   1.3     oster 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1208   1.3     oster 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1209   1.3     oster 
   1210   1.3     oster 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1211   1.3     oster 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1212   1.3     oster 
   1213   1.3     oster 	if (dobuffer)
   1214  1.51  christos 		dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
   1215   1.3     oster 	if (doraidaddr) {
   1216   1.3     oster 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1217   1.3     oster 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1218   1.3     oster 	}
   1219   1.1     oster }
   1220  1.11     oster 
   1221  1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1222  1.11     oster 
   1223   1.1     oster /*
   1224   1.1     oster  * Want the highest of these primes to be the largest one
   1225   1.1     oster  * less than the max expected number of columns (won't hurt
   1226   1.1     oster  * to be too small or too large, but won't be optimal, either)
   1227   1.1     oster  * --jimz
   1228   1.1     oster  */
   1229   1.1     oster #define NLOWPRIMES 8
   1230   1.3     oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1231   1.1     oster /*****************************************************************************
   1232   1.1     oster  * compute the workload shift factor.  (chained declustering)
   1233   1.1     oster  *
   1234   1.1     oster  * return nonzero if access should shift to secondary, otherwise,
   1235   1.1     oster  * access is to primary
   1236   1.1     oster  *****************************************************************************/
   1237  1.45     perry int
   1238  1.23     oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1239   1.3     oster {
   1240   1.3     oster 	/*
   1241   1.3     oster          * variables:
   1242   1.3     oster          *  d   = column of disk containing primary
   1243   1.3     oster          *  f   = column of failed disk
   1244   1.3     oster          *  n   = number of disks in array
   1245   1.3     oster          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1246   1.3     oster          *  v   = numerator of redirection ratio
   1247   1.3     oster          *  k   = denominator of redirection ratio
   1248   1.3     oster          */
   1249  1.21     oster 	RF_RowCol_t d, f, sd, n;
   1250   1.3     oster 	int     k, v, ret, i;
   1251   1.3     oster 
   1252   1.3     oster 	n = raidPtr->numCol;
   1253   1.3     oster 
   1254   1.3     oster 	/* assign column of primary copy to d */
   1255   1.3     oster 	d = pda->col;
   1256   1.3     oster 
   1257   1.3     oster 	/* assign column of dead disk to f */
   1258  1.54     joerg 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
   1259  1.54     joerg 		continue;
   1260   1.3     oster 
   1261   1.3     oster 	RF_ASSERT(f < n);
   1262   1.3     oster 	RF_ASSERT(f != d);
   1263   1.3     oster 
   1264   1.3     oster 	sd = (f > d) ? (n + d - f) : (d - f);
   1265   1.3     oster 	RF_ASSERT(sd < n);
   1266   1.3     oster 
   1267   1.3     oster 	/*
   1268   1.3     oster          * v of every k accesses should be redirected
   1269   1.3     oster          *
   1270   1.3     oster          * v/k := (n-1-sd)/(n-1)
   1271   1.3     oster          */
   1272   1.3     oster 	v = (n - 1 - sd);
   1273   1.3     oster 	k = (n - 1);
   1274   1.1     oster 
   1275   1.1     oster #if 1
   1276   1.3     oster 	/*
   1277   1.3     oster          * XXX
   1278   1.3     oster          * Is this worth it?
   1279   1.3     oster          *
   1280   1.3     oster          * Now reduce the fraction, by repeatedly factoring
   1281   1.3     oster          * out primes (just like they teach in elementary school!)
   1282   1.3     oster          */
   1283   1.3     oster 	for (i = 0; i < NLOWPRIMES; i++) {
   1284   1.3     oster 		if (lowprimes[i] > v)
   1285   1.3     oster 			break;
   1286   1.3     oster 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1287   1.3     oster 			v /= lowprimes[i];
   1288   1.3     oster 			k /= lowprimes[i];
   1289   1.3     oster 		}
   1290   1.3     oster 	}
   1291   1.1     oster #endif
   1292   1.1     oster 
   1293  1.21     oster 	raidPtr->hist_diskreq[d]++;
   1294  1.21     oster 	if (raidPtr->hist_diskreq[d] > v) {
   1295   1.3     oster 		ret = 0;	/* do not redirect */
   1296   1.3     oster 	} else {
   1297   1.3     oster 		ret = 1;	/* redirect */
   1298   1.3     oster 	}
   1299   1.1     oster 
   1300   1.1     oster #if 0
   1301   1.3     oster 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1302  1.21     oster 	    raidPtr->hist_diskreq[d]);
   1303   1.1     oster #endif
   1304   1.1     oster 
   1305  1.21     oster 	if (raidPtr->hist_diskreq[d] >= k) {
   1306   1.3     oster 		/* reset counter */
   1307  1.21     oster 		raidPtr->hist_diskreq[d] = 0;
   1308   1.3     oster 	}
   1309   1.3     oster 	return (ret);
   1310   1.1     oster }
   1311  1.11     oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1312  1.11     oster 
   1313   1.1     oster /*
   1314   1.1     oster  * Disk selection routines
   1315   1.1     oster  */
   1316   1.1     oster 
   1317   1.1     oster /*
   1318   1.1     oster  * Selects the disk with the shortest queue from a mirror pair.
   1319   1.1     oster  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1320   1.1     oster  * disk are counted as members of the "queue"
   1321   1.1     oster  */
   1322  1.45     perry void
   1323   1.3     oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1324   1.1     oster {
   1325   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1326  1.21     oster 	RF_RowCol_t colData, colMirror;
   1327   1.3     oster 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1328   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1329   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1330   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1331  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1332  1.21     oster 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1333   1.3     oster 
   1334   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1335   1.3     oster 	colData = data_pda->col;
   1336   1.3     oster 	colMirror = mirror_pda->col;
   1337  1.21     oster 	dataQueue = &(dqs[colData]);
   1338  1.21     oster 	mirrorQueue = &(dqs[colMirror]);
   1339   1.1     oster 
   1340   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1341   1.3     oster 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1342   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1343   1.3     oster 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1344   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1345   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1346   1.3     oster 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1347   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1348   1.3     oster 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1349   1.1     oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1350   1.3     oster 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1351   1.3     oster #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1352   1.1     oster 
   1353   1.3     oster 	usemirror = 0;
   1354  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1355   1.3     oster 		usemirror = 0;
   1356   1.3     oster 	} else
   1357  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1358   1.3     oster 			usemirror = 1;
   1359   1.3     oster 		} else
   1360   1.5     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1361   1.5     oster 				/* Trust only the main disk */
   1362   1.3     oster 				usemirror = 0;
   1363   1.3     oster 			} else
   1364   1.5     oster 				if (dataQueueLength < mirrorQueueLength) {
   1365   1.5     oster 					usemirror = 0;
   1366   1.5     oster 				} else
   1367   1.5     oster 					if (mirrorQueueLength < dataQueueLength) {
   1368   1.5     oster 						usemirror = 1;
   1369   1.3     oster 					} else {
   1370   1.5     oster 						/* queues are equal length. attempt
   1371   1.5     oster 						 * cleverness. */
   1372   1.5     oster 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1373   1.5     oster 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1374   1.5     oster 							usemirror = 0;
   1375   1.5     oster 						} else {
   1376   1.5     oster 							usemirror = 1;
   1377   1.5     oster 						}
   1378   1.3     oster 					}
   1379   1.3     oster 
   1380   1.3     oster 	if (usemirror) {
   1381   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1382   1.3     oster 		tmp_pda = data_pda;
   1383   1.3     oster 		node->params[0].p = mirror_pda;
   1384   1.3     oster 		node->params[4].p = tmp_pda;
   1385   1.3     oster 	} else {
   1386   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1387   1.3     oster 	}
   1388   1.3     oster 	/* printf("dataQueueLength %d, mirrorQueueLength
   1389   1.3     oster 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1390   1.1     oster }
   1391  1.19     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1392   1.1     oster /*
   1393   1.1     oster  * Do simple partitioning. This assumes that
   1394   1.1     oster  * the data and parity disks are laid out identically.
   1395   1.1     oster  */
   1396  1.45     perry void
   1397   1.3     oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1398   1.1     oster {
   1399   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1400  1.21     oster 	RF_RowCol_t colData, colMirror;
   1401   1.3     oster 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1402   1.3     oster 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1403   1.3     oster 	RF_PhysDiskAddr_t *tmp_pda;
   1404  1.21     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1405   1.3     oster 	int     usemirror;
   1406   1.3     oster 
   1407   1.3     oster 	/* return the [row col] of the disk with the shortest queue */
   1408   1.3     oster 	colData = data_pda->col;
   1409   1.3     oster 	colMirror = mirror_pda->col;
   1410   1.3     oster 
   1411   1.3     oster 	usemirror = 0;
   1412  1.21     oster 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1413   1.3     oster 		usemirror = 0;
   1414   1.3     oster 	} else
   1415  1.21     oster 		if (RF_DEAD_DISK(disks[colData].status)) {
   1416   1.3     oster 			usemirror = 1;
   1417  1.45     perry 		} else
   1418   1.6     oster 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1419   1.6     oster 				/* Trust only the main disk */
   1420   1.3     oster 				usemirror = 0;
   1421   1.6     oster 			} else
   1422  1.45     perry 				if (data_pda->startSector <
   1423  1.21     oster 				    (disks[colData].numBlocks / 2)) {
   1424   1.6     oster 					usemirror = 0;
   1425   1.6     oster 				} else {
   1426   1.6     oster 					usemirror = 1;
   1427   1.6     oster 				}
   1428   1.3     oster 
   1429   1.3     oster 	if (usemirror) {
   1430   1.3     oster 		/* use mirror (parity) disk, swap params 0 & 4 */
   1431   1.3     oster 		tmp_pda = data_pda;
   1432   1.3     oster 		node->params[0].p = mirror_pda;
   1433   1.3     oster 		node->params[4].p = tmp_pda;
   1434   1.3     oster 	} else {
   1435   1.3     oster 		/* use data disk, leave param 0 unchanged */
   1436   1.3     oster 	}
   1437   1.1     oster }
   1438  1.19     oster #endif
   1439