rf_dagutils.c revision 1.56 1 1.56 christos /* $NetBSD: rf_dagutils.c,v 1.56 2019/02/10 17:13:33 christos Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_dagutils.c -- utility routines for manipulating dags
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.56 christos __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.56 2019/02/10 17:13:33 christos Exp $");
37 1.1 oster
38 1.8 oster #include <dev/raidframe/raidframevar.h>
39 1.8 oster
40 1.1 oster #include "rf_archs.h"
41 1.1 oster #include "rf_threadstuff.h"
42 1.1 oster #include "rf_raid.h"
43 1.1 oster #include "rf_dag.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_shutdown.h"
49 1.1 oster
50 1.1 oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 1.1 oster
52 1.20 jdolecek const RF_RedFuncs_t rf_xorFuncs = {
53 1.1 oster rf_RegularXorFunc, "Reg Xr",
54 1.32 oster rf_SimpleXorFunc, "Simple Xr"};
55 1.1 oster
56 1.20 jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 1.1 oster rf_RecoveryXorFunc, "Recovery Xr",
58 1.32 oster rf_RecoveryXorFunc, "Recovery Xr"};
59 1.1 oster
60 1.13 oster #if RF_DEBUG_VALIDATE_DAG
61 1.1 oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 1.1 oster static void rf_PrintDAG(RF_DagHeader_t *);
63 1.12 oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 1.12 oster RF_DagNode_t **, int);
65 1.1 oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 1.1 oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
68 1.1 oster
69 1.40 oster /* The maximum number of nodes in a DAG is bounded by
70 1.40 oster
71 1.45 perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 1.40 oster (1 * 2 * layoutPtr->numParityCol) + 3
73 1.40 oster
74 1.40 oster which is: 2*RF_MAXCOL+1*2+1*2*2+3
75 1.40 oster
76 1.40 oster For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 1.45 perry on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 1.45 perry would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 1.40 oster have a few kicking around.
80 1.40 oster */
81 1.40 oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 1.40 oster
83 1.40 oster
84 1.1 oster /******************************************************************************
85 1.1 oster *
86 1.1 oster * InitNode - initialize a dag node
87 1.1 oster *
88 1.1 oster * the size of the propList array is always the same as that of the
89 1.1 oster * successors array.
90 1.1 oster *
91 1.1 oster *****************************************************************************/
92 1.40 oster void
93 1.23 oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 1.23 oster int (*doFunc) (RF_DagNode_t *node),
95 1.23 oster int (*undoFunc) (RF_DagNode_t *node),
96 1.23 oster int (*wakeFunc) (RF_DagNode_t *node, int status),
97 1.23 oster int nSucc, int nAnte, int nParam, int nResult,
98 1.46 christos RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 1.3 oster {
100 1.3 oster void **ptrs;
101 1.3 oster int nptrs;
102 1.3 oster
103 1.3 oster if (nAnte > RF_MAX_ANTECEDENTS)
104 1.3 oster RF_PANIC();
105 1.3 oster node->status = initstatus;
106 1.3 oster node->commitNode = commit;
107 1.3 oster node->doFunc = doFunc;
108 1.3 oster node->undoFunc = undoFunc;
109 1.3 oster node->wakeFunc = wakeFunc;
110 1.3 oster node->numParams = nParam;
111 1.3 oster node->numResults = nResult;
112 1.3 oster node->numAntecedents = nAnte;
113 1.3 oster node->numAntDone = 0;
114 1.3 oster node->next = NULL;
115 1.45 perry /* node->list_next = NULL */ /* Don't touch this here!
116 1.45 perry It may already be
117 1.38 oster in use by the caller! */
118 1.3 oster node->numSuccedents = nSucc;
119 1.3 oster node->name = name;
120 1.3 oster node->dagHdr = hdr;
121 1.40 oster node->big_dag_ptrs = NULL;
122 1.40 oster node->big_dag_params = NULL;
123 1.3 oster node->visited = 0;
124 1.3 oster
125 1.3 oster /* allocate all the pointers with one call to malloc */
126 1.3 oster nptrs = nSucc + nAnte + nResult + nSucc;
127 1.3 oster
128 1.3 oster if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 1.3 oster /*
130 1.3 oster * The dag_ptrs field of the node is basically some scribble
131 1.3 oster * space to be used here. We could get rid of it, and always
132 1.3 oster * allocate the range of pointers, but that's expensive. So,
133 1.3 oster * we pick a "common case" size for the pointer cache. Hopefully,
134 1.3 oster * we'll find that:
135 1.3 oster * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 1.3 oster * only a little bit (least efficient case)
137 1.3 oster * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 1.3 oster * (wasted memory)
139 1.3 oster */
140 1.3 oster ptrs = (void **) node->dag_ptrs;
141 1.40 oster } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 1.40 oster node->big_dag_ptrs = rf_AllocDAGPCache();
143 1.40 oster ptrs = (void **) node->big_dag_ptrs;
144 1.3 oster } else {
145 1.55 christos ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
146 1.3 oster }
147 1.3 oster node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
148 1.3 oster node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
149 1.3 oster node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
150 1.3 oster node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
151 1.3 oster
152 1.3 oster if (nParam) {
153 1.3 oster if (nParam <= RF_DAG_PARAMCACHESIZE) {
154 1.3 oster node->params = (RF_DagParam_t *) node->dag_params;
155 1.40 oster } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
156 1.40 oster node->big_dag_params = rf_AllocDAGPCache();
157 1.40 oster node->params = node->big_dag_params;
158 1.3 oster } else {
159 1.55 christos node->params = RF_MallocAndAdd(
160 1.55 christos nParam * sizeof(*node->params), alist);
161 1.3 oster }
162 1.3 oster } else {
163 1.3 oster node->params = NULL;
164 1.3 oster }
165 1.1 oster }
166 1.1 oster
167 1.1 oster
168 1.1 oster
169 1.1 oster /******************************************************************************
170 1.1 oster *
171 1.1 oster * allocation and deallocation routines
172 1.1 oster *
173 1.1 oster *****************************************************************************/
174 1.1 oster
175 1.45 perry void
176 1.23 oster rf_FreeDAG(RF_DagHeader_t *dag_h)
177 1.3 oster {
178 1.3 oster RF_AccessStripeMapHeader_t *asmap, *t_asmap;
179 1.39 oster RF_PhysDiskAddr_t *pda;
180 1.38 oster RF_DagNode_t *tmpnode;
181 1.3 oster RF_DagHeader_t *nextDag;
182 1.3 oster
183 1.3 oster while (dag_h) {
184 1.3 oster nextDag = dag_h->next;
185 1.3 oster rf_FreeAllocList(dag_h->allocList);
186 1.3 oster for (asmap = dag_h->asmList; asmap;) {
187 1.3 oster t_asmap = asmap;
188 1.3 oster asmap = asmap->next;
189 1.3 oster rf_FreeAccessStripeMap(t_asmap);
190 1.3 oster }
191 1.39 oster while (dag_h->pda_cleanup_list) {
192 1.39 oster pda = dag_h->pda_cleanup_list;
193 1.39 oster dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
194 1.39 oster rf_FreePhysDiskAddr(pda);
195 1.39 oster }
196 1.39 oster while (dag_h->nodes) {
197 1.38 oster tmpnode = dag_h->nodes;
198 1.38 oster dag_h->nodes = dag_h->nodes->list_next;
199 1.38 oster rf_FreeDAGNode(tmpnode);
200 1.38 oster }
201 1.3 oster rf_FreeDAGHeader(dag_h);
202 1.3 oster dag_h = nextDag;
203 1.3 oster }
204 1.3 oster }
205 1.3 oster
206 1.1 oster #define RF_MAX_FREE_DAGH 128
207 1.30 oster #define RF_MIN_FREE_DAGH 32
208 1.1 oster
209 1.38 oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
210 1.38 oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
211 1.38 oster
212 1.25 oster #define RF_MAX_FREE_DAGLIST 128
213 1.30 oster #define RF_MIN_FREE_DAGLIST 32
214 1.25 oster
215 1.40 oster #define RF_MAX_FREE_DAGPCACHE 128
216 1.40 oster #define RF_MIN_FREE_DAGPCACHE 8
217 1.40 oster
218 1.27 oster #define RF_MAX_FREE_FUNCLIST 128
219 1.30 oster #define RF_MIN_FREE_FUNCLIST 32
220 1.25 oster
221 1.41 oster #define RF_MAX_FREE_BUFFERS 128
222 1.41 oster #define RF_MIN_FREE_BUFFERS 32
223 1.41 oster
224 1.1 oster static void rf_ShutdownDAGs(void *);
225 1.45 perry static void
226 1.50 christos rf_ShutdownDAGs(void *ignored)
227 1.1 oster {
228 1.36 oster pool_destroy(&rf_pools.dagh);
229 1.38 oster pool_destroy(&rf_pools.dagnode);
230 1.36 oster pool_destroy(&rf_pools.daglist);
231 1.40 oster pool_destroy(&rf_pools.dagpcache);
232 1.36 oster pool_destroy(&rf_pools.funclist);
233 1.1 oster }
234 1.1 oster
235 1.45 perry int
236 1.23 oster rf_ConfigureDAGs(RF_ShutdownList_t **listp)
237 1.1 oster {
238 1.1 oster
239 1.38 oster rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
240 1.38 oster "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
241 1.36 oster rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
242 1.36 oster "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
243 1.36 oster rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
244 1.36 oster "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
245 1.40 oster rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
246 1.40 oster "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
247 1.36 oster rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
248 1.36 oster "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
249 1.29 oster rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
250 1.29 oster
251 1.3 oster return (0);
252 1.1 oster }
253 1.1 oster
254 1.3 oster RF_DagHeader_t *
255 1.52 cegger rf_AllocDAGHeader(void)
256 1.1 oster {
257 1.56 christos return pool_get(&rf_pools.dagh, PR_WAITOK | PR_ZERO);
258 1.1 oster }
259 1.1 oster
260 1.45 perry void
261 1.3 oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
262 1.1 oster {
263 1.36 oster pool_put(&rf_pools.dagh, dh);
264 1.1 oster }
265 1.25 oster
266 1.38 oster RF_DagNode_t *
267 1.52 cegger rf_AllocDAGNode(void)
268 1.38 oster {
269 1.56 christos return pool_get(&rf_pools.dagnode, PR_WAITOK | PR_ZERO);
270 1.38 oster }
271 1.38 oster
272 1.38 oster void
273 1.38 oster rf_FreeDAGNode(RF_DagNode_t *node)
274 1.38 oster {
275 1.40 oster if (node->big_dag_ptrs) {
276 1.40 oster rf_FreeDAGPCache(node->big_dag_ptrs);
277 1.40 oster }
278 1.40 oster if (node->big_dag_params) {
279 1.40 oster rf_FreeDAGPCache(node->big_dag_params);
280 1.40 oster }
281 1.38 oster pool_put(&rf_pools.dagnode, node);
282 1.38 oster }
283 1.38 oster
284 1.25 oster RF_DagList_t *
285 1.52 cegger rf_AllocDAGList(void)
286 1.25 oster {
287 1.56 christos return pool_get(&rf_pools.daglist, PR_WAITOK | PR_ZERO);
288 1.25 oster }
289 1.25 oster
290 1.25 oster void
291 1.25 oster rf_FreeDAGList(RF_DagList_t *dagList)
292 1.25 oster {
293 1.36 oster pool_put(&rf_pools.daglist, dagList);
294 1.25 oster }
295 1.25 oster
296 1.40 oster void *
297 1.52 cegger rf_AllocDAGPCache(void)
298 1.40 oster {
299 1.56 christos return pool_get(&rf_pools.dagpcache, PR_WAITOK | PR_ZERO);
300 1.40 oster }
301 1.40 oster
302 1.40 oster void
303 1.40 oster rf_FreeDAGPCache(void *p)
304 1.40 oster {
305 1.40 oster pool_put(&rf_pools.dagpcache, p);
306 1.40 oster }
307 1.40 oster
308 1.27 oster RF_FuncList_t *
309 1.52 cegger rf_AllocFuncList(void)
310 1.27 oster {
311 1.56 christos return pool_get(&rf_pools.funclist, PR_WAITOK | PR_ZERO);
312 1.27 oster }
313 1.27 oster
314 1.27 oster void
315 1.27 oster rf_FreeFuncList(RF_FuncList_t *funcList)
316 1.27 oster {
317 1.36 oster pool_put(&rf_pools.funclist, funcList);
318 1.27 oster }
319 1.25 oster
320 1.44 oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
321 1.45 perry in an entire stripe.
322 1.44 oster */
323 1.44 oster
324 1.44 oster void *
325 1.49 christos rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
326 1.50 christos int size)
327 1.44 oster {
328 1.44 oster RF_VoidPointerListElem_t *vple;
329 1.44 oster void *p;
330 1.44 oster
331 1.45 perry RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
332 1.44 oster raidPtr->logBytesPerSector))));
333 1.44 oster
334 1.45 perry p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
335 1.45 perry raidPtr->logBytesPerSector),
336 1.44 oster M_RAIDFRAME, M_NOWAIT);
337 1.44 oster if (!p) {
338 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
339 1.44 oster if (raidPtr->stripebuf_count > 0) {
340 1.44 oster vple = raidPtr->stripebuf;
341 1.44 oster raidPtr->stripebuf = vple->next;
342 1.44 oster p = vple->p;
343 1.44 oster rf_FreeVPListElem(vple);
344 1.44 oster raidPtr->stripebuf_count--;
345 1.44 oster } else {
346 1.44 oster #ifdef DIAGNOSTIC
347 1.44 oster printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
348 1.44 oster #endif
349 1.44 oster }
350 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
351 1.44 oster if (!p) {
352 1.45 perry /* We didn't get a buffer... not much we can do other than wait,
353 1.44 oster and hope that someone frees up memory for us.. */
354 1.45 perry p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 1.44 oster raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
356 1.44 oster }
357 1.44 oster }
358 1.44 oster memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
359 1.44 oster
360 1.44 oster vple = rf_AllocVPListElem();
361 1.44 oster vple->p = p;
362 1.44 oster vple->next = dag_h->desc->stripebufs;
363 1.44 oster dag_h->desc->stripebufs = vple;
364 1.44 oster
365 1.44 oster return (p);
366 1.44 oster }
367 1.44 oster
368 1.25 oster
369 1.44 oster void
370 1.44 oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
371 1.44 oster {
372 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
373 1.44 oster if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
374 1.44 oster /* just tack it in */
375 1.44 oster vple->next = raidPtr->stripebuf;
376 1.44 oster raidPtr->stripebuf = vple;
377 1.44 oster raidPtr->stripebuf_count++;
378 1.44 oster } else {
379 1.44 oster free(vple->p, M_RAIDFRAME);
380 1.44 oster rf_FreeVPListElem(vple);
381 1.44 oster }
382 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
383 1.44 oster }
384 1.25 oster
385 1.42 oster /* allocates a buffer big enough to hold the data described by the
386 1.42 oster caller (ie. the data of the associated PDA). Glue this buffer
387 1.42 oster into our dag_h cleanup structure. */
388 1.42 oster
389 1.43 oster void *
390 1.44 oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
391 1.3 oster {
392 1.42 oster RF_VoidPointerListElem_t *vple;
393 1.42 oster void *p;
394 1.3 oster
395 1.42 oster p = rf_AllocIOBuffer(raidPtr, size);
396 1.42 oster vple = rf_AllocVPListElem();
397 1.42 oster vple->p = p;
398 1.44 oster vple->next = dag_h->desc->iobufs;
399 1.44 oster dag_h->desc->iobufs = vple;
400 1.42 oster
401 1.42 oster return (p);
402 1.1 oster }
403 1.41 oster
404 1.41 oster void *
405 1.50 christos rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
406 1.41 oster {
407 1.44 oster RF_VoidPointerListElem_t *vple;
408 1.41 oster void *p;
409 1.41 oster
410 1.45 perry RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
411 1.44 oster raidPtr->logBytesPerSector)));
412 1.41 oster
413 1.45 perry p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
414 1.45 perry raidPtr->logBytesPerSector,
415 1.41 oster M_RAIDFRAME, M_NOWAIT);
416 1.41 oster if (!p) {
417 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
418 1.41 oster if (raidPtr->iobuf_count > 0) {
419 1.44 oster vple = raidPtr->iobuf;
420 1.44 oster raidPtr->iobuf = vple->next;
421 1.44 oster p = vple->p;
422 1.44 oster rf_FreeVPListElem(vple);
423 1.41 oster raidPtr->iobuf_count--;
424 1.41 oster } else {
425 1.41 oster #ifdef DIAGNOSTIC
426 1.41 oster printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
427 1.41 oster #endif
428 1.41 oster }
429 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
430 1.41 oster if (!p) {
431 1.45 perry /* We didn't get a buffer... not much we can do other than wait,
432 1.41 oster and hope that someone frees up memory for us.. */
433 1.45 perry p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
434 1.45 perry raidPtr->logBytesPerSector,
435 1.41 oster M_RAIDFRAME, M_WAITOK);
436 1.41 oster }
437 1.41 oster }
438 1.44 oster memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
439 1.41 oster return (p);
440 1.41 oster }
441 1.41 oster
442 1.41 oster void
443 1.44 oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
444 1.41 oster {
445 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
446 1.41 oster if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
447 1.44 oster /* just tack it in */
448 1.44 oster vple->next = raidPtr->iobuf;
449 1.44 oster raidPtr->iobuf = vple;
450 1.41 oster raidPtr->iobuf_count++;
451 1.41 oster } else {
452 1.44 oster free(vple->p, M_RAIDFRAME);
453 1.44 oster rf_FreeVPListElem(vple);
454 1.41 oster }
455 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
456 1.41 oster }
457 1.41 oster
458 1.41 oster
459 1.41 oster
460 1.13 oster #if RF_DEBUG_VALIDATE_DAG
461 1.1 oster /******************************************************************************
462 1.1 oster *
463 1.1 oster * debug routines
464 1.1 oster *
465 1.1 oster *****************************************************************************/
466 1.1 oster
467 1.3 oster char *
468 1.23 oster rf_NodeStatusString(RF_DagNode_t *node)
469 1.1 oster {
470 1.3 oster switch (node->status) {
471 1.34 oster case rf_wait:
472 1.34 oster return ("wait");
473 1.3 oster case rf_fired:
474 1.3 oster return ("fired");
475 1.3 oster case rf_good:
476 1.3 oster return ("good");
477 1.3 oster case rf_bad:
478 1.3 oster return ("bad");
479 1.3 oster default:
480 1.3 oster return ("?");
481 1.3 oster }
482 1.3 oster }
483 1.1 oster
484 1.45 perry void
485 1.23 oster rf_PrintNodeInfoString(RF_DagNode_t *node)
486 1.3 oster {
487 1.3 oster RF_PhysDiskAddr_t *pda;
488 1.3 oster int (*df) (RF_DagNode_t *) = node->doFunc;
489 1.3 oster int i, lk, unlk;
490 1.3 oster void *bufPtr;
491 1.3 oster
492 1.3 oster if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
493 1.3 oster || (df == rf_DiskReadMirrorIdleFunc)
494 1.3 oster || (df == rf_DiskReadMirrorPartitionFunc)) {
495 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
496 1.3 oster bufPtr = (void *) node->params[1].p;
497 1.24 oster lk = 0;
498 1.24 oster unlk = 0;
499 1.3 oster RF_ASSERT(!(lk && unlk));
500 1.21 oster printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
501 1.3 oster (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
502 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
503 1.3 oster return;
504 1.3 oster }
505 1.3 oster if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
506 1.3 oster || (df == rf_RecoveryXorFunc)) {
507 1.3 oster printf("result buf 0x%lx\n", (long) node->results[0]);
508 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
509 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
510 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
511 1.21 oster printf(" buf 0x%lx c%d offs %ld nsect %d\n",
512 1.21 oster (long) bufPtr, pda->col,
513 1.3 oster (long) pda->startSector, (int) pda->numSector);
514 1.3 oster }
515 1.3 oster return;
516 1.3 oster }
517 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
518 1.3 oster if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
519 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
520 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
521 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
522 1.21 oster printf(" c%d offs %ld nsect %d buf 0x%lx\n",
523 1.21 oster pda->col, (long) pda->startSector,
524 1.3 oster (int) pda->numSector, (long) bufPtr);
525 1.3 oster }
526 1.3 oster return;
527 1.3 oster }
528 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
529 1.3 oster
530 1.3 oster if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
531 1.3 oster printf("\n");
532 1.3 oster return;
533 1.3 oster }
534 1.3 oster printf("?\n");
535 1.3 oster }
536 1.16 oster #ifdef DEBUG
537 1.45 perry static void
538 1.23 oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
539 1.3 oster {
540 1.3 oster char *anttype;
541 1.3 oster int i;
542 1.3 oster
543 1.3 oster node->visited = (unvisited) ? 0 : 1;
544 1.3 oster printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
545 1.3 oster node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
546 1.3 oster node->numSuccedents, node->numSuccFired, node->numSuccDone,
547 1.3 oster node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
548 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
549 1.3 oster printf("%d%s", node->succedents[i]->nodeNum,
550 1.3 oster ((i == node->numSuccedents - 1) ? "\0" : " "));
551 1.3 oster }
552 1.3 oster printf("} A{");
553 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
554 1.3 oster switch (node->antType[i]) {
555 1.3 oster case rf_trueData:
556 1.3 oster anttype = "T";
557 1.3 oster break;
558 1.3 oster case rf_antiData:
559 1.3 oster anttype = "A";
560 1.3 oster break;
561 1.3 oster case rf_outputData:
562 1.3 oster anttype = "O";
563 1.3 oster break;
564 1.3 oster case rf_control:
565 1.3 oster anttype = "C";
566 1.3 oster break;
567 1.3 oster default:
568 1.3 oster anttype = "?";
569 1.3 oster break;
570 1.3 oster }
571 1.3 oster printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
572 1.3 oster }
573 1.3 oster printf("}; ");
574 1.3 oster rf_PrintNodeInfoString(node);
575 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
576 1.3 oster if (node->succedents[i]->visited == unvisited)
577 1.3 oster rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
578 1.3 oster }
579 1.1 oster }
580 1.1 oster
581 1.45 perry static void
582 1.23 oster rf_PrintDAG(RF_DagHeader_t *dag_h)
583 1.3 oster {
584 1.3 oster int unvisited, i;
585 1.3 oster char *status;
586 1.3 oster
587 1.3 oster /* set dag status */
588 1.3 oster switch (dag_h->status) {
589 1.3 oster case rf_enable:
590 1.3 oster status = "enable";
591 1.3 oster break;
592 1.3 oster case rf_rollForward:
593 1.3 oster status = "rollForward";
594 1.3 oster break;
595 1.3 oster case rf_rollBackward:
596 1.3 oster status = "rollBackward";
597 1.3 oster break;
598 1.3 oster default:
599 1.3 oster status = "illegal!";
600 1.3 oster break;
601 1.3 oster }
602 1.3 oster /* find out if visited bits are currently set or clear */
603 1.3 oster unvisited = dag_h->succedents[0]->visited;
604 1.3 oster
605 1.3 oster printf("DAG type: %s\n", dag_h->creator);
606 1.3 oster printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
607 1.3 oster printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
608 1.3 oster status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
609 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
610 1.3 oster printf("%d%s", dag_h->succedents[i]->nodeNum,
611 1.3 oster ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
612 1.3 oster }
613 1.3 oster printf("};\n");
614 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
615 1.3 oster if (dag_h->succedents[i]->visited == unvisited)
616 1.3 oster rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
617 1.3 oster }
618 1.3 oster }
619 1.16 oster #endif
620 1.1 oster /* assigns node numbers */
621 1.45 perry int
622 1.3 oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
623 1.1 oster {
624 1.3 oster int unvisited, i, nnum;
625 1.3 oster RF_DagNode_t *node;
626 1.1 oster
627 1.3 oster nnum = 0;
628 1.3 oster unvisited = dag_h->succedents[0]->visited;
629 1.3 oster
630 1.3 oster dag_h->nodeNum = nnum++;
631 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
632 1.3 oster node = dag_h->succedents[i];
633 1.3 oster if (node->visited == unvisited) {
634 1.3 oster nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
635 1.3 oster }
636 1.3 oster }
637 1.3 oster return (nnum);
638 1.1 oster }
639 1.1 oster
640 1.45 perry int
641 1.23 oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
642 1.3 oster {
643 1.3 oster int i;
644 1.3 oster
645 1.3 oster node->visited = (unvisited) ? 0 : 1;
646 1.3 oster
647 1.3 oster node->nodeNum = num++;
648 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
649 1.3 oster if (node->succedents[i]->visited == unvisited) {
650 1.3 oster num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
651 1.3 oster }
652 1.3 oster }
653 1.3 oster return (num);
654 1.3 oster }
655 1.1 oster /* set the header pointers in each node to "newptr" */
656 1.45 perry void
657 1.23 oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
658 1.3 oster {
659 1.3 oster int i;
660 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++)
661 1.3 oster if (dag_h->succedents[i]->dagHdr != newptr)
662 1.3 oster rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
663 1.1 oster }
664 1.1 oster
665 1.45 perry void
666 1.23 oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
667 1.1 oster {
668 1.3 oster int i;
669 1.3 oster node->dagHdr = newptr;
670 1.3 oster for (i = 0; i < node->numSuccedents; i++)
671 1.3 oster if (node->succedents[i]->dagHdr != newptr)
672 1.3 oster rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
673 1.3 oster }
674 1.1 oster
675 1.1 oster
676 1.45 perry void
677 1.3 oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
678 1.3 oster {
679 1.3 oster int i = 0;
680 1.3 oster
681 1.3 oster for (; dag_h; dag_h = dag_h->next) {
682 1.3 oster rf_AssignNodeNums(dag_h);
683 1.3 oster printf("\n\nDAG %d IN LIST:\n", i++);
684 1.3 oster rf_PrintDAG(dag_h);
685 1.3 oster }
686 1.1 oster }
687 1.1 oster
688 1.45 perry static int
689 1.23 oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
690 1.23 oster RF_DagNode_t **nodes, int unvisited)
691 1.3 oster {
692 1.3 oster int i, retcode = 0;
693 1.3 oster
694 1.3 oster /* construct an array of node pointers indexed by node num */
695 1.3 oster node->visited = (unvisited) ? 0 : 1;
696 1.3 oster nodes[node->nodeNum] = node;
697 1.3 oster
698 1.3 oster if (node->next != NULL) {
699 1.3 oster printf("INVALID DAG: next pointer in node is not NULL\n");
700 1.3 oster retcode = 1;
701 1.3 oster }
702 1.3 oster if (node->status != rf_wait) {
703 1.3 oster printf("INVALID DAG: Node status is not wait\n");
704 1.3 oster retcode = 1;
705 1.3 oster }
706 1.3 oster if (node->numAntDone != 0) {
707 1.3 oster printf("INVALID DAG: numAntDone is not zero\n");
708 1.3 oster retcode = 1;
709 1.3 oster }
710 1.3 oster if (node->doFunc == rf_TerminateFunc) {
711 1.3 oster if (node->numSuccedents != 0) {
712 1.3 oster printf("INVALID DAG: Terminator node has succedents\n");
713 1.3 oster retcode = 1;
714 1.3 oster }
715 1.3 oster } else {
716 1.3 oster if (node->numSuccedents == 0) {
717 1.3 oster printf("INVALID DAG: Non-terminator node has no succedents\n");
718 1.3 oster retcode = 1;
719 1.3 oster }
720 1.3 oster }
721 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
722 1.3 oster if (!node->succedents[i]) {
723 1.3 oster printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
724 1.3 oster retcode = 1;
725 1.3 oster }
726 1.3 oster scount[node->succedents[i]->nodeNum]++;
727 1.3 oster }
728 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
729 1.3 oster if (!node->antecedents[i]) {
730 1.3 oster printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
731 1.3 oster retcode = 1;
732 1.3 oster }
733 1.3 oster acount[node->antecedents[i]->nodeNum]++;
734 1.3 oster }
735 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
736 1.3 oster if (node->succedents[i]->visited == unvisited) {
737 1.3 oster if (rf_ValidateBranch(node->succedents[i], scount,
738 1.3 oster acount, nodes, unvisited)) {
739 1.3 oster retcode = 1;
740 1.3 oster }
741 1.3 oster }
742 1.3 oster }
743 1.3 oster return (retcode);
744 1.3 oster }
745 1.3 oster
746 1.45 perry static void
747 1.23 oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
748 1.3 oster {
749 1.3 oster int i;
750 1.3 oster
751 1.3 oster RF_ASSERT(node->visited == unvisited);
752 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
753 1.3 oster if (node->succedents[i] == NULL) {
754 1.3 oster printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
755 1.3 oster RF_ASSERT(0);
756 1.3 oster }
757 1.3 oster rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
758 1.3 oster }
759 1.3 oster }
760 1.3 oster /* NOTE: never call this on a big dag, because it is exponential
761 1.3 oster * in execution time
762 1.3 oster */
763 1.45 perry static void
764 1.23 oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
765 1.3 oster {
766 1.3 oster int i, unvisited;
767 1.3 oster
768 1.3 oster unvisited = dag->succedents[0]->visited;
769 1.3 oster
770 1.3 oster for (i = 0; i < dag->numSuccedents; i++) {
771 1.3 oster if (dag->succedents[i] == NULL) {
772 1.3 oster printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
773 1.3 oster RF_ASSERT(0);
774 1.3 oster }
775 1.3 oster rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
776 1.3 oster }
777 1.3 oster }
778 1.1 oster /* validate a DAG. _at entry_ verify that:
779 1.1 oster * -- numNodesCompleted is zero
780 1.1 oster * -- node queue is null
781 1.1 oster * -- dag status is rf_enable
782 1.1 oster * -- next pointer is null on every node
783 1.1 oster * -- all nodes have status wait
784 1.1 oster * -- numAntDone is zero in all nodes
785 1.1 oster * -- terminator node has zero successors
786 1.1 oster * -- no other node besides terminator has zero successors
787 1.1 oster * -- no successor or antecedent pointer in a node is NULL
788 1.1 oster * -- number of times that each node appears as a successor of another node
789 1.1 oster * is equal to the antecedent count on that node
790 1.1 oster * -- number of times that each node appears as an antecedent of another node
791 1.1 oster * is equal to the succedent count on that node
792 1.1 oster * -- what else?
793 1.1 oster */
794 1.45 perry int
795 1.23 oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
796 1.3 oster {
797 1.3 oster int i, nodecount;
798 1.3 oster int *scount, *acount;/* per-node successor and antecedent counts */
799 1.3 oster RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
800 1.3 oster int retcode = 0;
801 1.3 oster int unvisited;
802 1.3 oster int commitNodeCount = 0;
803 1.3 oster
804 1.3 oster if (rf_validateVisitedDebug)
805 1.3 oster rf_ValidateVisitedBits(dag_h);
806 1.3 oster
807 1.3 oster if (dag_h->numNodesCompleted != 0) {
808 1.3 oster printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
809 1.3 oster retcode = 1;
810 1.3 oster goto validate_dag_bad;
811 1.3 oster }
812 1.3 oster if (dag_h->status != rf_enable) {
813 1.3 oster printf("INVALID DAG: not enabled\n");
814 1.3 oster retcode = 1;
815 1.3 oster goto validate_dag_bad;
816 1.3 oster }
817 1.3 oster if (dag_h->numCommits != 0) {
818 1.3 oster printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
819 1.3 oster retcode = 1;
820 1.3 oster goto validate_dag_bad;
821 1.3 oster }
822 1.3 oster if (dag_h->numSuccedents != 1) {
823 1.3 oster /* currently, all dags must have only one succedent */
824 1.3 oster printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
825 1.3 oster retcode = 1;
826 1.3 oster goto validate_dag_bad;
827 1.3 oster }
828 1.3 oster nodecount = rf_AssignNodeNums(dag_h);
829 1.3 oster
830 1.3 oster unvisited = dag_h->succedents[0]->visited;
831 1.3 oster
832 1.55 christos scount = RF_Malloc(nodecount * sizeof(*scount));
833 1.55 christos acount = RF_Malloc(nodecount * sizeof(*acount));
834 1.55 christos nodes = RF_Malloc(nodecount * sizeof(*nodes));
835 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
836 1.3 oster if ((dag_h->succedents[i]->visited == unvisited)
837 1.3 oster && rf_ValidateBranch(dag_h->succedents[i], scount,
838 1.3 oster acount, nodes, unvisited)) {
839 1.3 oster retcode = 1;
840 1.3 oster }
841 1.3 oster }
842 1.3 oster /* start at 1 to skip the header node */
843 1.3 oster for (i = 1; i < nodecount; i++) {
844 1.3 oster if (nodes[i]->commitNode)
845 1.3 oster commitNodeCount++;
846 1.3 oster if (nodes[i]->doFunc == NULL) {
847 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
848 1.3 oster retcode = 1;
849 1.3 oster goto validate_dag_out;
850 1.3 oster }
851 1.3 oster if (nodes[i]->undoFunc == NULL) {
852 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
853 1.3 oster retcode = 1;
854 1.3 oster goto validate_dag_out;
855 1.3 oster }
856 1.3 oster if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
857 1.3 oster printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
858 1.3 oster nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
859 1.3 oster retcode = 1;
860 1.3 oster goto validate_dag_out;
861 1.3 oster }
862 1.3 oster if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
863 1.3 oster printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
864 1.3 oster nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
865 1.3 oster retcode = 1;
866 1.3 oster goto validate_dag_out;
867 1.3 oster }
868 1.3 oster }
869 1.1 oster
870 1.3 oster if (dag_h->numCommitNodes != commitNodeCount) {
871 1.3 oster printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
872 1.3 oster dag_h->numCommitNodes, commitNodeCount);
873 1.3 oster retcode = 1;
874 1.3 oster goto validate_dag_out;
875 1.3 oster }
876 1.1 oster validate_dag_out:
877 1.3 oster RF_Free(scount, nodecount * sizeof(int));
878 1.3 oster RF_Free(acount, nodecount * sizeof(int));
879 1.3 oster RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
880 1.3 oster if (retcode)
881 1.3 oster rf_PrintDAGList(dag_h);
882 1.3 oster
883 1.3 oster if (rf_validateVisitedDebug)
884 1.3 oster rf_ValidateVisitedBits(dag_h);
885 1.3 oster
886 1.3 oster return (retcode);
887 1.1 oster
888 1.1 oster validate_dag_bad:
889 1.3 oster rf_PrintDAGList(dag_h);
890 1.3 oster return (retcode);
891 1.1 oster }
892 1.1 oster
893 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
894 1.1 oster
895 1.1 oster /******************************************************************************
896 1.1 oster *
897 1.1 oster * misc construction routines
898 1.1 oster *
899 1.1 oster *****************************************************************************/
900 1.1 oster
901 1.45 perry void
902 1.23 oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
903 1.3 oster {
904 1.3 oster int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
905 1.21 oster int fcol = raidPtr->reconControl->fcol;
906 1.21 oster int scol = raidPtr->reconControl->spareCol;
907 1.3 oster RF_PhysDiskAddr_t *pda;
908 1.3 oster
909 1.21 oster RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
910 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
911 1.3 oster if (pda->col == fcol) {
912 1.31 oster #if RF_DEBUG_DAG
913 1.3 oster if (rf_dagDebug) {
914 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
915 1.3 oster pda->startSector)) {
916 1.3 oster RF_PANIC();
917 1.3 oster }
918 1.3 oster }
919 1.31 oster #endif
920 1.3 oster /* printf("Remapped data for large write\n"); */
921 1.3 oster if (ds) {
922 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
923 1.21 oster &pda->col, &pda->startSector, RF_REMAP);
924 1.3 oster } else {
925 1.3 oster pda->col = scol;
926 1.3 oster }
927 1.3 oster }
928 1.3 oster }
929 1.3 oster for (pda = asmap->parityInfo; pda; pda = pda->next) {
930 1.3 oster if (pda->col == fcol) {
931 1.31 oster #if RF_DEBUG_DAG
932 1.3 oster if (rf_dagDebug) {
933 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
934 1.3 oster RF_PANIC();
935 1.3 oster }
936 1.3 oster }
937 1.31 oster #endif
938 1.3 oster }
939 1.3 oster if (ds) {
940 1.21 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
941 1.3 oster } else {
942 1.3 oster pda->col = scol;
943 1.3 oster }
944 1.3 oster }
945 1.1 oster }
946 1.1 oster
947 1.1 oster
948 1.1 oster /* this routine allocates read buffers and generates stripe maps for the
949 1.1 oster * regions of the array from the start of the stripe to the start of the
950 1.1 oster * access, and from the end of the access to the end of the stripe. It also
951 1.1 oster * computes and returns the number of DAG nodes needed to read all this data.
952 1.1 oster * Note that this routine does the wrong thing if the access is fully
953 1.1 oster * contained within one stripe unit, so we RF_ASSERT against this case at the
954 1.1 oster * start.
955 1.45 perry *
956 1.23 oster * layoutPtr - in: layout information
957 1.23 oster * asmap - in: access stripe map
958 1.23 oster * dag_h - in: header of the dag to create
959 1.23 oster * new_asm_h - in: ptr to array of 2 headers. to be filled in
960 1.23 oster * nRodNodes - out: num nodes to be generated to read unaccessed data
961 1.23 oster * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
962 1.1 oster */
963 1.45 perry void
964 1.23 oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
965 1.23 oster RF_RaidLayout_t *layoutPtr,
966 1.23 oster RF_AccessStripeMap_t *asmap,
967 1.23 oster RF_DagHeader_t *dag_h,
968 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
969 1.45 perry int *nRodNodes,
970 1.23 oster char **sosBuffer, char **eosBuffer,
971 1.50 christos RF_AllocListElem_t *allocList)
972 1.3 oster {
973 1.3 oster RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
974 1.3 oster RF_SectorNum_t sosNumSector, eosNumSector;
975 1.3 oster
976 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
977 1.3 oster /* generate an access map for the region of the array from start of
978 1.3 oster * stripe to start of access */
979 1.3 oster new_asm_h[0] = new_asm_h[1] = NULL;
980 1.3 oster *nRodNodes = 0;
981 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
982 1.3 oster sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
983 1.3 oster sosNumSector = asmap->raidAddress - sosRaidAddress;
984 1.44 oster *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
985 1.3 oster new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
986 1.3 oster new_asm_h[0]->next = dag_h->asmList;
987 1.3 oster dag_h->asmList = new_asm_h[0];
988 1.3 oster *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
989 1.3 oster
990 1.3 oster RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
991 1.3 oster /* we're totally within one stripe here */
992 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
993 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
994 1.3 oster }
995 1.3 oster /* generate an access map for the region of the array from end of
996 1.3 oster * access to end of stripe */
997 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
998 1.3 oster eosRaidAddress = asmap->endRaidAddress;
999 1.3 oster eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1000 1.44 oster *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1001 1.3 oster new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1002 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1003 1.3 oster dag_h->asmList = new_asm_h[1];
1004 1.3 oster *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1005 1.3 oster
1006 1.3 oster RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1007 1.3 oster /* we're totally within one stripe here */
1008 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1009 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1010 1.3 oster }
1011 1.1 oster }
1012 1.1 oster
1013 1.1 oster
1014 1.1 oster
1015 1.1 oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1016 1.45 perry int
1017 1.45 perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1018 1.23 oster RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1019 1.3 oster {
1020 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1021 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1022 1.3 oster /* use -1 to be sure we stay within SU */
1023 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1024 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1025 1.3 oster return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1026 1.1 oster }
1027 1.1 oster
1028 1.1 oster
1029 1.1 oster /* GenerateFailedAccessASMs
1030 1.1 oster *
1031 1.1 oster * this routine figures out what portion of the stripe needs to be read
1032 1.1 oster * to effect the degraded read or write operation. It's primary function
1033 1.1 oster * is to identify everything required to recover the data, and then
1034 1.1 oster * eliminate anything that is already being accessed by the user.
1035 1.1 oster *
1036 1.1 oster * The main result is two new ASMs, one for the region from the start of the
1037 1.1 oster * stripe to the start of the access, and one for the region from the end of
1038 1.1 oster * the access to the end of the stripe. These ASMs describe everything that
1039 1.1 oster * needs to be read to effect the degraded access. Other results are:
1040 1.1 oster * nXorBufs -- the total number of buffers that need to be XORed together to
1041 1.1 oster * recover the lost data,
1042 1.1 oster * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1043 1.1 oster * at entry, not allocated.
1044 1.1 oster * overlappingPDAs --
1045 1.1 oster * describes which of the non-failed PDAs in the user access
1046 1.1 oster * overlap data that needs to be read to effect recovery.
1047 1.1 oster * overlappingPDAs[i]==1 if and only if, neglecting the failed
1048 1.1 oster * PDA, the ith pda in the input asm overlaps data that needs
1049 1.1 oster * to be read for recovery.
1050 1.1 oster */
1051 1.1 oster /* in: asm - ASM for the actual access, one stripe only */
1052 1.10 wiz /* in: failedPDA - which component of the access has failed */
1053 1.1 oster /* in: dag_h - header of the DAG we're going to create */
1054 1.1 oster /* out: new_asm_h - the two new ASMs */
1055 1.1 oster /* out: nXorBufs - the total number of xor bufs required */
1056 1.1 oster /* out: rpBufPtr - a buffer for the parity read */
1057 1.45 perry void
1058 1.23 oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1059 1.23 oster RF_PhysDiskAddr_t *failedPDA,
1060 1.23 oster RF_DagHeader_t *dag_h,
1061 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
1062 1.23 oster int *nXorBufs, char **rpBufPtr,
1063 1.23 oster char *overlappingPDAs,
1064 1.50 christos RF_AllocListElem_t *allocList)
1065 1.3 oster {
1066 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1067 1.3 oster
1068 1.3 oster /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1069 1.3 oster RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1070 1.3 oster RF_PhysDiskAddr_t *pda;
1071 1.3 oster int foundit, i;
1072 1.3 oster
1073 1.3 oster foundit = 0;
1074 1.3 oster /* first compute the following raid addresses: start of stripe,
1075 1.3 oster * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1076 1.3 oster * MAX(end of access, end of failed SU), (eosStartAddr) end of
1077 1.3 oster * stripe (i.e. start of next stripe) (eosAddr) */
1078 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1079 1.3 oster sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1080 1.3 oster eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1081 1.3 oster eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1082 1.3 oster
1083 1.3 oster /* now generate access stripe maps for each of the above regions of
1084 1.3 oster * the stripe. Use a dummy (NULL) buf ptr for now */
1085 1.3 oster
1086 1.3 oster new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1087 1.3 oster new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1088 1.3 oster
1089 1.3 oster /* walk through the PDAs and range-restrict each SU to the region of
1090 1.3 oster * the SU touched on the failed PDA. also compute total data buffer
1091 1.3 oster * space requirements in this step. Ignore the parity for now. */
1092 1.35 oster /* Also count nodes to find out how many bufs need to be xored together */
1093 1.35 oster (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1094 1.35 oster * case, 1 is for failed data */
1095 1.3 oster
1096 1.3 oster if (new_asm_h[0]) {
1097 1.3 oster new_asm_h[0]->next = dag_h->asmList;
1098 1.3 oster dag_h->asmList = new_asm_h[0];
1099 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1100 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1101 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1102 1.3 oster }
1103 1.35 oster (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1104 1.3 oster }
1105 1.3 oster if (new_asm_h[1]) {
1106 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1107 1.3 oster dag_h->asmList = new_asm_h[1];
1108 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1109 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1110 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1111 1.3 oster }
1112 1.3 oster (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1113 1.3 oster }
1114 1.45 perry
1115 1.35 oster /* allocate a buffer for parity */
1116 1.45 perry if (rpBufPtr)
1117 1.44 oster *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1118 1.3 oster
1119 1.3 oster /* the last step is to figure out how many more distinct buffers need
1120 1.3 oster * to get xor'd to produce the missing unit. there's one for each
1121 1.3 oster * user-data read node that overlaps the portion of the failed unit
1122 1.3 oster * being accessed */
1123 1.3 oster
1124 1.3 oster for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1125 1.3 oster if (pda == failedPDA) {
1126 1.3 oster i--;
1127 1.3 oster foundit = 1;
1128 1.3 oster continue;
1129 1.3 oster }
1130 1.3 oster if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1131 1.3 oster overlappingPDAs[i] = 1;
1132 1.3 oster (*nXorBufs)++;
1133 1.3 oster }
1134 1.3 oster }
1135 1.3 oster if (!foundit) {
1136 1.3 oster RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1137 1.3 oster RF_ASSERT(0);
1138 1.3 oster }
1139 1.31 oster #if RF_DEBUG_DAG
1140 1.3 oster if (rf_degDagDebug) {
1141 1.3 oster if (new_asm_h[0]) {
1142 1.3 oster printf("First asm:\n");
1143 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1144 1.3 oster }
1145 1.3 oster if (new_asm_h[1]) {
1146 1.3 oster printf("Second asm:\n");
1147 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1148 1.3 oster }
1149 1.3 oster }
1150 1.31 oster #endif
1151 1.1 oster }
1152 1.1 oster
1153 1.1 oster
1154 1.1 oster /* adjusts the offset and number of sectors in the destination pda so that
1155 1.1 oster * it covers at most the region of the SU covered by the source PDA. This
1156 1.1 oster * is exclusively a restriction: the number of sectors indicated by the
1157 1.1 oster * target PDA can only shrink.
1158 1.1 oster *
1159 1.1 oster * For example: s = sectors within SU indicated by source PDA
1160 1.1 oster * d = sectors within SU indicated by dest PDA
1161 1.1 oster * r = results, stored in dest PDA
1162 1.1 oster *
1163 1.1 oster * |--------------- one stripe unit ---------------------|
1164 1.1 oster * | sssssssssssssssssssssssssssssssss |
1165 1.1 oster * | ddddddddddddddddddddddddddddddddddddddddddddd |
1166 1.1 oster * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1167 1.1 oster *
1168 1.1 oster * Another example:
1169 1.1 oster *
1170 1.1 oster * |--------------- one stripe unit ---------------------|
1171 1.1 oster * | sssssssssssssssssssssssssssssssss |
1172 1.1 oster * | ddddddddddddddddddddddd |
1173 1.1 oster * | rrrrrrrrrrrrrrrr |
1174 1.1 oster *
1175 1.1 oster */
1176 1.45 perry void
1177 1.23 oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1178 1.23 oster RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1179 1.3 oster {
1180 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1181 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1182 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1183 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1184 1.3 oster * stay within SU */
1185 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1186 1.3 oster RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1187 1.3 oster
1188 1.3 oster dest->startSector = subAddr + RF_MAX(soffs, doffs);
1189 1.3 oster dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1190 1.3 oster
1191 1.3 oster if (dobuffer)
1192 1.51 christos dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
1193 1.3 oster if (doraidaddr) {
1194 1.3 oster dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1195 1.3 oster rf_StripeUnitOffset(layoutPtr, dest->startSector);
1196 1.3 oster }
1197 1.1 oster }
1198 1.11 oster
1199 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1200 1.11 oster
1201 1.1 oster /*
1202 1.1 oster * Want the highest of these primes to be the largest one
1203 1.1 oster * less than the max expected number of columns (won't hurt
1204 1.1 oster * to be too small or too large, but won't be optimal, either)
1205 1.1 oster * --jimz
1206 1.1 oster */
1207 1.1 oster #define NLOWPRIMES 8
1208 1.3 oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1209 1.1 oster /*****************************************************************************
1210 1.1 oster * compute the workload shift factor. (chained declustering)
1211 1.1 oster *
1212 1.1 oster * return nonzero if access should shift to secondary, otherwise,
1213 1.1 oster * access is to primary
1214 1.1 oster *****************************************************************************/
1215 1.45 perry int
1216 1.23 oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1217 1.3 oster {
1218 1.3 oster /*
1219 1.3 oster * variables:
1220 1.3 oster * d = column of disk containing primary
1221 1.3 oster * f = column of failed disk
1222 1.3 oster * n = number of disks in array
1223 1.3 oster * sd = "shift distance" (number of columns that d is to the right of f)
1224 1.3 oster * v = numerator of redirection ratio
1225 1.3 oster * k = denominator of redirection ratio
1226 1.3 oster */
1227 1.21 oster RF_RowCol_t d, f, sd, n;
1228 1.3 oster int k, v, ret, i;
1229 1.3 oster
1230 1.3 oster n = raidPtr->numCol;
1231 1.3 oster
1232 1.3 oster /* assign column of primary copy to d */
1233 1.3 oster d = pda->col;
1234 1.3 oster
1235 1.3 oster /* assign column of dead disk to f */
1236 1.54 joerg for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
1237 1.54 joerg continue;
1238 1.3 oster
1239 1.3 oster RF_ASSERT(f < n);
1240 1.3 oster RF_ASSERT(f != d);
1241 1.3 oster
1242 1.3 oster sd = (f > d) ? (n + d - f) : (d - f);
1243 1.3 oster RF_ASSERT(sd < n);
1244 1.3 oster
1245 1.3 oster /*
1246 1.3 oster * v of every k accesses should be redirected
1247 1.3 oster *
1248 1.3 oster * v/k := (n-1-sd)/(n-1)
1249 1.3 oster */
1250 1.3 oster v = (n - 1 - sd);
1251 1.3 oster k = (n - 1);
1252 1.1 oster
1253 1.1 oster #if 1
1254 1.3 oster /*
1255 1.3 oster * XXX
1256 1.3 oster * Is this worth it?
1257 1.3 oster *
1258 1.3 oster * Now reduce the fraction, by repeatedly factoring
1259 1.3 oster * out primes (just like they teach in elementary school!)
1260 1.3 oster */
1261 1.3 oster for (i = 0; i < NLOWPRIMES; i++) {
1262 1.3 oster if (lowprimes[i] > v)
1263 1.3 oster break;
1264 1.3 oster while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1265 1.3 oster v /= lowprimes[i];
1266 1.3 oster k /= lowprimes[i];
1267 1.3 oster }
1268 1.3 oster }
1269 1.1 oster #endif
1270 1.1 oster
1271 1.21 oster raidPtr->hist_diskreq[d]++;
1272 1.21 oster if (raidPtr->hist_diskreq[d] > v) {
1273 1.3 oster ret = 0; /* do not redirect */
1274 1.3 oster } else {
1275 1.3 oster ret = 1; /* redirect */
1276 1.3 oster }
1277 1.1 oster
1278 1.1 oster #if 0
1279 1.3 oster printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1280 1.21 oster raidPtr->hist_diskreq[d]);
1281 1.1 oster #endif
1282 1.1 oster
1283 1.21 oster if (raidPtr->hist_diskreq[d] >= k) {
1284 1.3 oster /* reset counter */
1285 1.21 oster raidPtr->hist_diskreq[d] = 0;
1286 1.3 oster }
1287 1.3 oster return (ret);
1288 1.1 oster }
1289 1.11 oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1290 1.11 oster
1291 1.1 oster /*
1292 1.1 oster * Disk selection routines
1293 1.1 oster */
1294 1.1 oster
1295 1.1 oster /*
1296 1.1 oster * Selects the disk with the shortest queue from a mirror pair.
1297 1.1 oster * Both the disk I/Os queued in RAIDframe as well as those at the physical
1298 1.1 oster * disk are counted as members of the "queue"
1299 1.1 oster */
1300 1.45 perry void
1301 1.3 oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1302 1.1 oster {
1303 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1304 1.21 oster RF_RowCol_t colData, colMirror;
1305 1.3 oster int dataQueueLength, mirrorQueueLength, usemirror;
1306 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1307 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1308 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1309 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1310 1.21 oster RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1311 1.3 oster
1312 1.3 oster /* return the [row col] of the disk with the shortest queue */
1313 1.3 oster colData = data_pda->col;
1314 1.3 oster colMirror = mirror_pda->col;
1315 1.21 oster dataQueue = &(dqs[colData]);
1316 1.21 oster mirrorQueue = &(dqs[colMirror]);
1317 1.1 oster
1318 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1319 1.3 oster RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1320 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1321 1.3 oster dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1322 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1323 1.3 oster RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1324 1.3 oster RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1325 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1326 1.3 oster mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1327 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1328 1.3 oster RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1329 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1330 1.1 oster
1331 1.3 oster usemirror = 0;
1332 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1333 1.3 oster usemirror = 0;
1334 1.3 oster } else
1335 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1336 1.3 oster usemirror = 1;
1337 1.3 oster } else
1338 1.5 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1339 1.5 oster /* Trust only the main disk */
1340 1.3 oster usemirror = 0;
1341 1.3 oster } else
1342 1.5 oster if (dataQueueLength < mirrorQueueLength) {
1343 1.5 oster usemirror = 0;
1344 1.5 oster } else
1345 1.5 oster if (mirrorQueueLength < dataQueueLength) {
1346 1.5 oster usemirror = 1;
1347 1.3 oster } else {
1348 1.5 oster /* queues are equal length. attempt
1349 1.5 oster * cleverness. */
1350 1.5 oster if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1351 1.5 oster <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1352 1.5 oster usemirror = 0;
1353 1.5 oster } else {
1354 1.5 oster usemirror = 1;
1355 1.5 oster }
1356 1.3 oster }
1357 1.3 oster
1358 1.3 oster if (usemirror) {
1359 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1360 1.3 oster tmp_pda = data_pda;
1361 1.3 oster node->params[0].p = mirror_pda;
1362 1.3 oster node->params[4].p = tmp_pda;
1363 1.3 oster } else {
1364 1.3 oster /* use data disk, leave param 0 unchanged */
1365 1.3 oster }
1366 1.3 oster /* printf("dataQueueLength %d, mirrorQueueLength
1367 1.3 oster * %d\n",dataQueueLength, mirrorQueueLength); */
1368 1.1 oster }
1369 1.19 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1370 1.1 oster /*
1371 1.1 oster * Do simple partitioning. This assumes that
1372 1.1 oster * the data and parity disks are laid out identically.
1373 1.1 oster */
1374 1.45 perry void
1375 1.3 oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1376 1.1 oster {
1377 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1378 1.21 oster RF_RowCol_t colData, colMirror;
1379 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1380 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1381 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1382 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1383 1.3 oster int usemirror;
1384 1.3 oster
1385 1.3 oster /* return the [row col] of the disk with the shortest queue */
1386 1.3 oster colData = data_pda->col;
1387 1.3 oster colMirror = mirror_pda->col;
1388 1.3 oster
1389 1.3 oster usemirror = 0;
1390 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1391 1.3 oster usemirror = 0;
1392 1.3 oster } else
1393 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1394 1.3 oster usemirror = 1;
1395 1.45 perry } else
1396 1.6 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1397 1.6 oster /* Trust only the main disk */
1398 1.3 oster usemirror = 0;
1399 1.6 oster } else
1400 1.45 perry if (data_pda->startSector <
1401 1.21 oster (disks[colData].numBlocks / 2)) {
1402 1.6 oster usemirror = 0;
1403 1.6 oster } else {
1404 1.6 oster usemirror = 1;
1405 1.6 oster }
1406 1.3 oster
1407 1.3 oster if (usemirror) {
1408 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1409 1.3 oster tmp_pda = data_pda;
1410 1.3 oster node->params[0].p = mirror_pda;
1411 1.3 oster node->params[4].p = tmp_pda;
1412 1.3 oster } else {
1413 1.3 oster /* use data disk, leave param 0 unchanged */
1414 1.3 oster }
1415 1.1 oster }
1416 1.19 oster #endif
1417