rf_dagutils.c revision 1.57.12.1 1 1.57.12.1 thorpej /* $NetBSD: rf_dagutils.c,v 1.57.12.1 2021/08/01 22:42:31 thorpej Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_dagutils.c -- utility routines for manipulating dags
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.57.12.1 thorpej __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.57.12.1 2021/08/01 22:42:31 thorpej Exp $");
37 1.1 oster
38 1.8 oster #include <dev/raidframe/raidframevar.h>
39 1.8 oster
40 1.1 oster #include "rf_archs.h"
41 1.1 oster #include "rf_threadstuff.h"
42 1.1 oster #include "rf_raid.h"
43 1.1 oster #include "rf_dag.h"
44 1.1 oster #include "rf_dagutils.h"
45 1.1 oster #include "rf_dagfuncs.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_map.h"
48 1.1 oster #include "rf_shutdown.h"
49 1.1 oster
50 1.1 oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 1.1 oster
52 1.20 jdolecek const RF_RedFuncs_t rf_xorFuncs = {
53 1.1 oster rf_RegularXorFunc, "Reg Xr",
54 1.32 oster rf_SimpleXorFunc, "Simple Xr"};
55 1.1 oster
56 1.20 jdolecek const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 1.1 oster rf_RecoveryXorFunc, "Recovery Xr",
58 1.32 oster rf_RecoveryXorFunc, "Recovery Xr"};
59 1.1 oster
60 1.13 oster #if RF_DEBUG_VALIDATE_DAG
61 1.1 oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 1.1 oster static void rf_PrintDAG(RF_DagHeader_t *);
63 1.12 oster static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 1.12 oster RF_DagNode_t **, int);
65 1.1 oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 1.1 oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
68 1.1 oster
69 1.40 oster /* The maximum number of nodes in a DAG is bounded by
70 1.40 oster
71 1.45 perry (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 1.40 oster (1 * 2 * layoutPtr->numParityCol) + 3
73 1.40 oster
74 1.40 oster which is: 2*RF_MAXCOL+1*2+1*2*2+3
75 1.40 oster
76 1.40 oster For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 1.45 perry on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 1.45 perry would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 1.40 oster have a few kicking around.
80 1.40 oster */
81 1.40 oster #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 1.40 oster
83 1.40 oster
84 1.1 oster /******************************************************************************
85 1.1 oster *
86 1.1 oster * InitNode - initialize a dag node
87 1.1 oster *
88 1.1 oster * the size of the propList array is always the same as that of the
89 1.1 oster * successors array.
90 1.1 oster *
91 1.1 oster *****************************************************************************/
92 1.40 oster void
93 1.23 oster rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 1.57 christos void (*doFunc) (RF_DagNode_t *node),
95 1.57 christos void (*undoFunc) (RF_DagNode_t *node),
96 1.57 christos void (*wakeFunc) (void *node, int status),
97 1.23 oster int nSucc, int nAnte, int nParam, int nResult,
98 1.46 christos RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 1.3 oster {
100 1.3 oster void **ptrs;
101 1.3 oster int nptrs;
102 1.57.12.1 thorpej RF_Raid_t *raidPtr;
103 1.57.12.1 thorpej
104 1.3 oster if (nAnte > RF_MAX_ANTECEDENTS)
105 1.3 oster RF_PANIC();
106 1.3 oster node->status = initstatus;
107 1.3 oster node->commitNode = commit;
108 1.3 oster node->doFunc = doFunc;
109 1.3 oster node->undoFunc = undoFunc;
110 1.3 oster node->wakeFunc = wakeFunc;
111 1.3 oster node->numParams = nParam;
112 1.3 oster node->numResults = nResult;
113 1.3 oster node->numAntecedents = nAnte;
114 1.3 oster node->numAntDone = 0;
115 1.3 oster node->next = NULL;
116 1.45 perry /* node->list_next = NULL */ /* Don't touch this here!
117 1.45 perry It may already be
118 1.38 oster in use by the caller! */
119 1.3 oster node->numSuccedents = nSucc;
120 1.3 oster node->name = name;
121 1.3 oster node->dagHdr = hdr;
122 1.40 oster node->big_dag_ptrs = NULL;
123 1.40 oster node->big_dag_params = NULL;
124 1.3 oster node->visited = 0;
125 1.3 oster
126 1.57.12.1 thorpej RF_ASSERT(hdr != NULL);
127 1.57.12.1 thorpej raidPtr = hdr->raidPtr;
128 1.57.12.1 thorpej
129 1.3 oster /* allocate all the pointers with one call to malloc */
130 1.3 oster nptrs = nSucc + nAnte + nResult + nSucc;
131 1.3 oster
132 1.3 oster if (nptrs <= RF_DAG_PTRCACHESIZE) {
133 1.3 oster /*
134 1.3 oster * The dag_ptrs field of the node is basically some scribble
135 1.3 oster * space to be used here. We could get rid of it, and always
136 1.3 oster * allocate the range of pointers, but that's expensive. So,
137 1.3 oster * we pick a "common case" size for the pointer cache. Hopefully,
138 1.3 oster * we'll find that:
139 1.3 oster * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
140 1.3 oster * only a little bit (least efficient case)
141 1.3 oster * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
142 1.3 oster * (wasted memory)
143 1.3 oster */
144 1.3 oster ptrs = (void **) node->dag_ptrs;
145 1.40 oster } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
146 1.57.12.1 thorpej node->big_dag_ptrs = rf_AllocDAGPCache(raidPtr);
147 1.40 oster ptrs = (void **) node->big_dag_ptrs;
148 1.3 oster } else {
149 1.55 christos ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
150 1.3 oster }
151 1.3 oster node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
152 1.3 oster node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
153 1.3 oster node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
154 1.3 oster node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
155 1.3 oster
156 1.3 oster if (nParam) {
157 1.3 oster if (nParam <= RF_DAG_PARAMCACHESIZE) {
158 1.3 oster node->params = (RF_DagParam_t *) node->dag_params;
159 1.40 oster } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
160 1.57.12.1 thorpej node->big_dag_params = rf_AllocDAGPCache(raidPtr);
161 1.40 oster node->params = node->big_dag_params;
162 1.3 oster } else {
163 1.55 christos node->params = RF_MallocAndAdd(
164 1.55 christos nParam * sizeof(*node->params), alist);
165 1.3 oster }
166 1.3 oster } else {
167 1.3 oster node->params = NULL;
168 1.3 oster }
169 1.1 oster }
170 1.1 oster
171 1.1 oster
172 1.1 oster
173 1.1 oster /******************************************************************************
174 1.1 oster *
175 1.1 oster * allocation and deallocation routines
176 1.1 oster *
177 1.1 oster *****************************************************************************/
178 1.1 oster
179 1.45 perry void
180 1.23 oster rf_FreeDAG(RF_DagHeader_t *dag_h)
181 1.3 oster {
182 1.3 oster RF_AccessStripeMapHeader_t *asmap, *t_asmap;
183 1.39 oster RF_PhysDiskAddr_t *pda;
184 1.38 oster RF_DagNode_t *tmpnode;
185 1.3 oster RF_DagHeader_t *nextDag;
186 1.57.12.1 thorpej RF_Raid_t *raidPtr;
187 1.3 oster
188 1.57.12.1 thorpej if (dag_h)
189 1.57.12.1 thorpej raidPtr = dag_h->raidPtr;
190 1.57.12.1 thorpej
191 1.3 oster while (dag_h) {
192 1.3 oster nextDag = dag_h->next;
193 1.3 oster rf_FreeAllocList(dag_h->allocList);
194 1.3 oster for (asmap = dag_h->asmList; asmap;) {
195 1.3 oster t_asmap = asmap;
196 1.3 oster asmap = asmap->next;
197 1.57.12.1 thorpej rf_FreeAccessStripeMap(raidPtr, t_asmap);
198 1.3 oster }
199 1.39 oster while (dag_h->pda_cleanup_list) {
200 1.39 oster pda = dag_h->pda_cleanup_list;
201 1.39 oster dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
202 1.57.12.1 thorpej rf_FreePhysDiskAddr(raidPtr, pda);
203 1.39 oster }
204 1.39 oster while (dag_h->nodes) {
205 1.38 oster tmpnode = dag_h->nodes;
206 1.38 oster dag_h->nodes = dag_h->nodes->list_next;
207 1.57.12.1 thorpej rf_FreeDAGNode(raidPtr, tmpnode);
208 1.38 oster }
209 1.57.12.1 thorpej rf_FreeDAGHeader(raidPtr, dag_h);
210 1.3 oster dag_h = nextDag;
211 1.3 oster }
212 1.3 oster }
213 1.3 oster
214 1.1 oster #define RF_MAX_FREE_DAGH 128
215 1.30 oster #define RF_MIN_FREE_DAGH 32
216 1.1 oster
217 1.38 oster #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
218 1.38 oster #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
219 1.38 oster
220 1.25 oster #define RF_MAX_FREE_DAGLIST 128
221 1.30 oster #define RF_MIN_FREE_DAGLIST 32
222 1.25 oster
223 1.40 oster #define RF_MAX_FREE_DAGPCACHE 128
224 1.40 oster #define RF_MIN_FREE_DAGPCACHE 8
225 1.40 oster
226 1.27 oster #define RF_MAX_FREE_FUNCLIST 128
227 1.30 oster #define RF_MIN_FREE_FUNCLIST 32
228 1.25 oster
229 1.41 oster #define RF_MAX_FREE_BUFFERS 128
230 1.41 oster #define RF_MIN_FREE_BUFFERS 32
231 1.41 oster
232 1.1 oster static void rf_ShutdownDAGs(void *);
233 1.45 perry static void
234 1.57.12.1 thorpej rf_ShutdownDAGs(void *arg)
235 1.1 oster {
236 1.57.12.1 thorpej RF_Raid_t *raidPtr;
237 1.57.12.1 thorpej
238 1.57.12.1 thorpej raidPtr = (RF_Raid_t *) arg;
239 1.57.12.1 thorpej
240 1.57.12.1 thorpej pool_destroy(&raidPtr->pools.dagh);
241 1.57.12.1 thorpej pool_destroy(&raidPtr->pools.dagnode);
242 1.57.12.1 thorpej pool_destroy(&raidPtr->pools.daglist);
243 1.57.12.1 thorpej pool_destroy(&raidPtr->pools.dagpcache);
244 1.57.12.1 thorpej pool_destroy(&raidPtr->pools.funclist);
245 1.1 oster }
246 1.1 oster
247 1.45 perry int
248 1.57.12.1 thorpej rf_ConfigureDAGs(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
249 1.57.12.1 thorpej RF_Config_t *cfgPtr)
250 1.1 oster {
251 1.1 oster
252 1.57.12.1 thorpej rf_pool_init(raidPtr, raidPtr->poolNames.dagnode, &raidPtr->pools.dagnode, sizeof(RF_DagNode_t),
253 1.57.12.1 thorpej "dagnode", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
254 1.57.12.1 thorpej rf_pool_init(raidPtr, raidPtr->poolNames.dagh, &raidPtr->pools.dagh, sizeof(RF_DagHeader_t),
255 1.57.12.1 thorpej "dagh", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
256 1.57.12.1 thorpej rf_pool_init(raidPtr, raidPtr->poolNames.daglist, &raidPtr->pools.daglist, sizeof(RF_DagList_t),
257 1.57.12.1 thorpej "daglist", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
258 1.57.12.1 thorpej rf_pool_init(raidPtr, raidPtr->poolNames.dagpcache, &raidPtr->pools.dagpcache, RF_DAGPCACHE_SIZE,
259 1.57.12.1 thorpej "dagpcache", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
260 1.57.12.1 thorpej rf_pool_init(raidPtr, raidPtr->poolNames.funclist, &raidPtr->pools.funclist, sizeof(RF_FuncList_t),
261 1.57.12.1 thorpej "funclist", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
262 1.57.12.1 thorpej rf_ShutdownCreate(listp, rf_ShutdownDAGs, raidPtr);
263 1.29 oster
264 1.3 oster return (0);
265 1.1 oster }
266 1.1 oster
267 1.3 oster RF_DagHeader_t *
268 1.57.12.1 thorpej rf_AllocDAGHeader(RF_Raid_t *raidPtr)
269 1.1 oster {
270 1.57.12.1 thorpej return pool_get(&raidPtr->pools.dagh, PR_WAITOK | PR_ZERO);
271 1.1 oster }
272 1.1 oster
273 1.45 perry void
274 1.57.12.1 thorpej rf_FreeDAGHeader(RF_Raid_t *raidPtr, RF_DagHeader_t * dh)
275 1.1 oster {
276 1.57.12.1 thorpej pool_put(&raidPtr->pools.dagh, dh);
277 1.1 oster }
278 1.25 oster
279 1.38 oster RF_DagNode_t *
280 1.57.12.1 thorpej rf_AllocDAGNode(RF_Raid_t *raidPtr)
281 1.38 oster {
282 1.57.12.1 thorpej return pool_get(&raidPtr->pools.dagnode, PR_WAITOK | PR_ZERO);
283 1.38 oster }
284 1.38 oster
285 1.38 oster void
286 1.57.12.1 thorpej rf_FreeDAGNode(RF_Raid_t *raidPtr, RF_DagNode_t *node)
287 1.38 oster {
288 1.40 oster if (node->big_dag_ptrs) {
289 1.57.12.1 thorpej rf_FreeDAGPCache(raidPtr, node->big_dag_ptrs);
290 1.40 oster }
291 1.40 oster if (node->big_dag_params) {
292 1.57.12.1 thorpej rf_FreeDAGPCache(raidPtr, node->big_dag_params);
293 1.40 oster }
294 1.57.12.1 thorpej pool_put(&raidPtr->pools.dagnode, node);
295 1.38 oster }
296 1.38 oster
297 1.25 oster RF_DagList_t *
298 1.57.12.1 thorpej rf_AllocDAGList(RF_Raid_t *raidPtr)
299 1.25 oster {
300 1.57.12.1 thorpej return pool_get(&raidPtr->pools.daglist, PR_WAITOK | PR_ZERO);
301 1.25 oster }
302 1.25 oster
303 1.25 oster void
304 1.57.12.1 thorpej rf_FreeDAGList(RF_Raid_t *raidPtr, RF_DagList_t *dagList)
305 1.25 oster {
306 1.57.12.1 thorpej pool_put(&raidPtr->pools.daglist, dagList);
307 1.25 oster }
308 1.25 oster
309 1.40 oster void *
310 1.57.12.1 thorpej rf_AllocDAGPCache(RF_Raid_t *raidPtr)
311 1.40 oster {
312 1.57.12.1 thorpej return pool_get(&raidPtr->pools.dagpcache, PR_WAITOK | PR_ZERO);
313 1.40 oster }
314 1.40 oster
315 1.40 oster void
316 1.57.12.1 thorpej rf_FreeDAGPCache(RF_Raid_t *raidPtr, void *p)
317 1.40 oster {
318 1.57.12.1 thorpej pool_put(&raidPtr->pools.dagpcache, p);
319 1.40 oster }
320 1.40 oster
321 1.27 oster RF_FuncList_t *
322 1.57.12.1 thorpej rf_AllocFuncList(RF_Raid_t *raidPtr)
323 1.27 oster {
324 1.57.12.1 thorpej return pool_get(&raidPtr->pools.funclist, PR_WAITOK | PR_ZERO);
325 1.27 oster }
326 1.27 oster
327 1.27 oster void
328 1.57.12.1 thorpej rf_FreeFuncList(RF_Raid_t *raidPtr, RF_FuncList_t *funcList)
329 1.27 oster {
330 1.57.12.1 thorpej pool_put(&raidPtr->pools.funclist, funcList);
331 1.27 oster }
332 1.25 oster
333 1.44 oster /* allocates a stripe buffer -- a buffer large enough to hold all the data
334 1.45 perry in an entire stripe.
335 1.44 oster */
336 1.44 oster
337 1.44 oster void *
338 1.49 christos rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
339 1.50 christos int size)
340 1.44 oster {
341 1.44 oster RF_VoidPointerListElem_t *vple;
342 1.44 oster void *p;
343 1.44 oster
344 1.45 perry RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
345 1.44 oster raidPtr->logBytesPerSector))));
346 1.44 oster
347 1.45 perry p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
348 1.45 perry raidPtr->logBytesPerSector),
349 1.44 oster M_RAIDFRAME, M_NOWAIT);
350 1.44 oster if (!p) {
351 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
352 1.44 oster if (raidPtr->stripebuf_count > 0) {
353 1.44 oster vple = raidPtr->stripebuf;
354 1.44 oster raidPtr->stripebuf = vple->next;
355 1.44 oster p = vple->p;
356 1.57.12.1 thorpej rf_FreeVPListElem(raidPtr, vple);
357 1.44 oster raidPtr->stripebuf_count--;
358 1.44 oster } else {
359 1.44 oster #ifdef DIAGNOSTIC
360 1.44 oster printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
361 1.44 oster #endif
362 1.44 oster }
363 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
364 1.44 oster if (!p) {
365 1.45 perry /* We didn't get a buffer... not much we can do other than wait,
366 1.44 oster and hope that someone frees up memory for us.. */
367 1.45 perry p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
368 1.44 oster raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
369 1.44 oster }
370 1.44 oster }
371 1.44 oster memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
372 1.44 oster
373 1.57.12.1 thorpej vple = rf_AllocVPListElem(raidPtr);
374 1.44 oster vple->p = p;
375 1.44 oster vple->next = dag_h->desc->stripebufs;
376 1.44 oster dag_h->desc->stripebufs = vple;
377 1.44 oster
378 1.44 oster return (p);
379 1.44 oster }
380 1.44 oster
381 1.25 oster
382 1.44 oster void
383 1.44 oster rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
384 1.44 oster {
385 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
386 1.44 oster if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
387 1.44 oster /* just tack it in */
388 1.44 oster vple->next = raidPtr->stripebuf;
389 1.44 oster raidPtr->stripebuf = vple;
390 1.44 oster raidPtr->stripebuf_count++;
391 1.44 oster } else {
392 1.44 oster free(vple->p, M_RAIDFRAME);
393 1.57.12.1 thorpej rf_FreeVPListElem(raidPtr, vple);
394 1.44 oster }
395 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
396 1.44 oster }
397 1.25 oster
398 1.42 oster /* allocates a buffer big enough to hold the data described by the
399 1.42 oster caller (ie. the data of the associated PDA). Glue this buffer
400 1.42 oster into our dag_h cleanup structure. */
401 1.42 oster
402 1.43 oster void *
403 1.44 oster rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
404 1.3 oster {
405 1.42 oster RF_VoidPointerListElem_t *vple;
406 1.42 oster void *p;
407 1.3 oster
408 1.42 oster p = rf_AllocIOBuffer(raidPtr, size);
409 1.57.12.1 thorpej vple = rf_AllocVPListElem(raidPtr);
410 1.42 oster vple->p = p;
411 1.44 oster vple->next = dag_h->desc->iobufs;
412 1.44 oster dag_h->desc->iobufs = vple;
413 1.42 oster
414 1.42 oster return (p);
415 1.1 oster }
416 1.41 oster
417 1.41 oster void *
418 1.50 christos rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
419 1.41 oster {
420 1.44 oster RF_VoidPointerListElem_t *vple;
421 1.41 oster void *p;
422 1.41 oster
423 1.45 perry RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
424 1.44 oster raidPtr->logBytesPerSector)));
425 1.41 oster
426 1.45 perry p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
427 1.45 perry raidPtr->logBytesPerSector,
428 1.41 oster M_RAIDFRAME, M_NOWAIT);
429 1.41 oster if (!p) {
430 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
431 1.41 oster if (raidPtr->iobuf_count > 0) {
432 1.44 oster vple = raidPtr->iobuf;
433 1.44 oster raidPtr->iobuf = vple->next;
434 1.44 oster p = vple->p;
435 1.57.12.1 thorpej rf_FreeVPListElem(raidPtr, vple);
436 1.41 oster raidPtr->iobuf_count--;
437 1.41 oster } else {
438 1.41 oster #ifdef DIAGNOSTIC
439 1.41 oster printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
440 1.41 oster #endif
441 1.41 oster }
442 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
443 1.41 oster if (!p) {
444 1.45 perry /* We didn't get a buffer... not much we can do other than wait,
445 1.41 oster and hope that someone frees up memory for us.. */
446 1.45 perry p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
447 1.45 perry raidPtr->logBytesPerSector,
448 1.41 oster M_RAIDFRAME, M_WAITOK);
449 1.41 oster }
450 1.41 oster }
451 1.44 oster memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
452 1.41 oster return (p);
453 1.41 oster }
454 1.41 oster
455 1.41 oster void
456 1.44 oster rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
457 1.41 oster {
458 1.53 mrg rf_lock_mutex2(raidPtr->mutex);
459 1.41 oster if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
460 1.44 oster /* just tack it in */
461 1.44 oster vple->next = raidPtr->iobuf;
462 1.44 oster raidPtr->iobuf = vple;
463 1.41 oster raidPtr->iobuf_count++;
464 1.41 oster } else {
465 1.44 oster free(vple->p, M_RAIDFRAME);
466 1.57.12.1 thorpej rf_FreeVPListElem(raidPtr, vple);
467 1.41 oster }
468 1.53 mrg rf_unlock_mutex2(raidPtr->mutex);
469 1.41 oster }
470 1.41 oster
471 1.41 oster
472 1.41 oster
473 1.13 oster #if RF_DEBUG_VALIDATE_DAG
474 1.1 oster /******************************************************************************
475 1.1 oster *
476 1.1 oster * debug routines
477 1.1 oster *
478 1.1 oster *****************************************************************************/
479 1.1 oster
480 1.3 oster char *
481 1.23 oster rf_NodeStatusString(RF_DagNode_t *node)
482 1.1 oster {
483 1.3 oster switch (node->status) {
484 1.34 oster case rf_wait:
485 1.34 oster return ("wait");
486 1.3 oster case rf_fired:
487 1.3 oster return ("fired");
488 1.3 oster case rf_good:
489 1.3 oster return ("good");
490 1.3 oster case rf_bad:
491 1.3 oster return ("bad");
492 1.3 oster default:
493 1.3 oster return ("?");
494 1.3 oster }
495 1.3 oster }
496 1.1 oster
497 1.45 perry void
498 1.23 oster rf_PrintNodeInfoString(RF_DagNode_t *node)
499 1.3 oster {
500 1.3 oster RF_PhysDiskAddr_t *pda;
501 1.3 oster int (*df) (RF_DagNode_t *) = node->doFunc;
502 1.3 oster int i, lk, unlk;
503 1.3 oster void *bufPtr;
504 1.3 oster
505 1.3 oster if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
506 1.3 oster || (df == rf_DiskReadMirrorIdleFunc)
507 1.3 oster || (df == rf_DiskReadMirrorPartitionFunc)) {
508 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
509 1.3 oster bufPtr = (void *) node->params[1].p;
510 1.24 oster lk = 0;
511 1.24 oster unlk = 0;
512 1.3 oster RF_ASSERT(!(lk && unlk));
513 1.21 oster printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
514 1.3 oster (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
515 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
516 1.3 oster return;
517 1.3 oster }
518 1.3 oster if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
519 1.3 oster || (df == rf_RecoveryXorFunc)) {
520 1.3 oster printf("result buf 0x%lx\n", (long) node->results[0]);
521 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
522 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
523 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
524 1.21 oster printf(" buf 0x%lx c%d offs %ld nsect %d\n",
525 1.21 oster (long) bufPtr, pda->col,
526 1.3 oster (long) pda->startSector, (int) pda->numSector);
527 1.3 oster }
528 1.3 oster return;
529 1.3 oster }
530 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
531 1.3 oster if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
532 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
533 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
534 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
535 1.21 oster printf(" c%d offs %ld nsect %d buf 0x%lx\n",
536 1.21 oster pda->col, (long) pda->startSector,
537 1.3 oster (int) pda->numSector, (long) bufPtr);
538 1.3 oster }
539 1.3 oster return;
540 1.3 oster }
541 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
542 1.3 oster
543 1.3 oster if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
544 1.3 oster printf("\n");
545 1.3 oster return;
546 1.3 oster }
547 1.3 oster printf("?\n");
548 1.3 oster }
549 1.16 oster #ifdef DEBUG
550 1.45 perry static void
551 1.23 oster rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
552 1.3 oster {
553 1.3 oster char *anttype;
554 1.3 oster int i;
555 1.3 oster
556 1.3 oster node->visited = (unvisited) ? 0 : 1;
557 1.3 oster printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
558 1.3 oster node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
559 1.3 oster node->numSuccedents, node->numSuccFired, node->numSuccDone,
560 1.3 oster node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
561 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
562 1.3 oster printf("%d%s", node->succedents[i]->nodeNum,
563 1.3 oster ((i == node->numSuccedents - 1) ? "\0" : " "));
564 1.3 oster }
565 1.3 oster printf("} A{");
566 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
567 1.3 oster switch (node->antType[i]) {
568 1.3 oster case rf_trueData:
569 1.3 oster anttype = "T";
570 1.3 oster break;
571 1.3 oster case rf_antiData:
572 1.3 oster anttype = "A";
573 1.3 oster break;
574 1.3 oster case rf_outputData:
575 1.3 oster anttype = "O";
576 1.3 oster break;
577 1.3 oster case rf_control:
578 1.3 oster anttype = "C";
579 1.3 oster break;
580 1.3 oster default:
581 1.3 oster anttype = "?";
582 1.3 oster break;
583 1.3 oster }
584 1.3 oster printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
585 1.3 oster }
586 1.3 oster printf("}; ");
587 1.3 oster rf_PrintNodeInfoString(node);
588 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
589 1.3 oster if (node->succedents[i]->visited == unvisited)
590 1.3 oster rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
591 1.3 oster }
592 1.1 oster }
593 1.1 oster
594 1.45 perry static void
595 1.23 oster rf_PrintDAG(RF_DagHeader_t *dag_h)
596 1.3 oster {
597 1.3 oster int unvisited, i;
598 1.3 oster char *status;
599 1.3 oster
600 1.3 oster /* set dag status */
601 1.3 oster switch (dag_h->status) {
602 1.3 oster case rf_enable:
603 1.3 oster status = "enable";
604 1.3 oster break;
605 1.3 oster case rf_rollForward:
606 1.3 oster status = "rollForward";
607 1.3 oster break;
608 1.3 oster case rf_rollBackward:
609 1.3 oster status = "rollBackward";
610 1.3 oster break;
611 1.3 oster default:
612 1.3 oster status = "illegal!";
613 1.3 oster break;
614 1.3 oster }
615 1.3 oster /* find out if visited bits are currently set or clear */
616 1.3 oster unvisited = dag_h->succedents[0]->visited;
617 1.3 oster
618 1.3 oster printf("DAG type: %s\n", dag_h->creator);
619 1.3 oster printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
620 1.3 oster printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
621 1.3 oster status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
622 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
623 1.3 oster printf("%d%s", dag_h->succedents[i]->nodeNum,
624 1.3 oster ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
625 1.3 oster }
626 1.3 oster printf("};\n");
627 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
628 1.3 oster if (dag_h->succedents[i]->visited == unvisited)
629 1.3 oster rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
630 1.3 oster }
631 1.3 oster }
632 1.16 oster #endif
633 1.1 oster /* assigns node numbers */
634 1.45 perry int
635 1.3 oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
636 1.1 oster {
637 1.3 oster int unvisited, i, nnum;
638 1.3 oster RF_DagNode_t *node;
639 1.1 oster
640 1.3 oster nnum = 0;
641 1.3 oster unvisited = dag_h->succedents[0]->visited;
642 1.3 oster
643 1.3 oster dag_h->nodeNum = nnum++;
644 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
645 1.3 oster node = dag_h->succedents[i];
646 1.3 oster if (node->visited == unvisited) {
647 1.3 oster nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
648 1.3 oster }
649 1.3 oster }
650 1.3 oster return (nnum);
651 1.1 oster }
652 1.1 oster
653 1.45 perry int
654 1.23 oster rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
655 1.3 oster {
656 1.3 oster int i;
657 1.3 oster
658 1.3 oster node->visited = (unvisited) ? 0 : 1;
659 1.3 oster
660 1.3 oster node->nodeNum = num++;
661 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
662 1.3 oster if (node->succedents[i]->visited == unvisited) {
663 1.3 oster num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
664 1.3 oster }
665 1.3 oster }
666 1.3 oster return (num);
667 1.3 oster }
668 1.1 oster /* set the header pointers in each node to "newptr" */
669 1.45 perry void
670 1.23 oster rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
671 1.3 oster {
672 1.3 oster int i;
673 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++)
674 1.3 oster if (dag_h->succedents[i]->dagHdr != newptr)
675 1.3 oster rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
676 1.1 oster }
677 1.1 oster
678 1.45 perry void
679 1.23 oster rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
680 1.1 oster {
681 1.3 oster int i;
682 1.3 oster node->dagHdr = newptr;
683 1.3 oster for (i = 0; i < node->numSuccedents; i++)
684 1.3 oster if (node->succedents[i]->dagHdr != newptr)
685 1.3 oster rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
686 1.3 oster }
687 1.1 oster
688 1.1 oster
689 1.45 perry void
690 1.3 oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
691 1.3 oster {
692 1.3 oster int i = 0;
693 1.3 oster
694 1.3 oster for (; dag_h; dag_h = dag_h->next) {
695 1.3 oster rf_AssignNodeNums(dag_h);
696 1.3 oster printf("\n\nDAG %d IN LIST:\n", i++);
697 1.3 oster rf_PrintDAG(dag_h);
698 1.3 oster }
699 1.1 oster }
700 1.1 oster
701 1.45 perry static int
702 1.23 oster rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
703 1.23 oster RF_DagNode_t **nodes, int unvisited)
704 1.3 oster {
705 1.3 oster int i, retcode = 0;
706 1.3 oster
707 1.3 oster /* construct an array of node pointers indexed by node num */
708 1.3 oster node->visited = (unvisited) ? 0 : 1;
709 1.3 oster nodes[node->nodeNum] = node;
710 1.3 oster
711 1.3 oster if (node->next != NULL) {
712 1.3 oster printf("INVALID DAG: next pointer in node is not NULL\n");
713 1.3 oster retcode = 1;
714 1.3 oster }
715 1.3 oster if (node->status != rf_wait) {
716 1.3 oster printf("INVALID DAG: Node status is not wait\n");
717 1.3 oster retcode = 1;
718 1.3 oster }
719 1.3 oster if (node->numAntDone != 0) {
720 1.3 oster printf("INVALID DAG: numAntDone is not zero\n");
721 1.3 oster retcode = 1;
722 1.3 oster }
723 1.3 oster if (node->doFunc == rf_TerminateFunc) {
724 1.3 oster if (node->numSuccedents != 0) {
725 1.3 oster printf("INVALID DAG: Terminator node has succedents\n");
726 1.3 oster retcode = 1;
727 1.3 oster }
728 1.3 oster } else {
729 1.3 oster if (node->numSuccedents == 0) {
730 1.3 oster printf("INVALID DAG: Non-terminator node has no succedents\n");
731 1.3 oster retcode = 1;
732 1.3 oster }
733 1.3 oster }
734 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
735 1.3 oster if (!node->succedents[i]) {
736 1.3 oster printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
737 1.3 oster retcode = 1;
738 1.3 oster }
739 1.3 oster scount[node->succedents[i]->nodeNum]++;
740 1.3 oster }
741 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
742 1.3 oster if (!node->antecedents[i]) {
743 1.3 oster printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
744 1.3 oster retcode = 1;
745 1.3 oster }
746 1.3 oster acount[node->antecedents[i]->nodeNum]++;
747 1.3 oster }
748 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
749 1.3 oster if (node->succedents[i]->visited == unvisited) {
750 1.3 oster if (rf_ValidateBranch(node->succedents[i], scount,
751 1.3 oster acount, nodes, unvisited)) {
752 1.3 oster retcode = 1;
753 1.3 oster }
754 1.3 oster }
755 1.3 oster }
756 1.3 oster return (retcode);
757 1.3 oster }
758 1.3 oster
759 1.45 perry static void
760 1.23 oster rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
761 1.3 oster {
762 1.3 oster int i;
763 1.3 oster
764 1.3 oster RF_ASSERT(node->visited == unvisited);
765 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
766 1.3 oster if (node->succedents[i] == NULL) {
767 1.3 oster printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
768 1.3 oster RF_ASSERT(0);
769 1.3 oster }
770 1.3 oster rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
771 1.3 oster }
772 1.3 oster }
773 1.3 oster /* NOTE: never call this on a big dag, because it is exponential
774 1.3 oster * in execution time
775 1.3 oster */
776 1.45 perry static void
777 1.23 oster rf_ValidateVisitedBits(RF_DagHeader_t *dag)
778 1.3 oster {
779 1.3 oster int i, unvisited;
780 1.3 oster
781 1.3 oster unvisited = dag->succedents[0]->visited;
782 1.3 oster
783 1.3 oster for (i = 0; i < dag->numSuccedents; i++) {
784 1.3 oster if (dag->succedents[i] == NULL) {
785 1.3 oster printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
786 1.3 oster RF_ASSERT(0);
787 1.3 oster }
788 1.3 oster rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
789 1.3 oster }
790 1.3 oster }
791 1.1 oster /* validate a DAG. _at entry_ verify that:
792 1.1 oster * -- numNodesCompleted is zero
793 1.1 oster * -- node queue is null
794 1.1 oster * -- dag status is rf_enable
795 1.1 oster * -- next pointer is null on every node
796 1.1 oster * -- all nodes have status wait
797 1.1 oster * -- numAntDone is zero in all nodes
798 1.1 oster * -- terminator node has zero successors
799 1.1 oster * -- no other node besides terminator has zero successors
800 1.1 oster * -- no successor or antecedent pointer in a node is NULL
801 1.1 oster * -- number of times that each node appears as a successor of another node
802 1.1 oster * is equal to the antecedent count on that node
803 1.1 oster * -- number of times that each node appears as an antecedent of another node
804 1.1 oster * is equal to the succedent count on that node
805 1.1 oster * -- what else?
806 1.1 oster */
807 1.45 perry int
808 1.23 oster rf_ValidateDAG(RF_DagHeader_t *dag_h)
809 1.3 oster {
810 1.3 oster int i, nodecount;
811 1.3 oster int *scount, *acount;/* per-node successor and antecedent counts */
812 1.3 oster RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
813 1.3 oster int retcode = 0;
814 1.3 oster int unvisited;
815 1.3 oster int commitNodeCount = 0;
816 1.3 oster
817 1.3 oster if (rf_validateVisitedDebug)
818 1.3 oster rf_ValidateVisitedBits(dag_h);
819 1.3 oster
820 1.3 oster if (dag_h->numNodesCompleted != 0) {
821 1.3 oster printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
822 1.3 oster retcode = 1;
823 1.3 oster goto validate_dag_bad;
824 1.3 oster }
825 1.3 oster if (dag_h->status != rf_enable) {
826 1.3 oster printf("INVALID DAG: not enabled\n");
827 1.3 oster retcode = 1;
828 1.3 oster goto validate_dag_bad;
829 1.3 oster }
830 1.3 oster if (dag_h->numCommits != 0) {
831 1.3 oster printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
832 1.3 oster retcode = 1;
833 1.3 oster goto validate_dag_bad;
834 1.3 oster }
835 1.3 oster if (dag_h->numSuccedents != 1) {
836 1.3 oster /* currently, all dags must have only one succedent */
837 1.3 oster printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
838 1.3 oster retcode = 1;
839 1.3 oster goto validate_dag_bad;
840 1.3 oster }
841 1.3 oster nodecount = rf_AssignNodeNums(dag_h);
842 1.3 oster
843 1.3 oster unvisited = dag_h->succedents[0]->visited;
844 1.3 oster
845 1.55 christos scount = RF_Malloc(nodecount * sizeof(*scount));
846 1.55 christos acount = RF_Malloc(nodecount * sizeof(*acount));
847 1.55 christos nodes = RF_Malloc(nodecount * sizeof(*nodes));
848 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
849 1.3 oster if ((dag_h->succedents[i]->visited == unvisited)
850 1.3 oster && rf_ValidateBranch(dag_h->succedents[i], scount,
851 1.3 oster acount, nodes, unvisited)) {
852 1.3 oster retcode = 1;
853 1.3 oster }
854 1.3 oster }
855 1.3 oster /* start at 1 to skip the header node */
856 1.3 oster for (i = 1; i < nodecount; i++) {
857 1.3 oster if (nodes[i]->commitNode)
858 1.3 oster commitNodeCount++;
859 1.3 oster if (nodes[i]->doFunc == NULL) {
860 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
861 1.3 oster retcode = 1;
862 1.3 oster goto validate_dag_out;
863 1.3 oster }
864 1.3 oster if (nodes[i]->undoFunc == NULL) {
865 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
866 1.3 oster retcode = 1;
867 1.3 oster goto validate_dag_out;
868 1.3 oster }
869 1.3 oster if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
870 1.3 oster printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
871 1.3 oster nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
872 1.3 oster retcode = 1;
873 1.3 oster goto validate_dag_out;
874 1.3 oster }
875 1.3 oster if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
876 1.3 oster printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
877 1.3 oster nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
878 1.3 oster retcode = 1;
879 1.3 oster goto validate_dag_out;
880 1.3 oster }
881 1.3 oster }
882 1.1 oster
883 1.3 oster if (dag_h->numCommitNodes != commitNodeCount) {
884 1.3 oster printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
885 1.3 oster dag_h->numCommitNodes, commitNodeCount);
886 1.3 oster retcode = 1;
887 1.3 oster goto validate_dag_out;
888 1.3 oster }
889 1.1 oster validate_dag_out:
890 1.3 oster RF_Free(scount, nodecount * sizeof(int));
891 1.3 oster RF_Free(acount, nodecount * sizeof(int));
892 1.3 oster RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
893 1.3 oster if (retcode)
894 1.3 oster rf_PrintDAGList(dag_h);
895 1.3 oster
896 1.3 oster if (rf_validateVisitedDebug)
897 1.3 oster rf_ValidateVisitedBits(dag_h);
898 1.3 oster
899 1.3 oster return (retcode);
900 1.1 oster
901 1.1 oster validate_dag_bad:
902 1.3 oster rf_PrintDAGList(dag_h);
903 1.3 oster return (retcode);
904 1.1 oster }
905 1.1 oster
906 1.13 oster #endif /* RF_DEBUG_VALIDATE_DAG */
907 1.1 oster
908 1.1 oster /******************************************************************************
909 1.1 oster *
910 1.1 oster * misc construction routines
911 1.1 oster *
912 1.1 oster *****************************************************************************/
913 1.1 oster
914 1.45 perry void
915 1.23 oster rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
916 1.3 oster {
917 1.3 oster int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
918 1.21 oster int fcol = raidPtr->reconControl->fcol;
919 1.21 oster int scol = raidPtr->reconControl->spareCol;
920 1.3 oster RF_PhysDiskAddr_t *pda;
921 1.3 oster
922 1.21 oster RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
923 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
924 1.3 oster if (pda->col == fcol) {
925 1.31 oster #if RF_DEBUG_DAG
926 1.3 oster if (rf_dagDebug) {
927 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
928 1.3 oster pda->startSector)) {
929 1.3 oster RF_PANIC();
930 1.3 oster }
931 1.3 oster }
932 1.31 oster #endif
933 1.3 oster /* printf("Remapped data for large write\n"); */
934 1.3 oster if (ds) {
935 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
936 1.21 oster &pda->col, &pda->startSector, RF_REMAP);
937 1.3 oster } else {
938 1.3 oster pda->col = scol;
939 1.3 oster }
940 1.3 oster }
941 1.3 oster }
942 1.3 oster for (pda = asmap->parityInfo; pda; pda = pda->next) {
943 1.3 oster if (pda->col == fcol) {
944 1.31 oster #if RF_DEBUG_DAG
945 1.3 oster if (rf_dagDebug) {
946 1.21 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
947 1.3 oster RF_PANIC();
948 1.3 oster }
949 1.3 oster }
950 1.31 oster #endif
951 1.3 oster }
952 1.3 oster if (ds) {
953 1.21 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
954 1.3 oster } else {
955 1.3 oster pda->col = scol;
956 1.3 oster }
957 1.3 oster }
958 1.1 oster }
959 1.1 oster
960 1.1 oster
961 1.1 oster /* this routine allocates read buffers and generates stripe maps for the
962 1.1 oster * regions of the array from the start of the stripe to the start of the
963 1.1 oster * access, and from the end of the access to the end of the stripe. It also
964 1.1 oster * computes and returns the number of DAG nodes needed to read all this data.
965 1.1 oster * Note that this routine does the wrong thing if the access is fully
966 1.1 oster * contained within one stripe unit, so we RF_ASSERT against this case at the
967 1.1 oster * start.
968 1.45 perry *
969 1.23 oster * layoutPtr - in: layout information
970 1.23 oster * asmap - in: access stripe map
971 1.23 oster * dag_h - in: header of the dag to create
972 1.23 oster * new_asm_h - in: ptr to array of 2 headers. to be filled in
973 1.23 oster * nRodNodes - out: num nodes to be generated to read unaccessed data
974 1.23 oster * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
975 1.1 oster */
976 1.45 perry void
977 1.23 oster rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
978 1.23 oster RF_RaidLayout_t *layoutPtr,
979 1.23 oster RF_AccessStripeMap_t *asmap,
980 1.23 oster RF_DagHeader_t *dag_h,
981 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
982 1.45 perry int *nRodNodes,
983 1.23 oster char **sosBuffer, char **eosBuffer,
984 1.50 christos RF_AllocListElem_t *allocList)
985 1.3 oster {
986 1.3 oster RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
987 1.3 oster RF_SectorNum_t sosNumSector, eosNumSector;
988 1.3 oster
989 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
990 1.3 oster /* generate an access map for the region of the array from start of
991 1.3 oster * stripe to start of access */
992 1.3 oster new_asm_h[0] = new_asm_h[1] = NULL;
993 1.3 oster *nRodNodes = 0;
994 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
995 1.3 oster sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
996 1.3 oster sosNumSector = asmap->raidAddress - sosRaidAddress;
997 1.44 oster *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
998 1.3 oster new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
999 1.3 oster new_asm_h[0]->next = dag_h->asmList;
1000 1.3 oster dag_h->asmList = new_asm_h[0];
1001 1.3 oster *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1002 1.3 oster
1003 1.3 oster RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1004 1.3 oster /* we're totally within one stripe here */
1005 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1006 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1007 1.3 oster }
1008 1.3 oster /* generate an access map for the region of the array from end of
1009 1.3 oster * access to end of stripe */
1010 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1011 1.3 oster eosRaidAddress = asmap->endRaidAddress;
1012 1.3 oster eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1013 1.44 oster *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1014 1.3 oster new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1015 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1016 1.3 oster dag_h->asmList = new_asm_h[1];
1017 1.3 oster *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1018 1.3 oster
1019 1.3 oster RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1020 1.3 oster /* we're totally within one stripe here */
1021 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1022 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1023 1.3 oster }
1024 1.1 oster }
1025 1.1 oster
1026 1.1 oster
1027 1.1 oster
1028 1.1 oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1029 1.45 perry int
1030 1.45 perry rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1031 1.23 oster RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1032 1.3 oster {
1033 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1034 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1035 1.3 oster /* use -1 to be sure we stay within SU */
1036 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1037 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1038 1.3 oster return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1039 1.1 oster }
1040 1.1 oster
1041 1.1 oster
1042 1.1 oster /* GenerateFailedAccessASMs
1043 1.1 oster *
1044 1.1 oster * this routine figures out what portion of the stripe needs to be read
1045 1.1 oster * to effect the degraded read or write operation. It's primary function
1046 1.1 oster * is to identify everything required to recover the data, and then
1047 1.1 oster * eliminate anything that is already being accessed by the user.
1048 1.1 oster *
1049 1.1 oster * The main result is two new ASMs, one for the region from the start of the
1050 1.1 oster * stripe to the start of the access, and one for the region from the end of
1051 1.1 oster * the access to the end of the stripe. These ASMs describe everything that
1052 1.1 oster * needs to be read to effect the degraded access. Other results are:
1053 1.1 oster * nXorBufs -- the total number of buffers that need to be XORed together to
1054 1.1 oster * recover the lost data,
1055 1.1 oster * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1056 1.1 oster * at entry, not allocated.
1057 1.1 oster * overlappingPDAs --
1058 1.1 oster * describes which of the non-failed PDAs in the user access
1059 1.1 oster * overlap data that needs to be read to effect recovery.
1060 1.1 oster * overlappingPDAs[i]==1 if and only if, neglecting the failed
1061 1.1 oster * PDA, the ith pda in the input asm overlaps data that needs
1062 1.1 oster * to be read for recovery.
1063 1.1 oster */
1064 1.1 oster /* in: asm - ASM for the actual access, one stripe only */
1065 1.10 wiz /* in: failedPDA - which component of the access has failed */
1066 1.1 oster /* in: dag_h - header of the DAG we're going to create */
1067 1.1 oster /* out: new_asm_h - the two new ASMs */
1068 1.1 oster /* out: nXorBufs - the total number of xor bufs required */
1069 1.1 oster /* out: rpBufPtr - a buffer for the parity read */
1070 1.45 perry void
1071 1.23 oster rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1072 1.23 oster RF_PhysDiskAddr_t *failedPDA,
1073 1.23 oster RF_DagHeader_t *dag_h,
1074 1.23 oster RF_AccessStripeMapHeader_t **new_asm_h,
1075 1.23 oster int *nXorBufs, char **rpBufPtr,
1076 1.23 oster char *overlappingPDAs,
1077 1.50 christos RF_AllocListElem_t *allocList)
1078 1.3 oster {
1079 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1080 1.3 oster
1081 1.3 oster /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1082 1.3 oster RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1083 1.3 oster RF_PhysDiskAddr_t *pda;
1084 1.3 oster int foundit, i;
1085 1.3 oster
1086 1.3 oster foundit = 0;
1087 1.3 oster /* first compute the following raid addresses: start of stripe,
1088 1.3 oster * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1089 1.3 oster * MAX(end of access, end of failed SU), (eosStartAddr) end of
1090 1.3 oster * stripe (i.e. start of next stripe) (eosAddr) */
1091 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1092 1.3 oster sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1093 1.3 oster eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1094 1.3 oster eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1095 1.3 oster
1096 1.3 oster /* now generate access stripe maps for each of the above regions of
1097 1.3 oster * the stripe. Use a dummy (NULL) buf ptr for now */
1098 1.3 oster
1099 1.3 oster new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1100 1.3 oster new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1101 1.3 oster
1102 1.3 oster /* walk through the PDAs and range-restrict each SU to the region of
1103 1.3 oster * the SU touched on the failed PDA. also compute total data buffer
1104 1.3 oster * space requirements in this step. Ignore the parity for now. */
1105 1.35 oster /* Also count nodes to find out how many bufs need to be xored together */
1106 1.35 oster (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1107 1.35 oster * case, 1 is for failed data */
1108 1.3 oster
1109 1.3 oster if (new_asm_h[0]) {
1110 1.3 oster new_asm_h[0]->next = dag_h->asmList;
1111 1.3 oster dag_h->asmList = new_asm_h[0];
1112 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1113 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1114 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1115 1.3 oster }
1116 1.35 oster (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1117 1.3 oster }
1118 1.3 oster if (new_asm_h[1]) {
1119 1.3 oster new_asm_h[1]->next = dag_h->asmList;
1120 1.3 oster dag_h->asmList = new_asm_h[1];
1121 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1122 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1123 1.44 oster pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1124 1.3 oster }
1125 1.3 oster (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1126 1.3 oster }
1127 1.45 perry
1128 1.35 oster /* allocate a buffer for parity */
1129 1.45 perry if (rpBufPtr)
1130 1.44 oster *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1131 1.3 oster
1132 1.3 oster /* the last step is to figure out how many more distinct buffers need
1133 1.3 oster * to get xor'd to produce the missing unit. there's one for each
1134 1.3 oster * user-data read node that overlaps the portion of the failed unit
1135 1.3 oster * being accessed */
1136 1.3 oster
1137 1.3 oster for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1138 1.3 oster if (pda == failedPDA) {
1139 1.3 oster i--;
1140 1.3 oster foundit = 1;
1141 1.3 oster continue;
1142 1.3 oster }
1143 1.3 oster if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1144 1.3 oster overlappingPDAs[i] = 1;
1145 1.3 oster (*nXorBufs)++;
1146 1.3 oster }
1147 1.3 oster }
1148 1.3 oster if (!foundit) {
1149 1.3 oster RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1150 1.3 oster RF_ASSERT(0);
1151 1.3 oster }
1152 1.31 oster #if RF_DEBUG_DAG
1153 1.3 oster if (rf_degDagDebug) {
1154 1.3 oster if (new_asm_h[0]) {
1155 1.3 oster printf("First asm:\n");
1156 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1157 1.3 oster }
1158 1.3 oster if (new_asm_h[1]) {
1159 1.3 oster printf("Second asm:\n");
1160 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1161 1.3 oster }
1162 1.3 oster }
1163 1.31 oster #endif
1164 1.1 oster }
1165 1.1 oster
1166 1.1 oster
1167 1.1 oster /* adjusts the offset and number of sectors in the destination pda so that
1168 1.1 oster * it covers at most the region of the SU covered by the source PDA. This
1169 1.1 oster * is exclusively a restriction: the number of sectors indicated by the
1170 1.1 oster * target PDA can only shrink.
1171 1.1 oster *
1172 1.1 oster * For example: s = sectors within SU indicated by source PDA
1173 1.1 oster * d = sectors within SU indicated by dest PDA
1174 1.1 oster * r = results, stored in dest PDA
1175 1.1 oster *
1176 1.1 oster * |--------------- one stripe unit ---------------------|
1177 1.1 oster * | sssssssssssssssssssssssssssssssss |
1178 1.1 oster * | ddddddddddddddddddddddddddddddddddddddddddddd |
1179 1.1 oster * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1180 1.1 oster *
1181 1.1 oster * Another example:
1182 1.1 oster *
1183 1.1 oster * |--------------- one stripe unit ---------------------|
1184 1.1 oster * | sssssssssssssssssssssssssssssssss |
1185 1.1 oster * | ddddddddddddddddddddddd |
1186 1.1 oster * | rrrrrrrrrrrrrrrr |
1187 1.1 oster *
1188 1.1 oster */
1189 1.45 perry void
1190 1.23 oster rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1191 1.23 oster RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1192 1.3 oster {
1193 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1194 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1195 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1196 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1197 1.3 oster * stay within SU */
1198 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1199 1.3 oster RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1200 1.3 oster
1201 1.3 oster dest->startSector = subAddr + RF_MAX(soffs, doffs);
1202 1.3 oster dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1203 1.3 oster
1204 1.3 oster if (dobuffer)
1205 1.51 christos dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
1206 1.3 oster if (doraidaddr) {
1207 1.3 oster dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1208 1.3 oster rf_StripeUnitOffset(layoutPtr, dest->startSector);
1209 1.3 oster }
1210 1.1 oster }
1211 1.11 oster
1212 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1213 1.11 oster
1214 1.1 oster /*
1215 1.1 oster * Want the highest of these primes to be the largest one
1216 1.1 oster * less than the max expected number of columns (won't hurt
1217 1.1 oster * to be too small or too large, but won't be optimal, either)
1218 1.1 oster * --jimz
1219 1.1 oster */
1220 1.1 oster #define NLOWPRIMES 8
1221 1.3 oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1222 1.1 oster /*****************************************************************************
1223 1.1 oster * compute the workload shift factor. (chained declustering)
1224 1.1 oster *
1225 1.1 oster * return nonzero if access should shift to secondary, otherwise,
1226 1.1 oster * access is to primary
1227 1.1 oster *****************************************************************************/
1228 1.45 perry int
1229 1.23 oster rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1230 1.3 oster {
1231 1.3 oster /*
1232 1.3 oster * variables:
1233 1.3 oster * d = column of disk containing primary
1234 1.3 oster * f = column of failed disk
1235 1.3 oster * n = number of disks in array
1236 1.3 oster * sd = "shift distance" (number of columns that d is to the right of f)
1237 1.3 oster * v = numerator of redirection ratio
1238 1.3 oster * k = denominator of redirection ratio
1239 1.3 oster */
1240 1.21 oster RF_RowCol_t d, f, sd, n;
1241 1.3 oster int k, v, ret, i;
1242 1.3 oster
1243 1.3 oster n = raidPtr->numCol;
1244 1.3 oster
1245 1.3 oster /* assign column of primary copy to d */
1246 1.3 oster d = pda->col;
1247 1.3 oster
1248 1.3 oster /* assign column of dead disk to f */
1249 1.54 joerg for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
1250 1.54 joerg continue;
1251 1.3 oster
1252 1.3 oster RF_ASSERT(f < n);
1253 1.3 oster RF_ASSERT(f != d);
1254 1.3 oster
1255 1.3 oster sd = (f > d) ? (n + d - f) : (d - f);
1256 1.3 oster RF_ASSERT(sd < n);
1257 1.3 oster
1258 1.3 oster /*
1259 1.3 oster * v of every k accesses should be redirected
1260 1.3 oster *
1261 1.3 oster * v/k := (n-1-sd)/(n-1)
1262 1.3 oster */
1263 1.3 oster v = (n - 1 - sd);
1264 1.3 oster k = (n - 1);
1265 1.1 oster
1266 1.1 oster #if 1
1267 1.3 oster /*
1268 1.3 oster * XXX
1269 1.3 oster * Is this worth it?
1270 1.3 oster *
1271 1.3 oster * Now reduce the fraction, by repeatedly factoring
1272 1.3 oster * out primes (just like they teach in elementary school!)
1273 1.3 oster */
1274 1.3 oster for (i = 0; i < NLOWPRIMES; i++) {
1275 1.3 oster if (lowprimes[i] > v)
1276 1.3 oster break;
1277 1.3 oster while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1278 1.3 oster v /= lowprimes[i];
1279 1.3 oster k /= lowprimes[i];
1280 1.3 oster }
1281 1.3 oster }
1282 1.1 oster #endif
1283 1.1 oster
1284 1.21 oster raidPtr->hist_diskreq[d]++;
1285 1.21 oster if (raidPtr->hist_diskreq[d] > v) {
1286 1.3 oster ret = 0; /* do not redirect */
1287 1.3 oster } else {
1288 1.3 oster ret = 1; /* redirect */
1289 1.3 oster }
1290 1.1 oster
1291 1.1 oster #if 0
1292 1.3 oster printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1293 1.21 oster raidPtr->hist_diskreq[d]);
1294 1.1 oster #endif
1295 1.1 oster
1296 1.21 oster if (raidPtr->hist_diskreq[d] >= k) {
1297 1.3 oster /* reset counter */
1298 1.21 oster raidPtr->hist_diskreq[d] = 0;
1299 1.3 oster }
1300 1.3 oster return (ret);
1301 1.1 oster }
1302 1.11 oster #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1303 1.11 oster
1304 1.1 oster /*
1305 1.1 oster * Disk selection routines
1306 1.1 oster */
1307 1.1 oster
1308 1.1 oster /*
1309 1.1 oster * Selects the disk with the shortest queue from a mirror pair.
1310 1.1 oster * Both the disk I/Os queued in RAIDframe as well as those at the physical
1311 1.1 oster * disk are counted as members of the "queue"
1312 1.1 oster */
1313 1.45 perry void
1314 1.3 oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1315 1.1 oster {
1316 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1317 1.21 oster RF_RowCol_t colData, colMirror;
1318 1.3 oster int dataQueueLength, mirrorQueueLength, usemirror;
1319 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1320 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1321 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1322 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1323 1.21 oster RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1324 1.3 oster
1325 1.3 oster /* return the [row col] of the disk with the shortest queue */
1326 1.3 oster colData = data_pda->col;
1327 1.3 oster colMirror = mirror_pda->col;
1328 1.21 oster dataQueue = &(dqs[colData]);
1329 1.21 oster mirrorQueue = &(dqs[colMirror]);
1330 1.1 oster
1331 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1332 1.3 oster RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1333 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1334 1.3 oster dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1335 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1336 1.3 oster RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1337 1.3 oster RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1338 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1339 1.3 oster mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1340 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1341 1.3 oster RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1342 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1343 1.1 oster
1344 1.3 oster usemirror = 0;
1345 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1346 1.3 oster usemirror = 0;
1347 1.3 oster } else
1348 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1349 1.3 oster usemirror = 1;
1350 1.3 oster } else
1351 1.5 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1352 1.5 oster /* Trust only the main disk */
1353 1.3 oster usemirror = 0;
1354 1.3 oster } else
1355 1.5 oster if (dataQueueLength < mirrorQueueLength) {
1356 1.5 oster usemirror = 0;
1357 1.5 oster } else
1358 1.5 oster if (mirrorQueueLength < dataQueueLength) {
1359 1.5 oster usemirror = 1;
1360 1.3 oster } else {
1361 1.5 oster /* queues are equal length. attempt
1362 1.5 oster * cleverness. */
1363 1.5 oster if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1364 1.5 oster <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1365 1.5 oster usemirror = 0;
1366 1.5 oster } else {
1367 1.5 oster usemirror = 1;
1368 1.5 oster }
1369 1.3 oster }
1370 1.3 oster
1371 1.3 oster if (usemirror) {
1372 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1373 1.3 oster tmp_pda = data_pda;
1374 1.3 oster node->params[0].p = mirror_pda;
1375 1.3 oster node->params[4].p = tmp_pda;
1376 1.3 oster } else {
1377 1.3 oster /* use data disk, leave param 0 unchanged */
1378 1.3 oster }
1379 1.3 oster /* printf("dataQueueLength %d, mirrorQueueLength
1380 1.3 oster * %d\n",dataQueueLength, mirrorQueueLength); */
1381 1.1 oster }
1382 1.19 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1383 1.1 oster /*
1384 1.1 oster * Do simple partitioning. This assumes that
1385 1.1 oster * the data and parity disks are laid out identically.
1386 1.1 oster */
1387 1.45 perry void
1388 1.3 oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1389 1.1 oster {
1390 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1391 1.21 oster RF_RowCol_t colData, colMirror;
1392 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1393 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1394 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1395 1.21 oster RF_RaidDisk_t *disks = raidPtr->Disks;
1396 1.3 oster int usemirror;
1397 1.3 oster
1398 1.3 oster /* return the [row col] of the disk with the shortest queue */
1399 1.3 oster colData = data_pda->col;
1400 1.3 oster colMirror = mirror_pda->col;
1401 1.3 oster
1402 1.3 oster usemirror = 0;
1403 1.21 oster if (RF_DEAD_DISK(disks[colMirror].status)) {
1404 1.3 oster usemirror = 0;
1405 1.3 oster } else
1406 1.21 oster if (RF_DEAD_DISK(disks[colData].status)) {
1407 1.3 oster usemirror = 1;
1408 1.45 perry } else
1409 1.6 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1410 1.6 oster /* Trust only the main disk */
1411 1.3 oster usemirror = 0;
1412 1.6 oster } else
1413 1.45 perry if (data_pda->startSector <
1414 1.21 oster (disks[colData].numBlocks / 2)) {
1415 1.6 oster usemirror = 0;
1416 1.6 oster } else {
1417 1.6 oster usemirror = 1;
1418 1.6 oster }
1419 1.3 oster
1420 1.3 oster if (usemirror) {
1421 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1422 1.3 oster tmp_pda = data_pda;
1423 1.3 oster node->params[0].p = mirror_pda;
1424 1.3 oster node->params[4].p = tmp_pda;
1425 1.3 oster } else {
1426 1.3 oster /* use data disk, leave param 0 unchanged */
1427 1.3 oster }
1428 1.1 oster }
1429 1.19 oster #endif
1430