rf_dagutils.c revision 1.8 1 1.8 oster /* $NetBSD: rf_dagutils.c,v 1.8 2001/10/04 15:58:52 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /******************************************************************************
30 1.1 oster *
31 1.1 oster * rf_dagutils.c -- utility routines for manipulating dags
32 1.1 oster *
33 1.1 oster *****************************************************************************/
34 1.1 oster
35 1.8 oster #include <dev/raidframe/raidframevar.h>
36 1.8 oster
37 1.1 oster #include "rf_archs.h"
38 1.1 oster #include "rf_threadstuff.h"
39 1.1 oster #include "rf_raid.h"
40 1.1 oster #include "rf_dag.h"
41 1.1 oster #include "rf_dagutils.h"
42 1.1 oster #include "rf_dagfuncs.h"
43 1.1 oster #include "rf_general.h"
44 1.1 oster #include "rf_freelist.h"
45 1.1 oster #include "rf_map.h"
46 1.1 oster #include "rf_shutdown.h"
47 1.1 oster
48 1.1 oster #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
49 1.1 oster
50 1.1 oster RF_RedFuncs_t rf_xorFuncs = {
51 1.1 oster rf_RegularXorFunc, "Reg Xr",
52 1.3 oster rf_SimpleXorFunc, "Simple Xr"};
53 1.1 oster
54 1.1 oster RF_RedFuncs_t rf_xorRecoveryFuncs = {
55 1.1 oster rf_RecoveryXorFunc, "Recovery Xr",
56 1.3 oster rf_RecoveryXorFunc, "Recovery Xr"};
57 1.1 oster
58 1.1 oster static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
59 1.1 oster static void rf_PrintDAG(RF_DagHeader_t *);
60 1.3 oster static int
61 1.3 oster rf_ValidateBranch(RF_DagNode_t *, int *, int *,
62 1.3 oster RF_DagNode_t **, int);
63 1.1 oster static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
64 1.1 oster static void rf_ValidateVisitedBits(RF_DagHeader_t *);
65 1.1 oster
66 1.1 oster /******************************************************************************
67 1.1 oster *
68 1.1 oster * InitNode - initialize a dag node
69 1.1 oster *
70 1.1 oster * the size of the propList array is always the same as that of the
71 1.1 oster * successors array.
72 1.1 oster *
73 1.1 oster *****************************************************************************/
74 1.3 oster void
75 1.3 oster rf_InitNode(
76 1.3 oster RF_DagNode_t * node,
77 1.3 oster RF_NodeStatus_t initstatus,
78 1.3 oster int commit,
79 1.3 oster int (*doFunc) (RF_DagNode_t * node),
80 1.3 oster int (*undoFunc) (RF_DagNode_t * node),
81 1.3 oster int (*wakeFunc) (RF_DagNode_t * node, int status),
82 1.3 oster int nSucc,
83 1.3 oster int nAnte,
84 1.3 oster int nParam,
85 1.3 oster int nResult,
86 1.3 oster RF_DagHeader_t * hdr,
87 1.3 oster char *name,
88 1.3 oster RF_AllocListElem_t * alist)
89 1.3 oster {
90 1.3 oster void **ptrs;
91 1.3 oster int nptrs;
92 1.3 oster
93 1.3 oster if (nAnte > RF_MAX_ANTECEDENTS)
94 1.3 oster RF_PANIC();
95 1.3 oster node->status = initstatus;
96 1.3 oster node->commitNode = commit;
97 1.3 oster node->doFunc = doFunc;
98 1.3 oster node->undoFunc = undoFunc;
99 1.3 oster node->wakeFunc = wakeFunc;
100 1.3 oster node->numParams = nParam;
101 1.3 oster node->numResults = nResult;
102 1.3 oster node->numAntecedents = nAnte;
103 1.3 oster node->numAntDone = 0;
104 1.3 oster node->next = NULL;
105 1.3 oster node->numSuccedents = nSucc;
106 1.3 oster node->name = name;
107 1.3 oster node->dagHdr = hdr;
108 1.3 oster node->visited = 0;
109 1.3 oster
110 1.3 oster /* allocate all the pointers with one call to malloc */
111 1.3 oster nptrs = nSucc + nAnte + nResult + nSucc;
112 1.3 oster
113 1.3 oster if (nptrs <= RF_DAG_PTRCACHESIZE) {
114 1.3 oster /*
115 1.3 oster * The dag_ptrs field of the node is basically some scribble
116 1.3 oster * space to be used here. We could get rid of it, and always
117 1.3 oster * allocate the range of pointers, but that's expensive. So,
118 1.3 oster * we pick a "common case" size for the pointer cache. Hopefully,
119 1.3 oster * we'll find that:
120 1.3 oster * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
121 1.3 oster * only a little bit (least efficient case)
122 1.3 oster * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
123 1.3 oster * (wasted memory)
124 1.3 oster */
125 1.3 oster ptrs = (void **) node->dag_ptrs;
126 1.3 oster } else {
127 1.3 oster RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
128 1.3 oster }
129 1.3 oster node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
130 1.3 oster node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
131 1.3 oster node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
132 1.3 oster node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
133 1.3 oster
134 1.3 oster if (nParam) {
135 1.3 oster if (nParam <= RF_DAG_PARAMCACHESIZE) {
136 1.3 oster node->params = (RF_DagParam_t *) node->dag_params;
137 1.3 oster } else {
138 1.3 oster RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
139 1.3 oster }
140 1.3 oster } else {
141 1.3 oster node->params = NULL;
142 1.3 oster }
143 1.1 oster }
144 1.1 oster
145 1.1 oster
146 1.1 oster
147 1.1 oster /******************************************************************************
148 1.1 oster *
149 1.1 oster * allocation and deallocation routines
150 1.1 oster *
151 1.1 oster *****************************************************************************/
152 1.1 oster
153 1.3 oster void
154 1.3 oster rf_FreeDAG(dag_h)
155 1.3 oster RF_DagHeader_t *dag_h;
156 1.3 oster {
157 1.3 oster RF_AccessStripeMapHeader_t *asmap, *t_asmap;
158 1.3 oster RF_DagHeader_t *nextDag;
159 1.3 oster int i;
160 1.3 oster
161 1.3 oster while (dag_h) {
162 1.3 oster nextDag = dag_h->next;
163 1.3 oster for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
164 1.3 oster /* release mem chunks */
165 1.3 oster rf_ReleaseMemChunk(dag_h->memChunk[i]);
166 1.3 oster dag_h->memChunk[i] = NULL;
167 1.3 oster }
168 1.3 oster
169 1.3 oster RF_ASSERT(i == dag_h->chunkIndex);
170 1.3 oster if (dag_h->xtraChunkCnt > 0) {
171 1.3 oster /* free xtraMemChunks */
172 1.3 oster for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
173 1.3 oster rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
174 1.3 oster dag_h->xtraMemChunk[i] = NULL;
175 1.3 oster }
176 1.3 oster RF_ASSERT(i == dag_h->xtraChunkIndex);
177 1.3 oster /* free ptrs to xtraMemChunks */
178 1.3 oster RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
179 1.3 oster }
180 1.3 oster rf_FreeAllocList(dag_h->allocList);
181 1.3 oster for (asmap = dag_h->asmList; asmap;) {
182 1.3 oster t_asmap = asmap;
183 1.3 oster asmap = asmap->next;
184 1.3 oster rf_FreeAccessStripeMap(t_asmap);
185 1.3 oster }
186 1.3 oster rf_FreeDAGHeader(dag_h);
187 1.3 oster dag_h = nextDag;
188 1.3 oster }
189 1.3 oster }
190 1.3 oster
191 1.3 oster RF_PropHeader_t *
192 1.3 oster rf_MakePropListEntry(
193 1.3 oster RF_DagHeader_t * dag_h,
194 1.3 oster int resultNum,
195 1.3 oster int paramNum,
196 1.3 oster RF_PropHeader_t * next,
197 1.3 oster RF_AllocListElem_t * allocList)
198 1.3 oster {
199 1.3 oster RF_PropHeader_t *p;
200 1.3 oster
201 1.3 oster RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
202 1.3 oster (RF_PropHeader_t *), allocList);
203 1.3 oster p->resultNum = resultNum;
204 1.3 oster p->paramNum = paramNum;
205 1.3 oster p->next = next;
206 1.3 oster return (p);
207 1.1 oster }
208 1.1 oster
209 1.1 oster static RF_FreeList_t *rf_dagh_freelist;
210 1.1 oster
211 1.1 oster #define RF_MAX_FREE_DAGH 128
212 1.1 oster #define RF_DAGH_INC 16
213 1.1 oster #define RF_DAGH_INITIAL 32
214 1.1 oster
215 1.1 oster static void rf_ShutdownDAGs(void *);
216 1.3 oster static void
217 1.3 oster rf_ShutdownDAGs(ignored)
218 1.3 oster void *ignored;
219 1.1 oster {
220 1.3 oster RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
221 1.1 oster }
222 1.1 oster
223 1.3 oster int
224 1.3 oster rf_ConfigureDAGs(listp)
225 1.3 oster RF_ShutdownList_t **listp;
226 1.1 oster {
227 1.3 oster int rc;
228 1.1 oster
229 1.1 oster RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
230 1.3 oster RF_DAGH_INC, sizeof(RF_DagHeader_t));
231 1.1 oster if (rf_dagh_freelist == NULL)
232 1.3 oster return (ENOMEM);
233 1.1 oster rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
234 1.1 oster if (rc) {
235 1.1 oster RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
236 1.3 oster __FILE__, __LINE__, rc);
237 1.1 oster rf_ShutdownDAGs(NULL);
238 1.3 oster return (rc);
239 1.1 oster }
240 1.3 oster RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
241 1.3 oster (RF_DagHeader_t *));
242 1.3 oster return (0);
243 1.1 oster }
244 1.1 oster
245 1.3 oster RF_DagHeader_t *
246 1.3 oster rf_AllocDAGHeader()
247 1.1 oster {
248 1.1 oster RF_DagHeader_t *dh;
249 1.1 oster
250 1.3 oster RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
251 1.1 oster if (dh) {
252 1.7 thorpej memset((char *) dh, 0, sizeof(RF_DagHeader_t));
253 1.1 oster }
254 1.3 oster return (dh);
255 1.1 oster }
256 1.1 oster
257 1.3 oster void
258 1.3 oster rf_FreeDAGHeader(RF_DagHeader_t * dh)
259 1.1 oster {
260 1.3 oster RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
261 1.1 oster }
262 1.1 oster /* allocates a buffer big enough to hold the data described by pda */
263 1.3 oster void *
264 1.3 oster rf_AllocBuffer(
265 1.3 oster RF_Raid_t * raidPtr,
266 1.3 oster RF_DagHeader_t * dag_h,
267 1.3 oster RF_PhysDiskAddr_t * pda,
268 1.3 oster RF_AllocListElem_t * allocList)
269 1.3 oster {
270 1.3 oster char *p;
271 1.3 oster
272 1.3 oster RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
273 1.3 oster (char *), allocList);
274 1.3 oster return ((void *) p);
275 1.1 oster }
276 1.1 oster /******************************************************************************
277 1.1 oster *
278 1.1 oster * debug routines
279 1.1 oster *
280 1.1 oster *****************************************************************************/
281 1.1 oster
282 1.3 oster char *
283 1.3 oster rf_NodeStatusString(RF_DagNode_t * node)
284 1.1 oster {
285 1.3 oster switch (node->status) {
286 1.3 oster case rf_wait:return ("wait");
287 1.3 oster case rf_fired:
288 1.3 oster return ("fired");
289 1.3 oster case rf_good:
290 1.3 oster return ("good");
291 1.3 oster case rf_bad:
292 1.3 oster return ("bad");
293 1.3 oster default:
294 1.3 oster return ("?");
295 1.3 oster }
296 1.3 oster }
297 1.1 oster
298 1.3 oster void
299 1.3 oster rf_PrintNodeInfoString(RF_DagNode_t * node)
300 1.3 oster {
301 1.3 oster RF_PhysDiskAddr_t *pda;
302 1.3 oster int (*df) (RF_DagNode_t *) = node->doFunc;
303 1.3 oster int i, lk, unlk;
304 1.3 oster void *bufPtr;
305 1.3 oster
306 1.3 oster if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
307 1.3 oster || (df == rf_DiskReadMirrorIdleFunc)
308 1.3 oster || (df == rf_DiskReadMirrorPartitionFunc)) {
309 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
310 1.3 oster bufPtr = (void *) node->params[1].p;
311 1.3 oster lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
312 1.3 oster unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
313 1.3 oster RF_ASSERT(!(lk && unlk));
314 1.3 oster printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
315 1.3 oster (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
316 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
317 1.3 oster return;
318 1.3 oster }
319 1.3 oster if (df == rf_DiskUnlockFunc) {
320 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[0].p;
321 1.3 oster lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
322 1.3 oster unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
323 1.3 oster RF_ASSERT(!(lk && unlk));
324 1.3 oster printf("r %d c %d %s\n", pda->row, pda->col,
325 1.3 oster (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
326 1.3 oster return;
327 1.3 oster }
328 1.3 oster if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
329 1.3 oster || (df == rf_RecoveryXorFunc)) {
330 1.3 oster printf("result buf 0x%lx\n", (long) node->results[0]);
331 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
332 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
333 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
334 1.3 oster printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
335 1.3 oster (long) bufPtr, pda->row, pda->col,
336 1.3 oster (long) pda->startSector, (int) pda->numSector);
337 1.3 oster }
338 1.3 oster return;
339 1.3 oster }
340 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
341 1.3 oster if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
342 1.3 oster for (i = 0; i < node->numParams - 1; i += 2) {
343 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
344 1.3 oster bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
345 1.3 oster printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
346 1.3 oster pda->row, pda->col, (long) pda->startSector,
347 1.3 oster (int) pda->numSector, (long) bufPtr);
348 1.3 oster }
349 1.3 oster return;
350 1.3 oster }
351 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
352 1.3 oster
353 1.3 oster if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
354 1.3 oster printf("\n");
355 1.3 oster return;
356 1.3 oster }
357 1.3 oster printf("?\n");
358 1.3 oster }
359 1.3 oster
360 1.3 oster static void
361 1.3 oster rf_RecurPrintDAG(node, depth, unvisited)
362 1.3 oster RF_DagNode_t *node;
363 1.3 oster int depth;
364 1.3 oster int unvisited;
365 1.3 oster {
366 1.3 oster char *anttype;
367 1.3 oster int i;
368 1.3 oster
369 1.3 oster node->visited = (unvisited) ? 0 : 1;
370 1.3 oster printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
371 1.3 oster node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
372 1.3 oster node->numSuccedents, node->numSuccFired, node->numSuccDone,
373 1.3 oster node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
374 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
375 1.3 oster printf("%d%s", node->succedents[i]->nodeNum,
376 1.3 oster ((i == node->numSuccedents - 1) ? "\0" : " "));
377 1.3 oster }
378 1.3 oster printf("} A{");
379 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
380 1.3 oster switch (node->antType[i]) {
381 1.3 oster case rf_trueData:
382 1.3 oster anttype = "T";
383 1.3 oster break;
384 1.3 oster case rf_antiData:
385 1.3 oster anttype = "A";
386 1.3 oster break;
387 1.3 oster case rf_outputData:
388 1.3 oster anttype = "O";
389 1.3 oster break;
390 1.3 oster case rf_control:
391 1.3 oster anttype = "C";
392 1.3 oster break;
393 1.3 oster default:
394 1.3 oster anttype = "?";
395 1.3 oster break;
396 1.3 oster }
397 1.3 oster printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
398 1.3 oster }
399 1.3 oster printf("}; ");
400 1.3 oster rf_PrintNodeInfoString(node);
401 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
402 1.3 oster if (node->succedents[i]->visited == unvisited)
403 1.3 oster rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
404 1.3 oster }
405 1.1 oster }
406 1.1 oster
407 1.3 oster static void
408 1.3 oster rf_PrintDAG(dag_h)
409 1.3 oster RF_DagHeader_t *dag_h;
410 1.3 oster {
411 1.3 oster int unvisited, i;
412 1.3 oster char *status;
413 1.3 oster
414 1.3 oster /* set dag status */
415 1.3 oster switch (dag_h->status) {
416 1.3 oster case rf_enable:
417 1.3 oster status = "enable";
418 1.3 oster break;
419 1.3 oster case rf_rollForward:
420 1.3 oster status = "rollForward";
421 1.3 oster break;
422 1.3 oster case rf_rollBackward:
423 1.3 oster status = "rollBackward";
424 1.3 oster break;
425 1.3 oster default:
426 1.3 oster status = "illegal!";
427 1.3 oster break;
428 1.3 oster }
429 1.3 oster /* find out if visited bits are currently set or clear */
430 1.3 oster unvisited = dag_h->succedents[0]->visited;
431 1.3 oster
432 1.3 oster printf("DAG type: %s\n", dag_h->creator);
433 1.3 oster printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
434 1.3 oster printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
435 1.3 oster status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
436 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
437 1.3 oster printf("%d%s", dag_h->succedents[i]->nodeNum,
438 1.3 oster ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
439 1.3 oster }
440 1.3 oster printf("};\n");
441 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
442 1.3 oster if (dag_h->succedents[i]->visited == unvisited)
443 1.3 oster rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
444 1.3 oster }
445 1.3 oster }
446 1.1 oster /* assigns node numbers */
447 1.3 oster int
448 1.3 oster rf_AssignNodeNums(RF_DagHeader_t * dag_h)
449 1.1 oster {
450 1.3 oster int unvisited, i, nnum;
451 1.3 oster RF_DagNode_t *node;
452 1.1 oster
453 1.3 oster nnum = 0;
454 1.3 oster unvisited = dag_h->succedents[0]->visited;
455 1.3 oster
456 1.3 oster dag_h->nodeNum = nnum++;
457 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
458 1.3 oster node = dag_h->succedents[i];
459 1.3 oster if (node->visited == unvisited) {
460 1.3 oster nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
461 1.3 oster }
462 1.3 oster }
463 1.3 oster return (nnum);
464 1.1 oster }
465 1.1 oster
466 1.3 oster int
467 1.3 oster rf_RecurAssignNodeNums(node, num, unvisited)
468 1.3 oster RF_DagNode_t *node;
469 1.3 oster int num;
470 1.3 oster int unvisited;
471 1.3 oster {
472 1.3 oster int i;
473 1.3 oster
474 1.3 oster node->visited = (unvisited) ? 0 : 1;
475 1.3 oster
476 1.3 oster node->nodeNum = num++;
477 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
478 1.3 oster if (node->succedents[i]->visited == unvisited) {
479 1.3 oster num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
480 1.3 oster }
481 1.3 oster }
482 1.3 oster return (num);
483 1.3 oster }
484 1.1 oster /* set the header pointers in each node to "newptr" */
485 1.3 oster void
486 1.3 oster rf_ResetDAGHeaderPointers(dag_h, newptr)
487 1.3 oster RF_DagHeader_t *dag_h;
488 1.3 oster RF_DagHeader_t *newptr;
489 1.3 oster {
490 1.3 oster int i;
491 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++)
492 1.3 oster if (dag_h->succedents[i]->dagHdr != newptr)
493 1.3 oster rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
494 1.1 oster }
495 1.1 oster
496 1.3 oster void
497 1.3 oster rf_RecurResetDAGHeaderPointers(node, newptr)
498 1.3 oster RF_DagNode_t *node;
499 1.3 oster RF_DagHeader_t *newptr;
500 1.1 oster {
501 1.3 oster int i;
502 1.3 oster node->dagHdr = newptr;
503 1.3 oster for (i = 0; i < node->numSuccedents; i++)
504 1.3 oster if (node->succedents[i]->dagHdr != newptr)
505 1.3 oster rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
506 1.3 oster }
507 1.1 oster
508 1.1 oster
509 1.3 oster void
510 1.3 oster rf_PrintDAGList(RF_DagHeader_t * dag_h)
511 1.3 oster {
512 1.3 oster int i = 0;
513 1.3 oster
514 1.3 oster for (; dag_h; dag_h = dag_h->next) {
515 1.3 oster rf_AssignNodeNums(dag_h);
516 1.3 oster printf("\n\nDAG %d IN LIST:\n", i++);
517 1.3 oster rf_PrintDAG(dag_h);
518 1.3 oster }
519 1.1 oster }
520 1.1 oster
521 1.3 oster static int
522 1.3 oster rf_ValidateBranch(node, scount, acount, nodes, unvisited)
523 1.3 oster RF_DagNode_t *node;
524 1.3 oster int *scount;
525 1.3 oster int *acount;
526 1.3 oster RF_DagNode_t **nodes;
527 1.3 oster int unvisited;
528 1.3 oster {
529 1.3 oster int i, retcode = 0;
530 1.3 oster
531 1.3 oster /* construct an array of node pointers indexed by node num */
532 1.3 oster node->visited = (unvisited) ? 0 : 1;
533 1.3 oster nodes[node->nodeNum] = node;
534 1.3 oster
535 1.3 oster if (node->next != NULL) {
536 1.3 oster printf("INVALID DAG: next pointer in node is not NULL\n");
537 1.3 oster retcode = 1;
538 1.3 oster }
539 1.3 oster if (node->status != rf_wait) {
540 1.3 oster printf("INVALID DAG: Node status is not wait\n");
541 1.3 oster retcode = 1;
542 1.3 oster }
543 1.3 oster if (node->numAntDone != 0) {
544 1.3 oster printf("INVALID DAG: numAntDone is not zero\n");
545 1.3 oster retcode = 1;
546 1.3 oster }
547 1.3 oster if (node->doFunc == rf_TerminateFunc) {
548 1.3 oster if (node->numSuccedents != 0) {
549 1.3 oster printf("INVALID DAG: Terminator node has succedents\n");
550 1.3 oster retcode = 1;
551 1.3 oster }
552 1.3 oster } else {
553 1.3 oster if (node->numSuccedents == 0) {
554 1.3 oster printf("INVALID DAG: Non-terminator node has no succedents\n");
555 1.3 oster retcode = 1;
556 1.3 oster }
557 1.3 oster }
558 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
559 1.3 oster if (!node->succedents[i]) {
560 1.3 oster printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
561 1.3 oster retcode = 1;
562 1.3 oster }
563 1.3 oster scount[node->succedents[i]->nodeNum]++;
564 1.3 oster }
565 1.3 oster for (i = 0; i < node->numAntecedents; i++) {
566 1.3 oster if (!node->antecedents[i]) {
567 1.3 oster printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
568 1.3 oster retcode = 1;
569 1.3 oster }
570 1.3 oster acount[node->antecedents[i]->nodeNum]++;
571 1.3 oster }
572 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
573 1.3 oster if (node->succedents[i]->visited == unvisited) {
574 1.3 oster if (rf_ValidateBranch(node->succedents[i], scount,
575 1.3 oster acount, nodes, unvisited)) {
576 1.3 oster retcode = 1;
577 1.3 oster }
578 1.3 oster }
579 1.3 oster }
580 1.3 oster return (retcode);
581 1.3 oster }
582 1.3 oster
583 1.3 oster static void
584 1.3 oster rf_ValidateBranchVisitedBits(node, unvisited, rl)
585 1.3 oster RF_DagNode_t *node;
586 1.3 oster int unvisited;
587 1.3 oster int rl;
588 1.3 oster {
589 1.3 oster int i;
590 1.3 oster
591 1.3 oster RF_ASSERT(node->visited == unvisited);
592 1.3 oster for (i = 0; i < node->numSuccedents; i++) {
593 1.3 oster if (node->succedents[i] == NULL) {
594 1.3 oster printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
595 1.3 oster RF_ASSERT(0);
596 1.3 oster }
597 1.3 oster rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
598 1.3 oster }
599 1.3 oster }
600 1.3 oster /* NOTE: never call this on a big dag, because it is exponential
601 1.3 oster * in execution time
602 1.3 oster */
603 1.3 oster static void
604 1.3 oster rf_ValidateVisitedBits(dag)
605 1.3 oster RF_DagHeader_t *dag;
606 1.3 oster {
607 1.3 oster int i, unvisited;
608 1.3 oster
609 1.3 oster unvisited = dag->succedents[0]->visited;
610 1.3 oster
611 1.3 oster for (i = 0; i < dag->numSuccedents; i++) {
612 1.3 oster if (dag->succedents[i] == NULL) {
613 1.3 oster printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
614 1.3 oster RF_ASSERT(0);
615 1.3 oster }
616 1.3 oster rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
617 1.3 oster }
618 1.3 oster }
619 1.1 oster /* validate a DAG. _at entry_ verify that:
620 1.1 oster * -- numNodesCompleted is zero
621 1.1 oster * -- node queue is null
622 1.1 oster * -- dag status is rf_enable
623 1.1 oster * -- next pointer is null on every node
624 1.1 oster * -- all nodes have status wait
625 1.1 oster * -- numAntDone is zero in all nodes
626 1.1 oster * -- terminator node has zero successors
627 1.1 oster * -- no other node besides terminator has zero successors
628 1.1 oster * -- no successor or antecedent pointer in a node is NULL
629 1.1 oster * -- number of times that each node appears as a successor of another node
630 1.1 oster * is equal to the antecedent count on that node
631 1.1 oster * -- number of times that each node appears as an antecedent of another node
632 1.1 oster * is equal to the succedent count on that node
633 1.1 oster * -- what else?
634 1.1 oster */
635 1.3 oster int
636 1.3 oster rf_ValidateDAG(dag_h)
637 1.3 oster RF_DagHeader_t *dag_h;
638 1.3 oster {
639 1.3 oster int i, nodecount;
640 1.3 oster int *scount, *acount;/* per-node successor and antecedent counts */
641 1.3 oster RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
642 1.3 oster int retcode = 0;
643 1.3 oster int unvisited;
644 1.3 oster int commitNodeCount = 0;
645 1.3 oster
646 1.3 oster if (rf_validateVisitedDebug)
647 1.3 oster rf_ValidateVisitedBits(dag_h);
648 1.3 oster
649 1.3 oster if (dag_h->numNodesCompleted != 0) {
650 1.3 oster printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
651 1.3 oster retcode = 1;
652 1.3 oster goto validate_dag_bad;
653 1.3 oster }
654 1.3 oster if (dag_h->status != rf_enable) {
655 1.3 oster printf("INVALID DAG: not enabled\n");
656 1.3 oster retcode = 1;
657 1.3 oster goto validate_dag_bad;
658 1.3 oster }
659 1.3 oster if (dag_h->numCommits != 0) {
660 1.3 oster printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
661 1.3 oster retcode = 1;
662 1.3 oster goto validate_dag_bad;
663 1.3 oster }
664 1.3 oster if (dag_h->numSuccedents != 1) {
665 1.3 oster /* currently, all dags must have only one succedent */
666 1.3 oster printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
667 1.3 oster retcode = 1;
668 1.3 oster goto validate_dag_bad;
669 1.3 oster }
670 1.3 oster nodecount = rf_AssignNodeNums(dag_h);
671 1.3 oster
672 1.3 oster unvisited = dag_h->succedents[0]->visited;
673 1.3 oster
674 1.3 oster RF_Calloc(scount, nodecount, sizeof(int), (int *));
675 1.3 oster RF_Calloc(acount, nodecount, sizeof(int), (int *));
676 1.3 oster RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
677 1.3 oster for (i = 0; i < dag_h->numSuccedents; i++) {
678 1.3 oster if ((dag_h->succedents[i]->visited == unvisited)
679 1.3 oster && rf_ValidateBranch(dag_h->succedents[i], scount,
680 1.3 oster acount, nodes, unvisited)) {
681 1.3 oster retcode = 1;
682 1.3 oster }
683 1.3 oster }
684 1.3 oster /* start at 1 to skip the header node */
685 1.3 oster for (i = 1; i < nodecount; i++) {
686 1.3 oster if (nodes[i]->commitNode)
687 1.3 oster commitNodeCount++;
688 1.3 oster if (nodes[i]->doFunc == NULL) {
689 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
690 1.3 oster retcode = 1;
691 1.3 oster goto validate_dag_out;
692 1.3 oster }
693 1.3 oster if (nodes[i]->undoFunc == NULL) {
694 1.3 oster printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
695 1.3 oster retcode = 1;
696 1.3 oster goto validate_dag_out;
697 1.3 oster }
698 1.3 oster if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
699 1.3 oster printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
700 1.3 oster nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
701 1.3 oster retcode = 1;
702 1.3 oster goto validate_dag_out;
703 1.3 oster }
704 1.3 oster if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
705 1.3 oster printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
706 1.3 oster nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
707 1.3 oster retcode = 1;
708 1.3 oster goto validate_dag_out;
709 1.3 oster }
710 1.3 oster }
711 1.1 oster
712 1.3 oster if (dag_h->numCommitNodes != commitNodeCount) {
713 1.3 oster printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
714 1.3 oster dag_h->numCommitNodes, commitNodeCount);
715 1.3 oster retcode = 1;
716 1.3 oster goto validate_dag_out;
717 1.3 oster }
718 1.1 oster validate_dag_out:
719 1.3 oster RF_Free(scount, nodecount * sizeof(int));
720 1.3 oster RF_Free(acount, nodecount * sizeof(int));
721 1.3 oster RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
722 1.3 oster if (retcode)
723 1.3 oster rf_PrintDAGList(dag_h);
724 1.3 oster
725 1.3 oster if (rf_validateVisitedDebug)
726 1.3 oster rf_ValidateVisitedBits(dag_h);
727 1.3 oster
728 1.3 oster return (retcode);
729 1.1 oster
730 1.1 oster validate_dag_bad:
731 1.3 oster rf_PrintDAGList(dag_h);
732 1.3 oster return (retcode);
733 1.1 oster }
734 1.1 oster
735 1.1 oster
736 1.1 oster /******************************************************************************
737 1.1 oster *
738 1.1 oster * misc construction routines
739 1.1 oster *
740 1.1 oster *****************************************************************************/
741 1.1 oster
742 1.3 oster void
743 1.3 oster rf_redirect_asm(
744 1.3 oster RF_Raid_t * raidPtr,
745 1.3 oster RF_AccessStripeMap_t * asmap)
746 1.3 oster {
747 1.3 oster int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
748 1.3 oster int row = asmap->physInfo->row;
749 1.3 oster int fcol = raidPtr->reconControl[row]->fcol;
750 1.3 oster int srow = raidPtr->reconControl[row]->spareRow;
751 1.3 oster int scol = raidPtr->reconControl[row]->spareCol;
752 1.3 oster RF_PhysDiskAddr_t *pda;
753 1.3 oster
754 1.3 oster RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
755 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
756 1.3 oster if (pda->col == fcol) {
757 1.3 oster if (rf_dagDebug) {
758 1.3 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
759 1.3 oster pda->startSector)) {
760 1.3 oster RF_PANIC();
761 1.3 oster }
762 1.3 oster }
763 1.3 oster /* printf("Remapped data for large write\n"); */
764 1.3 oster if (ds) {
765 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
766 1.3 oster &pda->row, &pda->col, &pda->startSector, RF_REMAP);
767 1.3 oster } else {
768 1.3 oster pda->row = srow;
769 1.3 oster pda->col = scol;
770 1.3 oster }
771 1.3 oster }
772 1.3 oster }
773 1.3 oster for (pda = asmap->parityInfo; pda; pda = pda->next) {
774 1.3 oster if (pda->col == fcol) {
775 1.3 oster if (rf_dagDebug) {
776 1.3 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
777 1.3 oster RF_PANIC();
778 1.3 oster }
779 1.3 oster }
780 1.3 oster }
781 1.3 oster if (ds) {
782 1.3 oster (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
783 1.3 oster } else {
784 1.3 oster pda->row = srow;
785 1.3 oster pda->col = scol;
786 1.3 oster }
787 1.3 oster }
788 1.1 oster }
789 1.1 oster
790 1.1 oster
791 1.1 oster /* this routine allocates read buffers and generates stripe maps for the
792 1.1 oster * regions of the array from the start of the stripe to the start of the
793 1.1 oster * access, and from the end of the access to the end of the stripe. It also
794 1.1 oster * computes and returns the number of DAG nodes needed to read all this data.
795 1.1 oster * Note that this routine does the wrong thing if the access is fully
796 1.1 oster * contained within one stripe unit, so we RF_ASSERT against this case at the
797 1.1 oster * start.
798 1.1 oster */
799 1.3 oster void
800 1.3 oster rf_MapUnaccessedPortionOfStripe(
801 1.3 oster RF_Raid_t * raidPtr,
802 1.3 oster RF_RaidLayout_t * layoutPtr,/* in: layout information */
803 1.3 oster RF_AccessStripeMap_t * asmap, /* in: access stripe map */
804 1.3 oster RF_DagHeader_t * dag_h, /* in: header of the dag to create */
805 1.3 oster RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
806 1.3 oster * headers, to be filled in */
807 1.3 oster int *nRodNodes, /* out: num nodes to be generated to read
808 1.3 oster * unaccessed data */
809 1.3 oster char **sosBuffer, /* out: pointers to newly allocated buffer */
810 1.3 oster char **eosBuffer,
811 1.3 oster RF_AllocListElem_t * allocList)
812 1.3 oster {
813 1.3 oster RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
814 1.3 oster RF_SectorNum_t sosNumSector, eosNumSector;
815 1.3 oster
816 1.3 oster RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
817 1.3 oster /* generate an access map for the region of the array from start of
818 1.3 oster * stripe to start of access */
819 1.3 oster new_asm_h[0] = new_asm_h[1] = NULL;
820 1.3 oster *nRodNodes = 0;
821 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
822 1.3 oster sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
823 1.3 oster sosNumSector = asmap->raidAddress - sosRaidAddress;
824 1.3 oster RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
825 1.3 oster new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
826 1.3 oster new_asm_h[0]->next = dag_h->asmList;
827 1.3 oster dag_h->asmList = new_asm_h[0];
828 1.3 oster *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
829 1.3 oster
830 1.3 oster RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
831 1.3 oster /* we're totally within one stripe here */
832 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
833 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
834 1.3 oster }
835 1.3 oster /* generate an access map for the region of the array from end of
836 1.3 oster * access to end of stripe */
837 1.3 oster if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
838 1.3 oster eosRaidAddress = asmap->endRaidAddress;
839 1.3 oster eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
840 1.3 oster RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
841 1.3 oster new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
842 1.3 oster new_asm_h[1]->next = dag_h->asmList;
843 1.3 oster dag_h->asmList = new_asm_h[1];
844 1.3 oster *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
845 1.3 oster
846 1.3 oster RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
847 1.3 oster /* we're totally within one stripe here */
848 1.3 oster if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
849 1.3 oster rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
850 1.3 oster }
851 1.1 oster }
852 1.1 oster
853 1.1 oster
854 1.1 oster
855 1.1 oster /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
856 1.3 oster int
857 1.3 oster rf_PDAOverlap(
858 1.3 oster RF_RaidLayout_t * layoutPtr,
859 1.3 oster RF_PhysDiskAddr_t * src,
860 1.3 oster RF_PhysDiskAddr_t * dest)
861 1.3 oster {
862 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
863 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
864 1.3 oster /* use -1 to be sure we stay within SU */
865 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
866 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
867 1.3 oster return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
868 1.1 oster }
869 1.1 oster
870 1.1 oster
871 1.1 oster /* GenerateFailedAccessASMs
872 1.1 oster *
873 1.1 oster * this routine figures out what portion of the stripe needs to be read
874 1.1 oster * to effect the degraded read or write operation. It's primary function
875 1.1 oster * is to identify everything required to recover the data, and then
876 1.1 oster * eliminate anything that is already being accessed by the user.
877 1.1 oster *
878 1.1 oster * The main result is two new ASMs, one for the region from the start of the
879 1.1 oster * stripe to the start of the access, and one for the region from the end of
880 1.1 oster * the access to the end of the stripe. These ASMs describe everything that
881 1.1 oster * needs to be read to effect the degraded access. Other results are:
882 1.1 oster * nXorBufs -- the total number of buffers that need to be XORed together to
883 1.1 oster * recover the lost data,
884 1.1 oster * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
885 1.1 oster * at entry, not allocated.
886 1.1 oster * overlappingPDAs --
887 1.1 oster * describes which of the non-failed PDAs in the user access
888 1.1 oster * overlap data that needs to be read to effect recovery.
889 1.1 oster * overlappingPDAs[i]==1 if and only if, neglecting the failed
890 1.1 oster * PDA, the ith pda in the input asm overlaps data that needs
891 1.1 oster * to be read for recovery.
892 1.1 oster */
893 1.1 oster /* in: asm - ASM for the actual access, one stripe only */
894 1.1 oster /* in: faildPDA - which component of the access has failed */
895 1.1 oster /* in: dag_h - header of the DAG we're going to create */
896 1.1 oster /* out: new_asm_h - the two new ASMs */
897 1.1 oster /* out: nXorBufs - the total number of xor bufs required */
898 1.1 oster /* out: rpBufPtr - a buffer for the parity read */
899 1.3 oster void
900 1.3 oster rf_GenerateFailedAccessASMs(
901 1.3 oster RF_Raid_t * raidPtr,
902 1.3 oster RF_AccessStripeMap_t * asmap,
903 1.3 oster RF_PhysDiskAddr_t * failedPDA,
904 1.3 oster RF_DagHeader_t * dag_h,
905 1.3 oster RF_AccessStripeMapHeader_t ** new_asm_h,
906 1.3 oster int *nXorBufs,
907 1.3 oster char **rpBufPtr,
908 1.3 oster char *overlappingPDAs,
909 1.3 oster RF_AllocListElem_t * allocList)
910 1.3 oster {
911 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
912 1.3 oster
913 1.3 oster /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
914 1.3 oster RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
915 1.3 oster
916 1.3 oster RF_SectorCount_t numSect[2], numParitySect;
917 1.3 oster RF_PhysDiskAddr_t *pda;
918 1.3 oster char *rdBuf, *bufP;
919 1.3 oster int foundit, i;
920 1.3 oster
921 1.3 oster bufP = NULL;
922 1.3 oster foundit = 0;
923 1.3 oster /* first compute the following raid addresses: start of stripe,
924 1.3 oster * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
925 1.3 oster * MAX(end of access, end of failed SU), (eosStartAddr) end of
926 1.3 oster * stripe (i.e. start of next stripe) (eosAddr) */
927 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
928 1.3 oster sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
929 1.3 oster eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
930 1.3 oster eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
931 1.3 oster
932 1.3 oster /* now generate access stripe maps for each of the above regions of
933 1.3 oster * the stripe. Use a dummy (NULL) buf ptr for now */
934 1.3 oster
935 1.3 oster new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
936 1.3 oster new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
937 1.3 oster
938 1.3 oster /* walk through the PDAs and range-restrict each SU to the region of
939 1.3 oster * the SU touched on the failed PDA. also compute total data buffer
940 1.3 oster * space requirements in this step. Ignore the parity for now. */
941 1.3 oster
942 1.3 oster numSect[0] = numSect[1] = 0;
943 1.3 oster if (new_asm_h[0]) {
944 1.3 oster new_asm_h[0]->next = dag_h->asmList;
945 1.3 oster dag_h->asmList = new_asm_h[0];
946 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
947 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
948 1.3 oster numSect[0] += pda->numSector;
949 1.3 oster }
950 1.3 oster }
951 1.3 oster if (new_asm_h[1]) {
952 1.3 oster new_asm_h[1]->next = dag_h->asmList;
953 1.3 oster dag_h->asmList = new_asm_h[1];
954 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
955 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
956 1.3 oster numSect[1] += pda->numSector;
957 1.3 oster }
958 1.3 oster }
959 1.3 oster numParitySect = failedPDA->numSector;
960 1.3 oster
961 1.3 oster /* allocate buffer space for the data & parity we have to read to
962 1.3 oster * recover from the failure */
963 1.3 oster
964 1.3 oster if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
965 1.3 oster * buf if not needed */
966 1.3 oster RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
967 1.3 oster bufP = rdBuf;
968 1.3 oster if (rf_degDagDebug)
969 1.3 oster printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
970 1.3 oster (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
971 1.3 oster }
972 1.3 oster /* now walk through the pdas one last time and assign buffer pointers
973 1.3 oster * (ugh!). Again, ignore the parity. also, count nodes to find out
974 1.3 oster * how many bufs need to be xored together */
975 1.3 oster (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
976 1.3 oster * case, 1 is for failed data */
977 1.3 oster if (new_asm_h[0]) {
978 1.3 oster for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
979 1.3 oster pda->bufPtr = bufP;
980 1.3 oster bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
981 1.3 oster }
982 1.3 oster *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
983 1.3 oster }
984 1.3 oster if (new_asm_h[1]) {
985 1.3 oster for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
986 1.3 oster pda->bufPtr = bufP;
987 1.3 oster bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
988 1.3 oster }
989 1.3 oster (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
990 1.3 oster }
991 1.3 oster if (rpBufPtr)
992 1.3 oster *rpBufPtr = bufP; /* the rest of the buffer is for
993 1.3 oster * parity */
994 1.3 oster
995 1.3 oster /* the last step is to figure out how many more distinct buffers need
996 1.3 oster * to get xor'd to produce the missing unit. there's one for each
997 1.3 oster * user-data read node that overlaps the portion of the failed unit
998 1.3 oster * being accessed */
999 1.3 oster
1000 1.3 oster for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1001 1.3 oster if (pda == failedPDA) {
1002 1.3 oster i--;
1003 1.3 oster foundit = 1;
1004 1.3 oster continue;
1005 1.3 oster }
1006 1.3 oster if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1007 1.3 oster overlappingPDAs[i] = 1;
1008 1.3 oster (*nXorBufs)++;
1009 1.3 oster }
1010 1.3 oster }
1011 1.3 oster if (!foundit) {
1012 1.3 oster RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1013 1.3 oster RF_ASSERT(0);
1014 1.3 oster }
1015 1.3 oster if (rf_degDagDebug) {
1016 1.3 oster if (new_asm_h[0]) {
1017 1.3 oster printf("First asm:\n");
1018 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1019 1.3 oster }
1020 1.3 oster if (new_asm_h[1]) {
1021 1.3 oster printf("Second asm:\n");
1022 1.3 oster rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1023 1.3 oster }
1024 1.3 oster }
1025 1.1 oster }
1026 1.1 oster
1027 1.1 oster
1028 1.1 oster /* adjusts the offset and number of sectors in the destination pda so that
1029 1.1 oster * it covers at most the region of the SU covered by the source PDA. This
1030 1.1 oster * is exclusively a restriction: the number of sectors indicated by the
1031 1.1 oster * target PDA can only shrink.
1032 1.1 oster *
1033 1.1 oster * For example: s = sectors within SU indicated by source PDA
1034 1.1 oster * d = sectors within SU indicated by dest PDA
1035 1.1 oster * r = results, stored in dest PDA
1036 1.1 oster *
1037 1.1 oster * |--------------- one stripe unit ---------------------|
1038 1.1 oster * | sssssssssssssssssssssssssssssssss |
1039 1.1 oster * | ddddddddddddddddddddddddddddddddddddddddddddd |
1040 1.1 oster * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1041 1.1 oster *
1042 1.1 oster * Another example:
1043 1.1 oster *
1044 1.1 oster * |--------------- one stripe unit ---------------------|
1045 1.1 oster * | sssssssssssssssssssssssssssssssss |
1046 1.1 oster * | ddddddddddddddddddddddd |
1047 1.1 oster * | rrrrrrrrrrrrrrrr |
1048 1.1 oster *
1049 1.1 oster */
1050 1.3 oster void
1051 1.3 oster rf_RangeRestrictPDA(
1052 1.3 oster RF_Raid_t * raidPtr,
1053 1.3 oster RF_PhysDiskAddr_t * src,
1054 1.3 oster RF_PhysDiskAddr_t * dest,
1055 1.3 oster int dobuffer,
1056 1.3 oster int doraidaddr)
1057 1.3 oster {
1058 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1059 1.3 oster RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1060 1.3 oster RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1061 1.3 oster RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1062 1.3 oster * stay within SU */
1063 1.3 oster RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1064 1.3 oster RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1065 1.3 oster
1066 1.3 oster dest->startSector = subAddr + RF_MAX(soffs, doffs);
1067 1.3 oster dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1068 1.3 oster
1069 1.3 oster if (dobuffer)
1070 1.3 oster dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1071 1.3 oster if (doraidaddr) {
1072 1.3 oster dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1073 1.3 oster rf_StripeUnitOffset(layoutPtr, dest->startSector);
1074 1.3 oster }
1075 1.1 oster }
1076 1.1 oster /*
1077 1.1 oster * Want the highest of these primes to be the largest one
1078 1.1 oster * less than the max expected number of columns (won't hurt
1079 1.1 oster * to be too small or too large, but won't be optimal, either)
1080 1.1 oster * --jimz
1081 1.1 oster */
1082 1.1 oster #define NLOWPRIMES 8
1083 1.3 oster static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1084 1.1 oster /*****************************************************************************
1085 1.1 oster * compute the workload shift factor. (chained declustering)
1086 1.1 oster *
1087 1.1 oster * return nonzero if access should shift to secondary, otherwise,
1088 1.1 oster * access is to primary
1089 1.1 oster *****************************************************************************/
1090 1.3 oster int
1091 1.3 oster rf_compute_workload_shift(
1092 1.3 oster RF_Raid_t * raidPtr,
1093 1.3 oster RF_PhysDiskAddr_t * pda)
1094 1.3 oster {
1095 1.3 oster /*
1096 1.3 oster * variables:
1097 1.3 oster * d = column of disk containing primary
1098 1.3 oster * f = column of failed disk
1099 1.3 oster * n = number of disks in array
1100 1.3 oster * sd = "shift distance" (number of columns that d is to the right of f)
1101 1.3 oster * row = row of array the access is in
1102 1.3 oster * v = numerator of redirection ratio
1103 1.3 oster * k = denominator of redirection ratio
1104 1.3 oster */
1105 1.3 oster RF_RowCol_t d, f, sd, row, n;
1106 1.3 oster int k, v, ret, i;
1107 1.3 oster
1108 1.3 oster row = pda->row;
1109 1.3 oster n = raidPtr->numCol;
1110 1.3 oster
1111 1.3 oster /* assign column of primary copy to d */
1112 1.3 oster d = pda->col;
1113 1.3 oster
1114 1.3 oster /* assign column of dead disk to f */
1115 1.3 oster for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1116 1.3 oster
1117 1.3 oster RF_ASSERT(f < n);
1118 1.3 oster RF_ASSERT(f != d);
1119 1.3 oster
1120 1.3 oster sd = (f > d) ? (n + d - f) : (d - f);
1121 1.3 oster RF_ASSERT(sd < n);
1122 1.3 oster
1123 1.3 oster /*
1124 1.3 oster * v of every k accesses should be redirected
1125 1.3 oster *
1126 1.3 oster * v/k := (n-1-sd)/(n-1)
1127 1.3 oster */
1128 1.3 oster v = (n - 1 - sd);
1129 1.3 oster k = (n - 1);
1130 1.1 oster
1131 1.1 oster #if 1
1132 1.3 oster /*
1133 1.3 oster * XXX
1134 1.3 oster * Is this worth it?
1135 1.3 oster *
1136 1.3 oster * Now reduce the fraction, by repeatedly factoring
1137 1.3 oster * out primes (just like they teach in elementary school!)
1138 1.3 oster */
1139 1.3 oster for (i = 0; i < NLOWPRIMES; i++) {
1140 1.3 oster if (lowprimes[i] > v)
1141 1.3 oster break;
1142 1.3 oster while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1143 1.3 oster v /= lowprimes[i];
1144 1.3 oster k /= lowprimes[i];
1145 1.3 oster }
1146 1.3 oster }
1147 1.1 oster #endif
1148 1.1 oster
1149 1.3 oster raidPtr->hist_diskreq[row][d]++;
1150 1.3 oster if (raidPtr->hist_diskreq[row][d] > v) {
1151 1.3 oster ret = 0; /* do not redirect */
1152 1.3 oster } else {
1153 1.3 oster ret = 1; /* redirect */
1154 1.3 oster }
1155 1.1 oster
1156 1.1 oster #if 0
1157 1.3 oster printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1158 1.3 oster raidPtr->hist_diskreq[row][d]);
1159 1.1 oster #endif
1160 1.1 oster
1161 1.3 oster if (raidPtr->hist_diskreq[row][d] >= k) {
1162 1.3 oster /* reset counter */
1163 1.3 oster raidPtr->hist_diskreq[row][d] = 0;
1164 1.3 oster }
1165 1.3 oster return (ret);
1166 1.1 oster }
1167 1.1 oster /*
1168 1.1 oster * Disk selection routines
1169 1.1 oster */
1170 1.1 oster
1171 1.1 oster /*
1172 1.1 oster * Selects the disk with the shortest queue from a mirror pair.
1173 1.1 oster * Both the disk I/Os queued in RAIDframe as well as those at the physical
1174 1.1 oster * disk are counted as members of the "queue"
1175 1.1 oster */
1176 1.3 oster void
1177 1.3 oster rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1178 1.1 oster {
1179 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1180 1.3 oster RF_RowCol_t rowData, colData, rowMirror, colMirror;
1181 1.3 oster int dataQueueLength, mirrorQueueLength, usemirror;
1182 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1183 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1184 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1185 1.3 oster RF_RaidDisk_t **disks = raidPtr->Disks;
1186 1.3 oster RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1187 1.3 oster
1188 1.3 oster /* return the [row col] of the disk with the shortest queue */
1189 1.3 oster rowData = data_pda->row;
1190 1.3 oster colData = data_pda->col;
1191 1.3 oster rowMirror = mirror_pda->row;
1192 1.3 oster colMirror = mirror_pda->col;
1193 1.3 oster dataQueue = &(dqs[rowData][colData]);
1194 1.3 oster mirrorQueue = &(dqs[rowMirror][colMirror]);
1195 1.1 oster
1196 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1197 1.3 oster RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1198 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1199 1.3 oster dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1200 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1201 1.3 oster RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1202 1.3 oster RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1203 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1204 1.3 oster mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1205 1.1 oster #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1206 1.3 oster RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1207 1.3 oster #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1208 1.1 oster
1209 1.3 oster usemirror = 0;
1210 1.3 oster if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1211 1.3 oster usemirror = 0;
1212 1.3 oster } else
1213 1.3 oster if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1214 1.3 oster usemirror = 1;
1215 1.3 oster } else
1216 1.5 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1217 1.5 oster /* Trust only the main disk */
1218 1.3 oster usemirror = 0;
1219 1.3 oster } else
1220 1.5 oster if (dataQueueLength < mirrorQueueLength) {
1221 1.5 oster usemirror = 0;
1222 1.5 oster } else
1223 1.5 oster if (mirrorQueueLength < dataQueueLength) {
1224 1.5 oster usemirror = 1;
1225 1.3 oster } else {
1226 1.5 oster /* queues are equal length. attempt
1227 1.5 oster * cleverness. */
1228 1.5 oster if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1229 1.5 oster <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1230 1.5 oster usemirror = 0;
1231 1.5 oster } else {
1232 1.5 oster usemirror = 1;
1233 1.5 oster }
1234 1.3 oster }
1235 1.3 oster
1236 1.3 oster if (usemirror) {
1237 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1238 1.3 oster tmp_pda = data_pda;
1239 1.3 oster node->params[0].p = mirror_pda;
1240 1.3 oster node->params[4].p = tmp_pda;
1241 1.3 oster } else {
1242 1.3 oster /* use data disk, leave param 0 unchanged */
1243 1.3 oster }
1244 1.3 oster /* printf("dataQueueLength %d, mirrorQueueLength
1245 1.3 oster * %d\n",dataQueueLength, mirrorQueueLength); */
1246 1.1 oster }
1247 1.1 oster /*
1248 1.1 oster * Do simple partitioning. This assumes that
1249 1.1 oster * the data and parity disks are laid out identically.
1250 1.1 oster */
1251 1.3 oster void
1252 1.3 oster rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1253 1.1 oster {
1254 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1255 1.3 oster RF_RowCol_t rowData, colData, rowMirror, colMirror;
1256 1.3 oster RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1257 1.3 oster RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1258 1.3 oster RF_PhysDiskAddr_t *tmp_pda;
1259 1.3 oster RF_RaidDisk_t **disks = raidPtr->Disks;
1260 1.3 oster RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1261 1.3 oster int usemirror;
1262 1.3 oster
1263 1.3 oster /* return the [row col] of the disk with the shortest queue */
1264 1.3 oster rowData = data_pda->row;
1265 1.3 oster colData = data_pda->col;
1266 1.3 oster rowMirror = mirror_pda->row;
1267 1.3 oster colMirror = mirror_pda->col;
1268 1.3 oster dataQueue = &(dqs[rowData][colData]);
1269 1.3 oster mirrorQueue = &(dqs[rowMirror][colMirror]);
1270 1.3 oster
1271 1.3 oster usemirror = 0;
1272 1.3 oster if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1273 1.3 oster usemirror = 0;
1274 1.3 oster } else
1275 1.3 oster if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1276 1.3 oster usemirror = 1;
1277 1.6 oster } else
1278 1.6 oster if (raidPtr->parity_good == RF_RAID_DIRTY) {
1279 1.6 oster /* Trust only the main disk */
1280 1.3 oster usemirror = 0;
1281 1.6 oster } else
1282 1.6 oster if (data_pda->startSector <
1283 1.6 oster (disks[rowData][colData].numBlocks / 2)) {
1284 1.6 oster usemirror = 0;
1285 1.6 oster } else {
1286 1.6 oster usemirror = 1;
1287 1.6 oster }
1288 1.3 oster
1289 1.3 oster if (usemirror) {
1290 1.3 oster /* use mirror (parity) disk, swap params 0 & 4 */
1291 1.3 oster tmp_pda = data_pda;
1292 1.3 oster node->params[0].p = mirror_pda;
1293 1.3 oster node->params[4].p = tmp_pda;
1294 1.3 oster } else {
1295 1.3 oster /* use data disk, leave param 0 unchanged */
1296 1.3 oster }
1297 1.1 oster }
1298