Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.10
      1 /*	$NetBSD: rf_dagutils.c,v 1.10 2002/03/04 01:38:32 wiz Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.10 2002/03/04 01:38:32 wiz Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_freelist.h"
     48 #include "rf_map.h"
     49 #include "rf_shutdown.h"
     50 
     51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     52 
     53 RF_RedFuncs_t rf_xorFuncs = {
     54 	rf_RegularXorFunc, "Reg Xr",
     55 rf_SimpleXorFunc, "Simple Xr"};
     56 
     57 RF_RedFuncs_t rf_xorRecoveryFuncs = {
     58 	rf_RecoveryXorFunc, "Recovery Xr",
     59 rf_RecoveryXorFunc, "Recovery Xr"};
     60 
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int
     64 rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     65     RF_DagNode_t **, int);
     66 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     67 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     68 
     69 /******************************************************************************
     70  *
     71  * InitNode - initialize a dag node
     72  *
     73  * the size of the propList array is always the same as that of the
     74  * successors array.
     75  *
     76  *****************************************************************************/
     77 void
     78 rf_InitNode(
     79     RF_DagNode_t * node,
     80     RF_NodeStatus_t initstatus,
     81     int commit,
     82     int (*doFunc) (RF_DagNode_t * node),
     83     int (*undoFunc) (RF_DagNode_t * node),
     84     int (*wakeFunc) (RF_DagNode_t * node, int status),
     85     int nSucc,
     86     int nAnte,
     87     int nParam,
     88     int nResult,
     89     RF_DagHeader_t * hdr,
     90     char *name,
     91     RF_AllocListElem_t * alist)
     92 {
     93 	void  **ptrs;
     94 	int     nptrs;
     95 
     96 	if (nAnte > RF_MAX_ANTECEDENTS)
     97 		RF_PANIC();
     98 	node->status = initstatus;
     99 	node->commitNode = commit;
    100 	node->doFunc = doFunc;
    101 	node->undoFunc = undoFunc;
    102 	node->wakeFunc = wakeFunc;
    103 	node->numParams = nParam;
    104 	node->numResults = nResult;
    105 	node->numAntecedents = nAnte;
    106 	node->numAntDone = 0;
    107 	node->next = NULL;
    108 	node->numSuccedents = nSucc;
    109 	node->name = name;
    110 	node->dagHdr = hdr;
    111 	node->visited = 0;
    112 
    113 	/* allocate all the pointers with one call to malloc */
    114 	nptrs = nSucc + nAnte + nResult + nSucc;
    115 
    116 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    117 		/*
    118 	         * The dag_ptrs field of the node is basically some scribble
    119 	         * space to be used here. We could get rid of it, and always
    120 	         * allocate the range of pointers, but that's expensive. So,
    121 	         * we pick a "common case" size for the pointer cache. Hopefully,
    122 	         * we'll find that:
    123 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    124 	         *     only a little bit (least efficient case)
    125 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    126 	         *     (wasted memory)
    127 	         */
    128 		ptrs = (void **) node->dag_ptrs;
    129 	} else {
    130 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
    131 	}
    132 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    133 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    134 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    135 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    136 
    137 	if (nParam) {
    138 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    139 			node->params = (RF_DagParam_t *) node->dag_params;
    140 		} else {
    141 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
    142 		}
    143 	} else {
    144 		node->params = NULL;
    145 	}
    146 }
    147 
    148 
    149 
    150 /******************************************************************************
    151  *
    152  * allocation and deallocation routines
    153  *
    154  *****************************************************************************/
    155 
    156 void
    157 rf_FreeDAG(dag_h)
    158 	RF_DagHeader_t *dag_h;
    159 {
    160 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    161 	RF_DagHeader_t *nextDag;
    162 	int     i;
    163 
    164 	while (dag_h) {
    165 		nextDag = dag_h->next;
    166 		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
    167 			/* release mem chunks */
    168 			rf_ReleaseMemChunk(dag_h->memChunk[i]);
    169 			dag_h->memChunk[i] = NULL;
    170 		}
    171 
    172 		RF_ASSERT(i == dag_h->chunkIndex);
    173 		if (dag_h->xtraChunkCnt > 0) {
    174 			/* free xtraMemChunks */
    175 			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
    176 				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
    177 				dag_h->xtraMemChunk[i] = NULL;
    178 			}
    179 			RF_ASSERT(i == dag_h->xtraChunkIndex);
    180 			/* free ptrs to xtraMemChunks */
    181 			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
    182 		}
    183 		rf_FreeAllocList(dag_h->allocList);
    184 		for (asmap = dag_h->asmList; asmap;) {
    185 			t_asmap = asmap;
    186 			asmap = asmap->next;
    187 			rf_FreeAccessStripeMap(t_asmap);
    188 		}
    189 		rf_FreeDAGHeader(dag_h);
    190 		dag_h = nextDag;
    191 	}
    192 }
    193 
    194 RF_PropHeader_t *
    195 rf_MakePropListEntry(
    196     RF_DagHeader_t * dag_h,
    197     int resultNum,
    198     int paramNum,
    199     RF_PropHeader_t * next,
    200     RF_AllocListElem_t * allocList)
    201 {
    202 	RF_PropHeader_t *p;
    203 
    204 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
    205 	    (RF_PropHeader_t *), allocList);
    206 	p->resultNum = resultNum;
    207 	p->paramNum = paramNum;
    208 	p->next = next;
    209 	return (p);
    210 }
    211 
    212 static RF_FreeList_t *rf_dagh_freelist;
    213 
    214 #define RF_MAX_FREE_DAGH 128
    215 #define RF_DAGH_INC       16
    216 #define RF_DAGH_INITIAL   32
    217 
    218 static void rf_ShutdownDAGs(void *);
    219 static void
    220 rf_ShutdownDAGs(ignored)
    221 	void   *ignored;
    222 {
    223 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
    224 }
    225 
    226 int
    227 rf_ConfigureDAGs(listp)
    228 	RF_ShutdownList_t **listp;
    229 {
    230 	int     rc;
    231 
    232 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
    233 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
    234 	if (rf_dagh_freelist == NULL)
    235 		return (ENOMEM);
    236 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    237 	if (rc) {
    238 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    239 		    __FILE__, __LINE__, rc);
    240 		rf_ShutdownDAGs(NULL);
    241 		return (rc);
    242 	}
    243 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
    244 	    (RF_DagHeader_t *));
    245 	return (0);
    246 }
    247 
    248 RF_DagHeader_t *
    249 rf_AllocDAGHeader()
    250 {
    251 	RF_DagHeader_t *dh;
    252 
    253 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
    254 	if (dh) {
    255 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    256 	}
    257 	return (dh);
    258 }
    259 
    260 void
    261 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    262 {
    263 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
    264 }
    265 /* allocates a buffer big enough to hold the data described by pda */
    266 void   *
    267 rf_AllocBuffer(
    268     RF_Raid_t * raidPtr,
    269     RF_DagHeader_t * dag_h,
    270     RF_PhysDiskAddr_t * pda,
    271     RF_AllocListElem_t * allocList)
    272 {
    273 	char   *p;
    274 
    275 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    276 	    (char *), allocList);
    277 	return ((void *) p);
    278 }
    279 /******************************************************************************
    280  *
    281  * debug routines
    282  *
    283  *****************************************************************************/
    284 
    285 char   *
    286 rf_NodeStatusString(RF_DagNode_t * node)
    287 {
    288 	switch (node->status) {
    289 		case rf_wait:return ("wait");
    290 	case rf_fired:
    291 		return ("fired");
    292 	case rf_good:
    293 		return ("good");
    294 	case rf_bad:
    295 		return ("bad");
    296 	default:
    297 		return ("?");
    298 	}
    299 }
    300 
    301 void
    302 rf_PrintNodeInfoString(RF_DagNode_t * node)
    303 {
    304 	RF_PhysDiskAddr_t *pda;
    305 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    306 	int     i, lk, unlk;
    307 	void   *bufPtr;
    308 
    309 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    310 	    || (df == rf_DiskReadMirrorIdleFunc)
    311 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    312 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    313 		bufPtr = (void *) node->params[1].p;
    314 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    315 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    316 		RF_ASSERT(!(lk && unlk));
    317 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
    318 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    319 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    320 		return;
    321 	}
    322 	if (df == rf_DiskUnlockFunc) {
    323 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    324 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    325 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    326 		RF_ASSERT(!(lk && unlk));
    327 		printf("r %d c %d %s\n", pda->row, pda->col,
    328 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    329 		return;
    330 	}
    331 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    332 	    || (df == rf_RecoveryXorFunc)) {
    333 		printf("result buf 0x%lx\n", (long) node->results[0]);
    334 		for (i = 0; i < node->numParams - 1; i += 2) {
    335 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    336 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    337 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
    338 			    (long) bufPtr, pda->row, pda->col,
    339 			    (long) pda->startSector, (int) pda->numSector);
    340 		}
    341 		return;
    342 	}
    343 #if RF_INCLUDE_PARITYLOGGING > 0
    344 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    345 		for (i = 0; i < node->numParams - 1; i += 2) {
    346 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    347 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    348 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
    349 			    pda->row, pda->col, (long) pda->startSector,
    350 			    (int) pda->numSector, (long) bufPtr);
    351 		}
    352 		return;
    353 	}
    354 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    355 
    356 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    357 		printf("\n");
    358 		return;
    359 	}
    360 	printf("?\n");
    361 }
    362 
    363 static void
    364 rf_RecurPrintDAG(node, depth, unvisited)
    365 	RF_DagNode_t *node;
    366 	int     depth;
    367 	int     unvisited;
    368 {
    369 	char   *anttype;
    370 	int     i;
    371 
    372 	node->visited = (unvisited) ? 0 : 1;
    373 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    374 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    375 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    376 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    377 	for (i = 0; i < node->numSuccedents; i++) {
    378 		printf("%d%s", node->succedents[i]->nodeNum,
    379 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    380 	}
    381 	printf("} A{");
    382 	for (i = 0; i < node->numAntecedents; i++) {
    383 		switch (node->antType[i]) {
    384 		case rf_trueData:
    385 			anttype = "T";
    386 			break;
    387 		case rf_antiData:
    388 			anttype = "A";
    389 			break;
    390 		case rf_outputData:
    391 			anttype = "O";
    392 			break;
    393 		case rf_control:
    394 			anttype = "C";
    395 			break;
    396 		default:
    397 			anttype = "?";
    398 			break;
    399 		}
    400 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    401 	}
    402 	printf("}; ");
    403 	rf_PrintNodeInfoString(node);
    404 	for (i = 0; i < node->numSuccedents; i++) {
    405 		if (node->succedents[i]->visited == unvisited)
    406 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    407 	}
    408 }
    409 
    410 static void
    411 rf_PrintDAG(dag_h)
    412 	RF_DagHeader_t *dag_h;
    413 {
    414 	int     unvisited, i;
    415 	char   *status;
    416 
    417 	/* set dag status */
    418 	switch (dag_h->status) {
    419 	case rf_enable:
    420 		status = "enable";
    421 		break;
    422 	case rf_rollForward:
    423 		status = "rollForward";
    424 		break;
    425 	case rf_rollBackward:
    426 		status = "rollBackward";
    427 		break;
    428 	default:
    429 		status = "illegal!";
    430 		break;
    431 	}
    432 	/* find out if visited bits are currently set or clear */
    433 	unvisited = dag_h->succedents[0]->visited;
    434 
    435 	printf("DAG type:  %s\n", dag_h->creator);
    436 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    437 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    438 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    439 	for (i = 0; i < dag_h->numSuccedents; i++) {
    440 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    441 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    442 	}
    443 	printf("};\n");
    444 	for (i = 0; i < dag_h->numSuccedents; i++) {
    445 		if (dag_h->succedents[i]->visited == unvisited)
    446 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    447 	}
    448 }
    449 /* assigns node numbers */
    450 int
    451 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    452 {
    453 	int     unvisited, i, nnum;
    454 	RF_DagNode_t *node;
    455 
    456 	nnum = 0;
    457 	unvisited = dag_h->succedents[0]->visited;
    458 
    459 	dag_h->nodeNum = nnum++;
    460 	for (i = 0; i < dag_h->numSuccedents; i++) {
    461 		node = dag_h->succedents[i];
    462 		if (node->visited == unvisited) {
    463 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    464 		}
    465 	}
    466 	return (nnum);
    467 }
    468 
    469 int
    470 rf_RecurAssignNodeNums(node, num, unvisited)
    471 	RF_DagNode_t *node;
    472 	int     num;
    473 	int     unvisited;
    474 {
    475 	int     i;
    476 
    477 	node->visited = (unvisited) ? 0 : 1;
    478 
    479 	node->nodeNum = num++;
    480 	for (i = 0; i < node->numSuccedents; i++) {
    481 		if (node->succedents[i]->visited == unvisited) {
    482 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    483 		}
    484 	}
    485 	return (num);
    486 }
    487 /* set the header pointers in each node to "newptr" */
    488 void
    489 rf_ResetDAGHeaderPointers(dag_h, newptr)
    490 	RF_DagHeader_t *dag_h;
    491 	RF_DagHeader_t *newptr;
    492 {
    493 	int     i;
    494 	for (i = 0; i < dag_h->numSuccedents; i++)
    495 		if (dag_h->succedents[i]->dagHdr != newptr)
    496 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    497 }
    498 
    499 void
    500 rf_RecurResetDAGHeaderPointers(node, newptr)
    501 	RF_DagNode_t *node;
    502 	RF_DagHeader_t *newptr;
    503 {
    504 	int     i;
    505 	node->dagHdr = newptr;
    506 	for (i = 0; i < node->numSuccedents; i++)
    507 		if (node->succedents[i]->dagHdr != newptr)
    508 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    509 }
    510 
    511 
    512 void
    513 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    514 {
    515 	int     i = 0;
    516 
    517 	for (; dag_h; dag_h = dag_h->next) {
    518 		rf_AssignNodeNums(dag_h);
    519 		printf("\n\nDAG %d IN LIST:\n", i++);
    520 		rf_PrintDAG(dag_h);
    521 	}
    522 }
    523 
    524 static int
    525 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
    526 	RF_DagNode_t *node;
    527 	int    *scount;
    528 	int    *acount;
    529 	RF_DagNode_t **nodes;
    530 	int     unvisited;
    531 {
    532 	int     i, retcode = 0;
    533 
    534 	/* construct an array of node pointers indexed by node num */
    535 	node->visited = (unvisited) ? 0 : 1;
    536 	nodes[node->nodeNum] = node;
    537 
    538 	if (node->next != NULL) {
    539 		printf("INVALID DAG: next pointer in node is not NULL\n");
    540 		retcode = 1;
    541 	}
    542 	if (node->status != rf_wait) {
    543 		printf("INVALID DAG: Node status is not wait\n");
    544 		retcode = 1;
    545 	}
    546 	if (node->numAntDone != 0) {
    547 		printf("INVALID DAG: numAntDone is not zero\n");
    548 		retcode = 1;
    549 	}
    550 	if (node->doFunc == rf_TerminateFunc) {
    551 		if (node->numSuccedents != 0) {
    552 			printf("INVALID DAG: Terminator node has succedents\n");
    553 			retcode = 1;
    554 		}
    555 	} else {
    556 		if (node->numSuccedents == 0) {
    557 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    558 			retcode = 1;
    559 		}
    560 	}
    561 	for (i = 0; i < node->numSuccedents; i++) {
    562 		if (!node->succedents[i]) {
    563 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    564 			retcode = 1;
    565 		}
    566 		scount[node->succedents[i]->nodeNum]++;
    567 	}
    568 	for (i = 0; i < node->numAntecedents; i++) {
    569 		if (!node->antecedents[i]) {
    570 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    571 			retcode = 1;
    572 		}
    573 		acount[node->antecedents[i]->nodeNum]++;
    574 	}
    575 	for (i = 0; i < node->numSuccedents; i++) {
    576 		if (node->succedents[i]->visited == unvisited) {
    577 			if (rf_ValidateBranch(node->succedents[i], scount,
    578 				acount, nodes, unvisited)) {
    579 				retcode = 1;
    580 			}
    581 		}
    582 	}
    583 	return (retcode);
    584 }
    585 
    586 static void
    587 rf_ValidateBranchVisitedBits(node, unvisited, rl)
    588 	RF_DagNode_t *node;
    589 	int     unvisited;
    590 	int     rl;
    591 {
    592 	int     i;
    593 
    594 	RF_ASSERT(node->visited == unvisited);
    595 	for (i = 0; i < node->numSuccedents; i++) {
    596 		if (node->succedents[i] == NULL) {
    597 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    598 			RF_ASSERT(0);
    599 		}
    600 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    601 	}
    602 }
    603 /* NOTE:  never call this on a big dag, because it is exponential
    604  * in execution time
    605  */
    606 static void
    607 rf_ValidateVisitedBits(dag)
    608 	RF_DagHeader_t *dag;
    609 {
    610 	int     i, unvisited;
    611 
    612 	unvisited = dag->succedents[0]->visited;
    613 
    614 	for (i = 0; i < dag->numSuccedents; i++) {
    615 		if (dag->succedents[i] == NULL) {
    616 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    617 			RF_ASSERT(0);
    618 		}
    619 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    620 	}
    621 }
    622 /* validate a DAG.  _at entry_ verify that:
    623  *   -- numNodesCompleted is zero
    624  *   -- node queue is null
    625  *   -- dag status is rf_enable
    626  *   -- next pointer is null on every node
    627  *   -- all nodes have status wait
    628  *   -- numAntDone is zero in all nodes
    629  *   -- terminator node has zero successors
    630  *   -- no other node besides terminator has zero successors
    631  *   -- no successor or antecedent pointer in a node is NULL
    632  *   -- number of times that each node appears as a successor of another node
    633  *      is equal to the antecedent count on that node
    634  *   -- number of times that each node appears as an antecedent of another node
    635  *      is equal to the succedent count on that node
    636  *   -- what else?
    637  */
    638 int
    639 rf_ValidateDAG(dag_h)
    640 	RF_DagHeader_t *dag_h;
    641 {
    642 	int     i, nodecount;
    643 	int    *scount, *acount;/* per-node successor and antecedent counts */
    644 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    645 	int     retcode = 0;
    646 	int     unvisited;
    647 	int     commitNodeCount = 0;
    648 
    649 	if (rf_validateVisitedDebug)
    650 		rf_ValidateVisitedBits(dag_h);
    651 
    652 	if (dag_h->numNodesCompleted != 0) {
    653 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    654 		retcode = 1;
    655 		goto validate_dag_bad;
    656 	}
    657 	if (dag_h->status != rf_enable) {
    658 		printf("INVALID DAG: not enabled\n");
    659 		retcode = 1;
    660 		goto validate_dag_bad;
    661 	}
    662 	if (dag_h->numCommits != 0) {
    663 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    664 		retcode = 1;
    665 		goto validate_dag_bad;
    666 	}
    667 	if (dag_h->numSuccedents != 1) {
    668 		/* currently, all dags must have only one succedent */
    669 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    670 		retcode = 1;
    671 		goto validate_dag_bad;
    672 	}
    673 	nodecount = rf_AssignNodeNums(dag_h);
    674 
    675 	unvisited = dag_h->succedents[0]->visited;
    676 
    677 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
    678 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
    679 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
    680 	for (i = 0; i < dag_h->numSuccedents; i++) {
    681 		if ((dag_h->succedents[i]->visited == unvisited)
    682 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    683 			acount, nodes, unvisited)) {
    684 			retcode = 1;
    685 		}
    686 	}
    687 	/* start at 1 to skip the header node */
    688 	for (i = 1; i < nodecount; i++) {
    689 		if (nodes[i]->commitNode)
    690 			commitNodeCount++;
    691 		if (nodes[i]->doFunc == NULL) {
    692 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    693 			retcode = 1;
    694 			goto validate_dag_out;
    695 		}
    696 		if (nodes[i]->undoFunc == NULL) {
    697 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    698 			retcode = 1;
    699 			goto validate_dag_out;
    700 		}
    701 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    702 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    703 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    704 			retcode = 1;
    705 			goto validate_dag_out;
    706 		}
    707 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    708 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    709 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    710 			retcode = 1;
    711 			goto validate_dag_out;
    712 		}
    713 	}
    714 
    715 	if (dag_h->numCommitNodes != commitNodeCount) {
    716 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    717 		    dag_h->numCommitNodes, commitNodeCount);
    718 		retcode = 1;
    719 		goto validate_dag_out;
    720 	}
    721 validate_dag_out:
    722 	RF_Free(scount, nodecount * sizeof(int));
    723 	RF_Free(acount, nodecount * sizeof(int));
    724 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    725 	if (retcode)
    726 		rf_PrintDAGList(dag_h);
    727 
    728 	if (rf_validateVisitedDebug)
    729 		rf_ValidateVisitedBits(dag_h);
    730 
    731 	return (retcode);
    732 
    733 validate_dag_bad:
    734 	rf_PrintDAGList(dag_h);
    735 	return (retcode);
    736 }
    737 
    738 
    739 /******************************************************************************
    740  *
    741  * misc construction routines
    742  *
    743  *****************************************************************************/
    744 
    745 void
    746 rf_redirect_asm(
    747     RF_Raid_t * raidPtr,
    748     RF_AccessStripeMap_t * asmap)
    749 {
    750 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    751 	int     row = asmap->physInfo->row;
    752 	int     fcol = raidPtr->reconControl[row]->fcol;
    753 	int     srow = raidPtr->reconControl[row]->spareRow;
    754 	int     scol = raidPtr->reconControl[row]->spareCol;
    755 	RF_PhysDiskAddr_t *pda;
    756 
    757 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
    758 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    759 		if (pda->col == fcol) {
    760 			if (rf_dagDebug) {
    761 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
    762 					pda->startSector)) {
    763 					RF_PANIC();
    764 				}
    765 			}
    766 			/* printf("Remapped data for large write\n"); */
    767 			if (ds) {
    768 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    769 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    770 			} else {
    771 				pda->row = srow;
    772 				pda->col = scol;
    773 			}
    774 		}
    775 	}
    776 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    777 		if (pda->col == fcol) {
    778 			if (rf_dagDebug) {
    779 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
    780 					RF_PANIC();
    781 				}
    782 			}
    783 		}
    784 		if (ds) {
    785 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    786 		} else {
    787 			pda->row = srow;
    788 			pda->col = scol;
    789 		}
    790 	}
    791 }
    792 
    793 
    794 /* this routine allocates read buffers and generates stripe maps for the
    795  * regions of the array from the start of the stripe to the start of the
    796  * access, and from the end of the access to the end of the stripe.  It also
    797  * computes and returns the number of DAG nodes needed to read all this data.
    798  * Note that this routine does the wrong thing if the access is fully
    799  * contained within one stripe unit, so we RF_ASSERT against this case at the
    800  * start.
    801  */
    802 void
    803 rf_MapUnaccessedPortionOfStripe(
    804     RF_Raid_t * raidPtr,
    805     RF_RaidLayout_t * layoutPtr,/* in: layout information */
    806     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    807     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    808     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
    809 						 * headers, to be filled in */
    810     int *nRodNodes,		/* out: num nodes to be generated to read
    811 				 * unaccessed data */
    812     char **sosBuffer,		/* out: pointers to newly allocated buffer */
    813     char **eosBuffer,
    814     RF_AllocListElem_t * allocList)
    815 {
    816 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    817 	RF_SectorNum_t sosNumSector, eosNumSector;
    818 
    819 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    820 	/* generate an access map for the region of the array from start of
    821 	 * stripe to start of access */
    822 	new_asm_h[0] = new_asm_h[1] = NULL;
    823 	*nRodNodes = 0;
    824 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    825 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    826 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    827 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    828 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    829 		new_asm_h[0]->next = dag_h->asmList;
    830 		dag_h->asmList = new_asm_h[0];
    831 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    832 
    833 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    834 		/* we're totally within one stripe here */
    835 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    836 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    837 	}
    838 	/* generate an access map for the region of the array from end of
    839 	 * access to end of stripe */
    840 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    841 		eosRaidAddress = asmap->endRaidAddress;
    842 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    843 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    844 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    845 		new_asm_h[1]->next = dag_h->asmList;
    846 		dag_h->asmList = new_asm_h[1];
    847 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    848 
    849 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    850 		/* we're totally within one stripe here */
    851 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    852 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    853 	}
    854 }
    855 
    856 
    857 
    858 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    859 int
    860 rf_PDAOverlap(
    861     RF_RaidLayout_t * layoutPtr,
    862     RF_PhysDiskAddr_t * src,
    863     RF_PhysDiskAddr_t * dest)
    864 {
    865 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    866 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    867 	/* use -1 to be sure we stay within SU */
    868 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    869 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    870 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    871 }
    872 
    873 
    874 /* GenerateFailedAccessASMs
    875  *
    876  * this routine figures out what portion of the stripe needs to be read
    877  * to effect the degraded read or write operation.  It's primary function
    878  * is to identify everything required to recover the data, and then
    879  * eliminate anything that is already being accessed by the user.
    880  *
    881  * The main result is two new ASMs, one for the region from the start of the
    882  * stripe to the start of the access, and one for the region from the end of
    883  * the access to the end of the stripe.  These ASMs describe everything that
    884  * needs to be read to effect the degraded access.  Other results are:
    885  *    nXorBufs -- the total number of buffers that need to be XORed together to
    886  *                recover the lost data,
    887  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    888  *                at entry, not allocated.
    889  *    overlappingPDAs --
    890  *                describes which of the non-failed PDAs in the user access
    891  *                overlap data that needs to be read to effect recovery.
    892  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    893  *                PDA, the ith pda in the input asm overlaps data that needs
    894  *                to be read for recovery.
    895  */
    896  /* in: asm - ASM for the actual access, one stripe only */
    897  /* in: failedPDA - which component of the access has failed */
    898  /* in: dag_h - header of the DAG we're going to create */
    899  /* out: new_asm_h - the two new ASMs */
    900  /* out: nXorBufs - the total number of xor bufs required */
    901  /* out: rpBufPtr - a buffer for the parity read */
    902 void
    903 rf_GenerateFailedAccessASMs(
    904     RF_Raid_t * raidPtr,
    905     RF_AccessStripeMap_t * asmap,
    906     RF_PhysDiskAddr_t * failedPDA,
    907     RF_DagHeader_t * dag_h,
    908     RF_AccessStripeMapHeader_t ** new_asm_h,
    909     int *nXorBufs,
    910     char **rpBufPtr,
    911     char *overlappingPDAs,
    912     RF_AllocListElem_t * allocList)
    913 {
    914 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    915 
    916 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    917 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    918 
    919 	RF_SectorCount_t numSect[2], numParitySect;
    920 	RF_PhysDiskAddr_t *pda;
    921 	char   *rdBuf, *bufP;
    922 	int     foundit, i;
    923 
    924 	bufP = NULL;
    925 	foundit = 0;
    926 	/* first compute the following raid addresses: start of stripe,
    927 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    928 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    929 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    930 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    931 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    932 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    933 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    934 
    935 	/* now generate access stripe maps for each of the above regions of
    936 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    937 
    938 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    939 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    940 
    941 	/* walk through the PDAs and range-restrict each SU to the region of
    942 	 * the SU touched on the failed PDA.  also compute total data buffer
    943 	 * space requirements in this step.  Ignore the parity for now. */
    944 
    945 	numSect[0] = numSect[1] = 0;
    946 	if (new_asm_h[0]) {
    947 		new_asm_h[0]->next = dag_h->asmList;
    948 		dag_h->asmList = new_asm_h[0];
    949 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    950 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    951 			numSect[0] += pda->numSector;
    952 		}
    953 	}
    954 	if (new_asm_h[1]) {
    955 		new_asm_h[1]->next = dag_h->asmList;
    956 		dag_h->asmList = new_asm_h[1];
    957 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    958 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    959 			numSect[1] += pda->numSector;
    960 		}
    961 	}
    962 	numParitySect = failedPDA->numSector;
    963 
    964 	/* allocate buffer space for the data & parity we have to read to
    965 	 * recover from the failure */
    966 
    967 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    968 										 * buf if not needed */
    969 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    970 		bufP = rdBuf;
    971 		if (rf_degDagDebug)
    972 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    973 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    974 	}
    975 	/* now walk through the pdas one last time and assign buffer pointers
    976 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    977 	 * how many bufs need to be xored together */
    978 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    979 				 * case, 1 is for failed data */
    980 	if (new_asm_h[0]) {
    981 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    982 			pda->bufPtr = bufP;
    983 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    984 		}
    985 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    986 	}
    987 	if (new_asm_h[1]) {
    988 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    989 			pda->bufPtr = bufP;
    990 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    991 		}
    992 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    993 	}
    994 	if (rpBufPtr)
    995 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    996 					 * parity */
    997 
    998 	/* the last step is to figure out how many more distinct buffers need
    999 	 * to get xor'd to produce the missing unit.  there's one for each
   1000 	 * user-data read node that overlaps the portion of the failed unit
   1001 	 * being accessed */
   1002 
   1003 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1004 		if (pda == failedPDA) {
   1005 			i--;
   1006 			foundit = 1;
   1007 			continue;
   1008 		}
   1009 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1010 			overlappingPDAs[i] = 1;
   1011 			(*nXorBufs)++;
   1012 		}
   1013 	}
   1014 	if (!foundit) {
   1015 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1016 		RF_ASSERT(0);
   1017 	}
   1018 	if (rf_degDagDebug) {
   1019 		if (new_asm_h[0]) {
   1020 			printf("First asm:\n");
   1021 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1022 		}
   1023 		if (new_asm_h[1]) {
   1024 			printf("Second asm:\n");
   1025 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1026 		}
   1027 	}
   1028 }
   1029 
   1030 
   1031 /* adjusts the offset and number of sectors in the destination pda so that
   1032  * it covers at most the region of the SU covered by the source PDA.  This
   1033  * is exclusively a restriction:  the number of sectors indicated by the
   1034  * target PDA can only shrink.
   1035  *
   1036  * For example:  s = sectors within SU indicated by source PDA
   1037  *               d = sectors within SU indicated by dest PDA
   1038  *               r = results, stored in dest PDA
   1039  *
   1040  * |--------------- one stripe unit ---------------------|
   1041  * |           sssssssssssssssssssssssssssssssss         |
   1042  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1043  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1044  *
   1045  * Another example:
   1046  *
   1047  * |--------------- one stripe unit ---------------------|
   1048  * |           sssssssssssssssssssssssssssssssss         |
   1049  * |    ddddddddddddddddddddddd                          |
   1050  * |           rrrrrrrrrrrrrrrr                          |
   1051  *
   1052  */
   1053 void
   1054 rf_RangeRestrictPDA(
   1055     RF_Raid_t * raidPtr,
   1056     RF_PhysDiskAddr_t * src,
   1057     RF_PhysDiskAddr_t * dest,
   1058     int dobuffer,
   1059     int doraidaddr)
   1060 {
   1061 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1062 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1063 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1064 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1065 													 * stay within SU */
   1066 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1067 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1068 
   1069 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1070 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1071 
   1072 	if (dobuffer)
   1073 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1074 	if (doraidaddr) {
   1075 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1076 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1077 	}
   1078 }
   1079 /*
   1080  * Want the highest of these primes to be the largest one
   1081  * less than the max expected number of columns (won't hurt
   1082  * to be too small or too large, but won't be optimal, either)
   1083  * --jimz
   1084  */
   1085 #define NLOWPRIMES 8
   1086 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1087 /*****************************************************************************
   1088  * compute the workload shift factor.  (chained declustering)
   1089  *
   1090  * return nonzero if access should shift to secondary, otherwise,
   1091  * access is to primary
   1092  *****************************************************************************/
   1093 int
   1094 rf_compute_workload_shift(
   1095     RF_Raid_t * raidPtr,
   1096     RF_PhysDiskAddr_t * pda)
   1097 {
   1098 	/*
   1099          * variables:
   1100          *  d   = column of disk containing primary
   1101          *  f   = column of failed disk
   1102          *  n   = number of disks in array
   1103          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1104          *  row = row of array the access is in
   1105          *  v   = numerator of redirection ratio
   1106          *  k   = denominator of redirection ratio
   1107          */
   1108 	RF_RowCol_t d, f, sd, row, n;
   1109 	int     k, v, ret, i;
   1110 
   1111 	row = pda->row;
   1112 	n = raidPtr->numCol;
   1113 
   1114 	/* assign column of primary copy to d */
   1115 	d = pda->col;
   1116 
   1117 	/* assign column of dead disk to f */
   1118 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
   1119 
   1120 	RF_ASSERT(f < n);
   1121 	RF_ASSERT(f != d);
   1122 
   1123 	sd = (f > d) ? (n + d - f) : (d - f);
   1124 	RF_ASSERT(sd < n);
   1125 
   1126 	/*
   1127          * v of every k accesses should be redirected
   1128          *
   1129          * v/k := (n-1-sd)/(n-1)
   1130          */
   1131 	v = (n - 1 - sd);
   1132 	k = (n - 1);
   1133 
   1134 #if 1
   1135 	/*
   1136          * XXX
   1137          * Is this worth it?
   1138          *
   1139          * Now reduce the fraction, by repeatedly factoring
   1140          * out primes (just like they teach in elementary school!)
   1141          */
   1142 	for (i = 0; i < NLOWPRIMES; i++) {
   1143 		if (lowprimes[i] > v)
   1144 			break;
   1145 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1146 			v /= lowprimes[i];
   1147 			k /= lowprimes[i];
   1148 		}
   1149 	}
   1150 #endif
   1151 
   1152 	raidPtr->hist_diskreq[row][d]++;
   1153 	if (raidPtr->hist_diskreq[row][d] > v) {
   1154 		ret = 0;	/* do not redirect */
   1155 	} else {
   1156 		ret = 1;	/* redirect */
   1157 	}
   1158 
   1159 #if 0
   1160 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1161 	    raidPtr->hist_diskreq[row][d]);
   1162 #endif
   1163 
   1164 	if (raidPtr->hist_diskreq[row][d] >= k) {
   1165 		/* reset counter */
   1166 		raidPtr->hist_diskreq[row][d] = 0;
   1167 	}
   1168 	return (ret);
   1169 }
   1170 /*
   1171  * Disk selection routines
   1172  */
   1173 
   1174 /*
   1175  * Selects the disk with the shortest queue from a mirror pair.
   1176  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1177  * disk are counted as members of the "queue"
   1178  */
   1179 void
   1180 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1181 {
   1182 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1183 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1184 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1185 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1186 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1187 	RF_PhysDiskAddr_t *tmp_pda;
   1188 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1189 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1190 
   1191 	/* return the [row col] of the disk with the shortest queue */
   1192 	rowData = data_pda->row;
   1193 	colData = data_pda->col;
   1194 	rowMirror = mirror_pda->row;
   1195 	colMirror = mirror_pda->col;
   1196 	dataQueue = &(dqs[rowData][colData]);
   1197 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1198 
   1199 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1200 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1201 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1202 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1203 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1204 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1205 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1206 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1207 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1208 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1209 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1210 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1211 
   1212 	usemirror = 0;
   1213 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1214 		usemirror = 0;
   1215 	} else
   1216 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1217 			usemirror = 1;
   1218 		} else
   1219 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1220 				/* Trust only the main disk */
   1221 				usemirror = 0;
   1222 			} else
   1223 				if (dataQueueLength < mirrorQueueLength) {
   1224 					usemirror = 0;
   1225 				} else
   1226 					if (mirrorQueueLength < dataQueueLength) {
   1227 						usemirror = 1;
   1228 					} else {
   1229 						/* queues are equal length. attempt
   1230 						 * cleverness. */
   1231 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1232 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1233 							usemirror = 0;
   1234 						} else {
   1235 							usemirror = 1;
   1236 						}
   1237 					}
   1238 
   1239 	if (usemirror) {
   1240 		/* use mirror (parity) disk, swap params 0 & 4 */
   1241 		tmp_pda = data_pda;
   1242 		node->params[0].p = mirror_pda;
   1243 		node->params[4].p = tmp_pda;
   1244 	} else {
   1245 		/* use data disk, leave param 0 unchanged */
   1246 	}
   1247 	/* printf("dataQueueLength %d, mirrorQueueLength
   1248 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1249 }
   1250 /*
   1251  * Do simple partitioning. This assumes that
   1252  * the data and parity disks are laid out identically.
   1253  */
   1254 void
   1255 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1256 {
   1257 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1258 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1259 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1260 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1261 	RF_PhysDiskAddr_t *tmp_pda;
   1262 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1263 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1264 	int     usemirror;
   1265 
   1266 	/* return the [row col] of the disk with the shortest queue */
   1267 	rowData = data_pda->row;
   1268 	colData = data_pda->col;
   1269 	rowMirror = mirror_pda->row;
   1270 	colMirror = mirror_pda->col;
   1271 	dataQueue = &(dqs[rowData][colData]);
   1272 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1273 
   1274 	usemirror = 0;
   1275 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1276 		usemirror = 0;
   1277 	} else
   1278 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1279 			usemirror = 1;
   1280 		} else
   1281 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1282 				/* Trust only the main disk */
   1283 				usemirror = 0;
   1284 			} else
   1285 				if (data_pda->startSector <
   1286 				    (disks[rowData][colData].numBlocks / 2)) {
   1287 					usemirror = 0;
   1288 				} else {
   1289 					usemirror = 1;
   1290 				}
   1291 
   1292 	if (usemirror) {
   1293 		/* use mirror (parity) disk, swap params 0 & 4 */
   1294 		tmp_pda = data_pda;
   1295 		node->params[0].p = mirror_pda;
   1296 		node->params[4].p = tmp_pda;
   1297 	} else {
   1298 		/* use data disk, leave param 0 unchanged */
   1299 	}
   1300 }
   1301