Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.12
      1 /*	$NetBSD: rf_dagutils.c,v 1.12 2002/07/13 19:59:26 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.12 2002/07/13 19:59:26 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_freelist.h"
     48 #include "rf_map.h"
     49 #include "rf_shutdown.h"
     50 
     51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     52 
     53 RF_RedFuncs_t rf_xorFuncs = {
     54 	rf_RegularXorFunc, "Reg Xr",
     55 rf_SimpleXorFunc, "Simple Xr"};
     56 
     57 RF_RedFuncs_t rf_xorRecoveryFuncs = {
     58 	rf_RecoveryXorFunc, "Recovery Xr",
     59 rf_RecoveryXorFunc, "Recovery Xr"};
     60 
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64 			     RF_DagNode_t **, int);
     65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67 
     68 /******************************************************************************
     69  *
     70  * InitNode - initialize a dag node
     71  *
     72  * the size of the propList array is always the same as that of the
     73  * successors array.
     74  *
     75  *****************************************************************************/
     76 void
     77 rf_InitNode(
     78     RF_DagNode_t * node,
     79     RF_NodeStatus_t initstatus,
     80     int commit,
     81     int (*doFunc) (RF_DagNode_t * node),
     82     int (*undoFunc) (RF_DagNode_t * node),
     83     int (*wakeFunc) (RF_DagNode_t * node, int status),
     84     int nSucc,
     85     int nAnte,
     86     int nParam,
     87     int nResult,
     88     RF_DagHeader_t * hdr,
     89     char *name,
     90     RF_AllocListElem_t * alist)
     91 {
     92 	void  **ptrs;
     93 	int     nptrs;
     94 
     95 	if (nAnte > RF_MAX_ANTECEDENTS)
     96 		RF_PANIC();
     97 	node->status = initstatus;
     98 	node->commitNode = commit;
     99 	node->doFunc = doFunc;
    100 	node->undoFunc = undoFunc;
    101 	node->wakeFunc = wakeFunc;
    102 	node->numParams = nParam;
    103 	node->numResults = nResult;
    104 	node->numAntecedents = nAnte;
    105 	node->numAntDone = 0;
    106 	node->next = NULL;
    107 	node->numSuccedents = nSucc;
    108 	node->name = name;
    109 	node->dagHdr = hdr;
    110 	node->visited = 0;
    111 
    112 	/* allocate all the pointers with one call to malloc */
    113 	nptrs = nSucc + nAnte + nResult + nSucc;
    114 
    115 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    116 		/*
    117 	         * The dag_ptrs field of the node is basically some scribble
    118 	         * space to be used here. We could get rid of it, and always
    119 	         * allocate the range of pointers, but that's expensive. So,
    120 	         * we pick a "common case" size for the pointer cache. Hopefully,
    121 	         * we'll find that:
    122 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    123 	         *     only a little bit (least efficient case)
    124 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    125 	         *     (wasted memory)
    126 	         */
    127 		ptrs = (void **) node->dag_ptrs;
    128 	} else {
    129 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
    130 	}
    131 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    132 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    133 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    134 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    135 
    136 	if (nParam) {
    137 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    138 			node->params = (RF_DagParam_t *) node->dag_params;
    139 		} else {
    140 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
    141 		}
    142 	} else {
    143 		node->params = NULL;
    144 	}
    145 }
    146 
    147 
    148 
    149 /******************************************************************************
    150  *
    151  * allocation and deallocation routines
    152  *
    153  *****************************************************************************/
    154 
    155 void
    156 rf_FreeDAG(dag_h)
    157 	RF_DagHeader_t *dag_h;
    158 {
    159 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    160 	RF_DagHeader_t *nextDag;
    161 	int     i;
    162 
    163 	while (dag_h) {
    164 		nextDag = dag_h->next;
    165 		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
    166 			/* release mem chunks */
    167 			rf_ReleaseMemChunk(dag_h->memChunk[i]);
    168 			dag_h->memChunk[i] = NULL;
    169 		}
    170 
    171 		RF_ASSERT(i == dag_h->chunkIndex);
    172 		if (dag_h->xtraChunkCnt > 0) {
    173 			/* free xtraMemChunks */
    174 			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
    175 				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
    176 				dag_h->xtraMemChunk[i] = NULL;
    177 			}
    178 			RF_ASSERT(i == dag_h->xtraChunkIndex);
    179 			/* free ptrs to xtraMemChunks */
    180 			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
    181 		}
    182 		rf_FreeAllocList(dag_h->allocList);
    183 		for (asmap = dag_h->asmList; asmap;) {
    184 			t_asmap = asmap;
    185 			asmap = asmap->next;
    186 			rf_FreeAccessStripeMap(t_asmap);
    187 		}
    188 		rf_FreeDAGHeader(dag_h);
    189 		dag_h = nextDag;
    190 	}
    191 }
    192 
    193 RF_PropHeader_t *
    194 rf_MakePropListEntry(
    195     RF_DagHeader_t * dag_h,
    196     int resultNum,
    197     int paramNum,
    198     RF_PropHeader_t * next,
    199     RF_AllocListElem_t * allocList)
    200 {
    201 	RF_PropHeader_t *p;
    202 
    203 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
    204 	    (RF_PropHeader_t *), allocList);
    205 	p->resultNum = resultNum;
    206 	p->paramNum = paramNum;
    207 	p->next = next;
    208 	return (p);
    209 }
    210 
    211 static RF_FreeList_t *rf_dagh_freelist;
    212 
    213 #define RF_MAX_FREE_DAGH 128
    214 #define RF_DAGH_INC       16
    215 #define RF_DAGH_INITIAL   32
    216 
    217 static void rf_ShutdownDAGs(void *);
    218 static void
    219 rf_ShutdownDAGs(ignored)
    220 	void   *ignored;
    221 {
    222 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
    223 }
    224 
    225 int
    226 rf_ConfigureDAGs(listp)
    227 	RF_ShutdownList_t **listp;
    228 {
    229 	int     rc;
    230 
    231 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
    232 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
    233 	if (rf_dagh_freelist == NULL)
    234 		return (ENOMEM);
    235 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    236 	if (rc) {
    237 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    238 		    __FILE__, __LINE__, rc);
    239 		rf_ShutdownDAGs(NULL);
    240 		return (rc);
    241 	}
    242 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
    243 	    (RF_DagHeader_t *));
    244 	return (0);
    245 }
    246 
    247 RF_DagHeader_t *
    248 rf_AllocDAGHeader()
    249 {
    250 	RF_DagHeader_t *dh;
    251 
    252 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
    253 	if (dh) {
    254 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    255 	}
    256 	return (dh);
    257 }
    258 
    259 void
    260 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    261 {
    262 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
    263 }
    264 /* allocates a buffer big enough to hold the data described by pda */
    265 void   *
    266 rf_AllocBuffer(
    267     RF_Raid_t * raidPtr,
    268     RF_DagHeader_t * dag_h,
    269     RF_PhysDiskAddr_t * pda,
    270     RF_AllocListElem_t * allocList)
    271 {
    272 	char   *p;
    273 
    274 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    275 	    (char *), allocList);
    276 	return ((void *) p);
    277 }
    278 /******************************************************************************
    279  *
    280  * debug routines
    281  *
    282  *****************************************************************************/
    283 
    284 char   *
    285 rf_NodeStatusString(RF_DagNode_t * node)
    286 {
    287 	switch (node->status) {
    288 		case rf_wait:return ("wait");
    289 	case rf_fired:
    290 		return ("fired");
    291 	case rf_good:
    292 		return ("good");
    293 	case rf_bad:
    294 		return ("bad");
    295 	default:
    296 		return ("?");
    297 	}
    298 }
    299 
    300 void
    301 rf_PrintNodeInfoString(RF_DagNode_t * node)
    302 {
    303 	RF_PhysDiskAddr_t *pda;
    304 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    305 	int     i, lk, unlk;
    306 	void   *bufPtr;
    307 
    308 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    309 	    || (df == rf_DiskReadMirrorIdleFunc)
    310 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    311 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    312 		bufPtr = (void *) node->params[1].p;
    313 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    314 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    315 		RF_ASSERT(!(lk && unlk));
    316 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
    317 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    318 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    319 		return;
    320 	}
    321 	if (df == rf_DiskUnlockFunc) {
    322 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    323 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    324 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    325 		RF_ASSERT(!(lk && unlk));
    326 		printf("r %d c %d %s\n", pda->row, pda->col,
    327 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    328 		return;
    329 	}
    330 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    331 	    || (df == rf_RecoveryXorFunc)) {
    332 		printf("result buf 0x%lx\n", (long) node->results[0]);
    333 		for (i = 0; i < node->numParams - 1; i += 2) {
    334 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    335 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    336 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
    337 			    (long) bufPtr, pda->row, pda->col,
    338 			    (long) pda->startSector, (int) pda->numSector);
    339 		}
    340 		return;
    341 	}
    342 #if RF_INCLUDE_PARITYLOGGING > 0
    343 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    344 		for (i = 0; i < node->numParams - 1; i += 2) {
    345 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    346 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    347 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
    348 			    pda->row, pda->col, (long) pda->startSector,
    349 			    (int) pda->numSector, (long) bufPtr);
    350 		}
    351 		return;
    352 	}
    353 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    354 
    355 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    356 		printf("\n");
    357 		return;
    358 	}
    359 	printf("?\n");
    360 }
    361 
    362 static void
    363 rf_RecurPrintDAG(node, depth, unvisited)
    364 	RF_DagNode_t *node;
    365 	int     depth;
    366 	int     unvisited;
    367 {
    368 	char   *anttype;
    369 	int     i;
    370 
    371 	node->visited = (unvisited) ? 0 : 1;
    372 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    373 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    374 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    375 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    376 	for (i = 0; i < node->numSuccedents; i++) {
    377 		printf("%d%s", node->succedents[i]->nodeNum,
    378 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    379 	}
    380 	printf("} A{");
    381 	for (i = 0; i < node->numAntecedents; i++) {
    382 		switch (node->antType[i]) {
    383 		case rf_trueData:
    384 			anttype = "T";
    385 			break;
    386 		case rf_antiData:
    387 			anttype = "A";
    388 			break;
    389 		case rf_outputData:
    390 			anttype = "O";
    391 			break;
    392 		case rf_control:
    393 			anttype = "C";
    394 			break;
    395 		default:
    396 			anttype = "?";
    397 			break;
    398 		}
    399 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    400 	}
    401 	printf("}; ");
    402 	rf_PrintNodeInfoString(node);
    403 	for (i = 0; i < node->numSuccedents; i++) {
    404 		if (node->succedents[i]->visited == unvisited)
    405 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    406 	}
    407 }
    408 
    409 static void
    410 rf_PrintDAG(dag_h)
    411 	RF_DagHeader_t *dag_h;
    412 {
    413 	int     unvisited, i;
    414 	char   *status;
    415 
    416 	/* set dag status */
    417 	switch (dag_h->status) {
    418 	case rf_enable:
    419 		status = "enable";
    420 		break;
    421 	case rf_rollForward:
    422 		status = "rollForward";
    423 		break;
    424 	case rf_rollBackward:
    425 		status = "rollBackward";
    426 		break;
    427 	default:
    428 		status = "illegal!";
    429 		break;
    430 	}
    431 	/* find out if visited bits are currently set or clear */
    432 	unvisited = dag_h->succedents[0]->visited;
    433 
    434 	printf("DAG type:  %s\n", dag_h->creator);
    435 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    436 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    437 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    438 	for (i = 0; i < dag_h->numSuccedents; i++) {
    439 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    440 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    441 	}
    442 	printf("};\n");
    443 	for (i = 0; i < dag_h->numSuccedents; i++) {
    444 		if (dag_h->succedents[i]->visited == unvisited)
    445 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    446 	}
    447 }
    448 /* assigns node numbers */
    449 int
    450 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    451 {
    452 	int     unvisited, i, nnum;
    453 	RF_DagNode_t *node;
    454 
    455 	nnum = 0;
    456 	unvisited = dag_h->succedents[0]->visited;
    457 
    458 	dag_h->nodeNum = nnum++;
    459 	for (i = 0; i < dag_h->numSuccedents; i++) {
    460 		node = dag_h->succedents[i];
    461 		if (node->visited == unvisited) {
    462 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    463 		}
    464 	}
    465 	return (nnum);
    466 }
    467 
    468 int
    469 rf_RecurAssignNodeNums(node, num, unvisited)
    470 	RF_DagNode_t *node;
    471 	int     num;
    472 	int     unvisited;
    473 {
    474 	int     i;
    475 
    476 	node->visited = (unvisited) ? 0 : 1;
    477 
    478 	node->nodeNum = num++;
    479 	for (i = 0; i < node->numSuccedents; i++) {
    480 		if (node->succedents[i]->visited == unvisited) {
    481 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    482 		}
    483 	}
    484 	return (num);
    485 }
    486 /* set the header pointers in each node to "newptr" */
    487 void
    488 rf_ResetDAGHeaderPointers(dag_h, newptr)
    489 	RF_DagHeader_t *dag_h;
    490 	RF_DagHeader_t *newptr;
    491 {
    492 	int     i;
    493 	for (i = 0; i < dag_h->numSuccedents; i++)
    494 		if (dag_h->succedents[i]->dagHdr != newptr)
    495 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    496 }
    497 
    498 void
    499 rf_RecurResetDAGHeaderPointers(node, newptr)
    500 	RF_DagNode_t *node;
    501 	RF_DagHeader_t *newptr;
    502 {
    503 	int     i;
    504 	node->dagHdr = newptr;
    505 	for (i = 0; i < node->numSuccedents; i++)
    506 		if (node->succedents[i]->dagHdr != newptr)
    507 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    508 }
    509 
    510 
    511 void
    512 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    513 {
    514 	int     i = 0;
    515 
    516 	for (; dag_h; dag_h = dag_h->next) {
    517 		rf_AssignNodeNums(dag_h);
    518 		printf("\n\nDAG %d IN LIST:\n", i++);
    519 		rf_PrintDAG(dag_h);
    520 	}
    521 }
    522 
    523 static int
    524 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
    525 	RF_DagNode_t *node;
    526 	int    *scount;
    527 	int    *acount;
    528 	RF_DagNode_t **nodes;
    529 	int     unvisited;
    530 {
    531 	int     i, retcode = 0;
    532 
    533 	/* construct an array of node pointers indexed by node num */
    534 	node->visited = (unvisited) ? 0 : 1;
    535 	nodes[node->nodeNum] = node;
    536 
    537 	if (node->next != NULL) {
    538 		printf("INVALID DAG: next pointer in node is not NULL\n");
    539 		retcode = 1;
    540 	}
    541 	if (node->status != rf_wait) {
    542 		printf("INVALID DAG: Node status is not wait\n");
    543 		retcode = 1;
    544 	}
    545 	if (node->numAntDone != 0) {
    546 		printf("INVALID DAG: numAntDone is not zero\n");
    547 		retcode = 1;
    548 	}
    549 	if (node->doFunc == rf_TerminateFunc) {
    550 		if (node->numSuccedents != 0) {
    551 			printf("INVALID DAG: Terminator node has succedents\n");
    552 			retcode = 1;
    553 		}
    554 	} else {
    555 		if (node->numSuccedents == 0) {
    556 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    557 			retcode = 1;
    558 		}
    559 	}
    560 	for (i = 0; i < node->numSuccedents; i++) {
    561 		if (!node->succedents[i]) {
    562 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    563 			retcode = 1;
    564 		}
    565 		scount[node->succedents[i]->nodeNum]++;
    566 	}
    567 	for (i = 0; i < node->numAntecedents; i++) {
    568 		if (!node->antecedents[i]) {
    569 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    570 			retcode = 1;
    571 		}
    572 		acount[node->antecedents[i]->nodeNum]++;
    573 	}
    574 	for (i = 0; i < node->numSuccedents; i++) {
    575 		if (node->succedents[i]->visited == unvisited) {
    576 			if (rf_ValidateBranch(node->succedents[i], scount,
    577 				acount, nodes, unvisited)) {
    578 				retcode = 1;
    579 			}
    580 		}
    581 	}
    582 	return (retcode);
    583 }
    584 
    585 static void
    586 rf_ValidateBranchVisitedBits(node, unvisited, rl)
    587 	RF_DagNode_t *node;
    588 	int     unvisited;
    589 	int     rl;
    590 {
    591 	int     i;
    592 
    593 	RF_ASSERT(node->visited == unvisited);
    594 	for (i = 0; i < node->numSuccedents; i++) {
    595 		if (node->succedents[i] == NULL) {
    596 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    597 			RF_ASSERT(0);
    598 		}
    599 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    600 	}
    601 }
    602 /* NOTE:  never call this on a big dag, because it is exponential
    603  * in execution time
    604  */
    605 static void
    606 rf_ValidateVisitedBits(dag)
    607 	RF_DagHeader_t *dag;
    608 {
    609 	int     i, unvisited;
    610 
    611 	unvisited = dag->succedents[0]->visited;
    612 
    613 	for (i = 0; i < dag->numSuccedents; i++) {
    614 		if (dag->succedents[i] == NULL) {
    615 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    616 			RF_ASSERT(0);
    617 		}
    618 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    619 	}
    620 }
    621 /* validate a DAG.  _at entry_ verify that:
    622  *   -- numNodesCompleted is zero
    623  *   -- node queue is null
    624  *   -- dag status is rf_enable
    625  *   -- next pointer is null on every node
    626  *   -- all nodes have status wait
    627  *   -- numAntDone is zero in all nodes
    628  *   -- terminator node has zero successors
    629  *   -- no other node besides terminator has zero successors
    630  *   -- no successor or antecedent pointer in a node is NULL
    631  *   -- number of times that each node appears as a successor of another node
    632  *      is equal to the antecedent count on that node
    633  *   -- number of times that each node appears as an antecedent of another node
    634  *      is equal to the succedent count on that node
    635  *   -- what else?
    636  */
    637 int
    638 rf_ValidateDAG(dag_h)
    639 	RF_DagHeader_t *dag_h;
    640 {
    641 	int     i, nodecount;
    642 	int    *scount, *acount;/* per-node successor and antecedent counts */
    643 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    644 	int     retcode = 0;
    645 	int     unvisited;
    646 	int     commitNodeCount = 0;
    647 
    648 	if (rf_validateVisitedDebug)
    649 		rf_ValidateVisitedBits(dag_h);
    650 
    651 	if (dag_h->numNodesCompleted != 0) {
    652 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    653 		retcode = 1;
    654 		goto validate_dag_bad;
    655 	}
    656 	if (dag_h->status != rf_enable) {
    657 		printf("INVALID DAG: not enabled\n");
    658 		retcode = 1;
    659 		goto validate_dag_bad;
    660 	}
    661 	if (dag_h->numCommits != 0) {
    662 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    663 		retcode = 1;
    664 		goto validate_dag_bad;
    665 	}
    666 	if (dag_h->numSuccedents != 1) {
    667 		/* currently, all dags must have only one succedent */
    668 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    669 		retcode = 1;
    670 		goto validate_dag_bad;
    671 	}
    672 	nodecount = rf_AssignNodeNums(dag_h);
    673 
    674 	unvisited = dag_h->succedents[0]->visited;
    675 
    676 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
    677 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
    678 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
    679 	for (i = 0; i < dag_h->numSuccedents; i++) {
    680 		if ((dag_h->succedents[i]->visited == unvisited)
    681 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    682 			acount, nodes, unvisited)) {
    683 			retcode = 1;
    684 		}
    685 	}
    686 	/* start at 1 to skip the header node */
    687 	for (i = 1; i < nodecount; i++) {
    688 		if (nodes[i]->commitNode)
    689 			commitNodeCount++;
    690 		if (nodes[i]->doFunc == NULL) {
    691 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    692 			retcode = 1;
    693 			goto validate_dag_out;
    694 		}
    695 		if (nodes[i]->undoFunc == NULL) {
    696 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    697 			retcode = 1;
    698 			goto validate_dag_out;
    699 		}
    700 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    701 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    702 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    703 			retcode = 1;
    704 			goto validate_dag_out;
    705 		}
    706 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    707 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    708 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    709 			retcode = 1;
    710 			goto validate_dag_out;
    711 		}
    712 	}
    713 
    714 	if (dag_h->numCommitNodes != commitNodeCount) {
    715 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    716 		    dag_h->numCommitNodes, commitNodeCount);
    717 		retcode = 1;
    718 		goto validate_dag_out;
    719 	}
    720 validate_dag_out:
    721 	RF_Free(scount, nodecount * sizeof(int));
    722 	RF_Free(acount, nodecount * sizeof(int));
    723 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    724 	if (retcode)
    725 		rf_PrintDAGList(dag_h);
    726 
    727 	if (rf_validateVisitedDebug)
    728 		rf_ValidateVisitedBits(dag_h);
    729 
    730 	return (retcode);
    731 
    732 validate_dag_bad:
    733 	rf_PrintDAGList(dag_h);
    734 	return (retcode);
    735 }
    736 
    737 
    738 /******************************************************************************
    739  *
    740  * misc construction routines
    741  *
    742  *****************************************************************************/
    743 
    744 void
    745 rf_redirect_asm(
    746     RF_Raid_t * raidPtr,
    747     RF_AccessStripeMap_t * asmap)
    748 {
    749 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    750 	int     row = asmap->physInfo->row;
    751 	int     fcol = raidPtr->reconControl[row]->fcol;
    752 	int     srow = raidPtr->reconControl[row]->spareRow;
    753 	int     scol = raidPtr->reconControl[row]->spareCol;
    754 	RF_PhysDiskAddr_t *pda;
    755 
    756 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
    757 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    758 		if (pda->col == fcol) {
    759 			if (rf_dagDebug) {
    760 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
    761 					pda->startSector)) {
    762 					RF_PANIC();
    763 				}
    764 			}
    765 			/* printf("Remapped data for large write\n"); */
    766 			if (ds) {
    767 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    768 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    769 			} else {
    770 				pda->row = srow;
    771 				pda->col = scol;
    772 			}
    773 		}
    774 	}
    775 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    776 		if (pda->col == fcol) {
    777 			if (rf_dagDebug) {
    778 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
    779 					RF_PANIC();
    780 				}
    781 			}
    782 		}
    783 		if (ds) {
    784 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    785 		} else {
    786 			pda->row = srow;
    787 			pda->col = scol;
    788 		}
    789 	}
    790 }
    791 
    792 
    793 /* this routine allocates read buffers and generates stripe maps for the
    794  * regions of the array from the start of the stripe to the start of the
    795  * access, and from the end of the access to the end of the stripe.  It also
    796  * computes and returns the number of DAG nodes needed to read all this data.
    797  * Note that this routine does the wrong thing if the access is fully
    798  * contained within one stripe unit, so we RF_ASSERT against this case at the
    799  * start.
    800  */
    801 void
    802 rf_MapUnaccessedPortionOfStripe(
    803     RF_Raid_t * raidPtr,
    804     RF_RaidLayout_t * layoutPtr,/* in: layout information */
    805     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    806     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    807     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
    808 						 * headers, to be filled in */
    809     int *nRodNodes,		/* out: num nodes to be generated to read
    810 				 * unaccessed data */
    811     char **sosBuffer,		/* out: pointers to newly allocated buffer */
    812     char **eosBuffer,
    813     RF_AllocListElem_t * allocList)
    814 {
    815 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    816 	RF_SectorNum_t sosNumSector, eosNumSector;
    817 
    818 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    819 	/* generate an access map for the region of the array from start of
    820 	 * stripe to start of access */
    821 	new_asm_h[0] = new_asm_h[1] = NULL;
    822 	*nRodNodes = 0;
    823 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    824 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    825 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    826 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    827 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    828 		new_asm_h[0]->next = dag_h->asmList;
    829 		dag_h->asmList = new_asm_h[0];
    830 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    831 
    832 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    833 		/* we're totally within one stripe here */
    834 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    835 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    836 	}
    837 	/* generate an access map for the region of the array from end of
    838 	 * access to end of stripe */
    839 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    840 		eosRaidAddress = asmap->endRaidAddress;
    841 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    842 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    843 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    844 		new_asm_h[1]->next = dag_h->asmList;
    845 		dag_h->asmList = new_asm_h[1];
    846 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    847 
    848 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    849 		/* we're totally within one stripe here */
    850 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    851 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    852 	}
    853 }
    854 
    855 
    856 
    857 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    858 int
    859 rf_PDAOverlap(
    860     RF_RaidLayout_t * layoutPtr,
    861     RF_PhysDiskAddr_t * src,
    862     RF_PhysDiskAddr_t * dest)
    863 {
    864 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    865 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    866 	/* use -1 to be sure we stay within SU */
    867 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    868 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    869 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    870 }
    871 
    872 
    873 /* GenerateFailedAccessASMs
    874  *
    875  * this routine figures out what portion of the stripe needs to be read
    876  * to effect the degraded read or write operation.  It's primary function
    877  * is to identify everything required to recover the data, and then
    878  * eliminate anything that is already being accessed by the user.
    879  *
    880  * The main result is two new ASMs, one for the region from the start of the
    881  * stripe to the start of the access, and one for the region from the end of
    882  * the access to the end of the stripe.  These ASMs describe everything that
    883  * needs to be read to effect the degraded access.  Other results are:
    884  *    nXorBufs -- the total number of buffers that need to be XORed together to
    885  *                recover the lost data,
    886  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    887  *                at entry, not allocated.
    888  *    overlappingPDAs --
    889  *                describes which of the non-failed PDAs in the user access
    890  *                overlap data that needs to be read to effect recovery.
    891  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    892  *                PDA, the ith pda in the input asm overlaps data that needs
    893  *                to be read for recovery.
    894  */
    895  /* in: asm - ASM for the actual access, one stripe only */
    896  /* in: failedPDA - which component of the access has failed */
    897  /* in: dag_h - header of the DAG we're going to create */
    898  /* out: new_asm_h - the two new ASMs */
    899  /* out: nXorBufs - the total number of xor bufs required */
    900  /* out: rpBufPtr - a buffer for the parity read */
    901 void
    902 rf_GenerateFailedAccessASMs(
    903     RF_Raid_t * raidPtr,
    904     RF_AccessStripeMap_t * asmap,
    905     RF_PhysDiskAddr_t * failedPDA,
    906     RF_DagHeader_t * dag_h,
    907     RF_AccessStripeMapHeader_t ** new_asm_h,
    908     int *nXorBufs,
    909     char **rpBufPtr,
    910     char *overlappingPDAs,
    911     RF_AllocListElem_t * allocList)
    912 {
    913 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    914 
    915 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    916 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    917 
    918 	RF_SectorCount_t numSect[2], numParitySect;
    919 	RF_PhysDiskAddr_t *pda;
    920 	char   *rdBuf, *bufP;
    921 	int     foundit, i;
    922 
    923 	bufP = NULL;
    924 	foundit = 0;
    925 	/* first compute the following raid addresses: start of stripe,
    926 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    927 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    928 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    929 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    930 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    931 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    932 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    933 
    934 	/* now generate access stripe maps for each of the above regions of
    935 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    936 
    937 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    938 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    939 
    940 	/* walk through the PDAs and range-restrict each SU to the region of
    941 	 * the SU touched on the failed PDA.  also compute total data buffer
    942 	 * space requirements in this step.  Ignore the parity for now. */
    943 
    944 	numSect[0] = numSect[1] = 0;
    945 	if (new_asm_h[0]) {
    946 		new_asm_h[0]->next = dag_h->asmList;
    947 		dag_h->asmList = new_asm_h[0];
    948 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    949 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    950 			numSect[0] += pda->numSector;
    951 		}
    952 	}
    953 	if (new_asm_h[1]) {
    954 		new_asm_h[1]->next = dag_h->asmList;
    955 		dag_h->asmList = new_asm_h[1];
    956 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    957 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    958 			numSect[1] += pda->numSector;
    959 		}
    960 	}
    961 	numParitySect = failedPDA->numSector;
    962 
    963 	/* allocate buffer space for the data & parity we have to read to
    964 	 * recover from the failure */
    965 
    966 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    967 										 * buf if not needed */
    968 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    969 		bufP = rdBuf;
    970 		if (rf_degDagDebug)
    971 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    972 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    973 	}
    974 	/* now walk through the pdas one last time and assign buffer pointers
    975 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    976 	 * how many bufs need to be xored together */
    977 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    978 				 * case, 1 is for failed data */
    979 	if (new_asm_h[0]) {
    980 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    981 			pda->bufPtr = bufP;
    982 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    983 		}
    984 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    985 	}
    986 	if (new_asm_h[1]) {
    987 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    988 			pda->bufPtr = bufP;
    989 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    990 		}
    991 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    992 	}
    993 	if (rpBufPtr)
    994 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    995 					 * parity */
    996 
    997 	/* the last step is to figure out how many more distinct buffers need
    998 	 * to get xor'd to produce the missing unit.  there's one for each
    999 	 * user-data read node that overlaps the portion of the failed unit
   1000 	 * being accessed */
   1001 
   1002 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1003 		if (pda == failedPDA) {
   1004 			i--;
   1005 			foundit = 1;
   1006 			continue;
   1007 		}
   1008 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1009 			overlappingPDAs[i] = 1;
   1010 			(*nXorBufs)++;
   1011 		}
   1012 	}
   1013 	if (!foundit) {
   1014 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1015 		RF_ASSERT(0);
   1016 	}
   1017 	if (rf_degDagDebug) {
   1018 		if (new_asm_h[0]) {
   1019 			printf("First asm:\n");
   1020 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1021 		}
   1022 		if (new_asm_h[1]) {
   1023 			printf("Second asm:\n");
   1024 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1025 		}
   1026 	}
   1027 }
   1028 
   1029 
   1030 /* adjusts the offset and number of sectors in the destination pda so that
   1031  * it covers at most the region of the SU covered by the source PDA.  This
   1032  * is exclusively a restriction:  the number of sectors indicated by the
   1033  * target PDA can only shrink.
   1034  *
   1035  * For example:  s = sectors within SU indicated by source PDA
   1036  *               d = sectors within SU indicated by dest PDA
   1037  *               r = results, stored in dest PDA
   1038  *
   1039  * |--------------- one stripe unit ---------------------|
   1040  * |           sssssssssssssssssssssssssssssssss         |
   1041  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1042  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1043  *
   1044  * Another example:
   1045  *
   1046  * |--------------- one stripe unit ---------------------|
   1047  * |           sssssssssssssssssssssssssssssssss         |
   1048  * |    ddddddddddddddddddddddd                          |
   1049  * |           rrrrrrrrrrrrrrrr                          |
   1050  *
   1051  */
   1052 void
   1053 rf_RangeRestrictPDA(
   1054     RF_Raid_t * raidPtr,
   1055     RF_PhysDiskAddr_t * src,
   1056     RF_PhysDiskAddr_t * dest,
   1057     int dobuffer,
   1058     int doraidaddr)
   1059 {
   1060 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1061 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1062 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1063 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1064 													 * stay within SU */
   1065 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1066 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1067 
   1068 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1069 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1070 
   1071 	if (dobuffer)
   1072 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1073 	if (doraidaddr) {
   1074 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1075 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1076 	}
   1077 }
   1078 
   1079 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1080 
   1081 /*
   1082  * Want the highest of these primes to be the largest one
   1083  * less than the max expected number of columns (won't hurt
   1084  * to be too small or too large, but won't be optimal, either)
   1085  * --jimz
   1086  */
   1087 #define NLOWPRIMES 8
   1088 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1089 /*****************************************************************************
   1090  * compute the workload shift factor.  (chained declustering)
   1091  *
   1092  * return nonzero if access should shift to secondary, otherwise,
   1093  * access is to primary
   1094  *****************************************************************************/
   1095 int
   1096 rf_compute_workload_shift(
   1097     RF_Raid_t * raidPtr,
   1098     RF_PhysDiskAddr_t * pda)
   1099 {
   1100 	/*
   1101          * variables:
   1102          *  d   = column of disk containing primary
   1103          *  f   = column of failed disk
   1104          *  n   = number of disks in array
   1105          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1106          *  row = row of array the access is in
   1107          *  v   = numerator of redirection ratio
   1108          *  k   = denominator of redirection ratio
   1109          */
   1110 	RF_RowCol_t d, f, sd, row, n;
   1111 	int     k, v, ret, i;
   1112 
   1113 	row = pda->row;
   1114 	n = raidPtr->numCol;
   1115 
   1116 	/* assign column of primary copy to d */
   1117 	d = pda->col;
   1118 
   1119 	/* assign column of dead disk to f */
   1120 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
   1121 
   1122 	RF_ASSERT(f < n);
   1123 	RF_ASSERT(f != d);
   1124 
   1125 	sd = (f > d) ? (n + d - f) : (d - f);
   1126 	RF_ASSERT(sd < n);
   1127 
   1128 	/*
   1129          * v of every k accesses should be redirected
   1130          *
   1131          * v/k := (n-1-sd)/(n-1)
   1132          */
   1133 	v = (n - 1 - sd);
   1134 	k = (n - 1);
   1135 
   1136 #if 1
   1137 	/*
   1138          * XXX
   1139          * Is this worth it?
   1140          *
   1141          * Now reduce the fraction, by repeatedly factoring
   1142          * out primes (just like they teach in elementary school!)
   1143          */
   1144 	for (i = 0; i < NLOWPRIMES; i++) {
   1145 		if (lowprimes[i] > v)
   1146 			break;
   1147 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1148 			v /= lowprimes[i];
   1149 			k /= lowprimes[i];
   1150 		}
   1151 	}
   1152 #endif
   1153 
   1154 	raidPtr->hist_diskreq[row][d]++;
   1155 	if (raidPtr->hist_diskreq[row][d] > v) {
   1156 		ret = 0;	/* do not redirect */
   1157 	} else {
   1158 		ret = 1;	/* redirect */
   1159 	}
   1160 
   1161 #if 0
   1162 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1163 	    raidPtr->hist_diskreq[row][d]);
   1164 #endif
   1165 
   1166 	if (raidPtr->hist_diskreq[row][d] >= k) {
   1167 		/* reset counter */
   1168 		raidPtr->hist_diskreq[row][d] = 0;
   1169 	}
   1170 	return (ret);
   1171 }
   1172 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1173 
   1174 /*
   1175  * Disk selection routines
   1176  */
   1177 
   1178 /*
   1179  * Selects the disk with the shortest queue from a mirror pair.
   1180  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1181  * disk are counted as members of the "queue"
   1182  */
   1183 void
   1184 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1185 {
   1186 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1187 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1188 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1189 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1190 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1191 	RF_PhysDiskAddr_t *tmp_pda;
   1192 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1193 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1194 
   1195 	/* return the [row col] of the disk with the shortest queue */
   1196 	rowData = data_pda->row;
   1197 	colData = data_pda->col;
   1198 	rowMirror = mirror_pda->row;
   1199 	colMirror = mirror_pda->col;
   1200 	dataQueue = &(dqs[rowData][colData]);
   1201 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1202 
   1203 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1204 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1205 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1206 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1207 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1208 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1209 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1210 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1211 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1212 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1213 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1214 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1215 
   1216 	usemirror = 0;
   1217 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1218 		usemirror = 0;
   1219 	} else
   1220 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1221 			usemirror = 1;
   1222 		} else
   1223 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1224 				/* Trust only the main disk */
   1225 				usemirror = 0;
   1226 			} else
   1227 				if (dataQueueLength < mirrorQueueLength) {
   1228 					usemirror = 0;
   1229 				} else
   1230 					if (mirrorQueueLength < dataQueueLength) {
   1231 						usemirror = 1;
   1232 					} else {
   1233 						/* queues are equal length. attempt
   1234 						 * cleverness. */
   1235 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1236 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1237 							usemirror = 0;
   1238 						} else {
   1239 							usemirror = 1;
   1240 						}
   1241 					}
   1242 
   1243 	if (usemirror) {
   1244 		/* use mirror (parity) disk, swap params 0 & 4 */
   1245 		tmp_pda = data_pda;
   1246 		node->params[0].p = mirror_pda;
   1247 		node->params[4].p = tmp_pda;
   1248 	} else {
   1249 		/* use data disk, leave param 0 unchanged */
   1250 	}
   1251 	/* printf("dataQueueLength %d, mirrorQueueLength
   1252 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1253 }
   1254 /*
   1255  * Do simple partitioning. This assumes that
   1256  * the data and parity disks are laid out identically.
   1257  */
   1258 void
   1259 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1260 {
   1261 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1262 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1263 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1264 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1265 	RF_PhysDiskAddr_t *tmp_pda;
   1266 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1267 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1268 	int     usemirror;
   1269 
   1270 	/* return the [row col] of the disk with the shortest queue */
   1271 	rowData = data_pda->row;
   1272 	colData = data_pda->col;
   1273 	rowMirror = mirror_pda->row;
   1274 	colMirror = mirror_pda->col;
   1275 	dataQueue = &(dqs[rowData][colData]);
   1276 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1277 
   1278 	usemirror = 0;
   1279 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1280 		usemirror = 0;
   1281 	} else
   1282 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1283 			usemirror = 1;
   1284 		} else
   1285 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1286 				/* Trust only the main disk */
   1287 				usemirror = 0;
   1288 			} else
   1289 				if (data_pda->startSector <
   1290 				    (disks[rowData][colData].numBlocks / 2)) {
   1291 					usemirror = 0;
   1292 				} else {
   1293 					usemirror = 1;
   1294 				}
   1295 
   1296 	if (usemirror) {
   1297 		/* use mirror (parity) disk, swap params 0 & 4 */
   1298 		tmp_pda = data_pda;
   1299 		node->params[0].p = mirror_pda;
   1300 		node->params[4].p = tmp_pda;
   1301 	} else {
   1302 		/* use data disk, leave param 0 unchanged */
   1303 	}
   1304 }
   1305