rf_dagutils.c revision 1.12 1 /* $NetBSD: rf_dagutils.c,v 1.12 2002/07/13 19:59:26 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.12 2002/07/13 19:59:26 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_freelist.h"
48 #include "rf_map.h"
49 #include "rf_shutdown.h"
50
51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
52
53 RF_RedFuncs_t rf_xorFuncs = {
54 rf_RegularXorFunc, "Reg Xr",
55 rf_SimpleXorFunc, "Simple Xr"};
56
57 RF_RedFuncs_t rf_xorRecoveryFuncs = {
58 rf_RecoveryXorFunc, "Recovery Xr",
59 rf_RecoveryXorFunc, "Recovery Xr"};
60
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67
68 /******************************************************************************
69 *
70 * InitNode - initialize a dag node
71 *
72 * the size of the propList array is always the same as that of the
73 * successors array.
74 *
75 *****************************************************************************/
76 void
77 rf_InitNode(
78 RF_DagNode_t * node,
79 RF_NodeStatus_t initstatus,
80 int commit,
81 int (*doFunc) (RF_DagNode_t * node),
82 int (*undoFunc) (RF_DagNode_t * node),
83 int (*wakeFunc) (RF_DagNode_t * node, int status),
84 int nSucc,
85 int nAnte,
86 int nParam,
87 int nResult,
88 RF_DagHeader_t * hdr,
89 char *name,
90 RF_AllocListElem_t * alist)
91 {
92 void **ptrs;
93 int nptrs;
94
95 if (nAnte > RF_MAX_ANTECEDENTS)
96 RF_PANIC();
97 node->status = initstatus;
98 node->commitNode = commit;
99 node->doFunc = doFunc;
100 node->undoFunc = undoFunc;
101 node->wakeFunc = wakeFunc;
102 node->numParams = nParam;
103 node->numResults = nResult;
104 node->numAntecedents = nAnte;
105 node->numAntDone = 0;
106 node->next = NULL;
107 node->numSuccedents = nSucc;
108 node->name = name;
109 node->dagHdr = hdr;
110 node->visited = 0;
111
112 /* allocate all the pointers with one call to malloc */
113 nptrs = nSucc + nAnte + nResult + nSucc;
114
115 if (nptrs <= RF_DAG_PTRCACHESIZE) {
116 /*
117 * The dag_ptrs field of the node is basically some scribble
118 * space to be used here. We could get rid of it, and always
119 * allocate the range of pointers, but that's expensive. So,
120 * we pick a "common case" size for the pointer cache. Hopefully,
121 * we'll find that:
122 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
123 * only a little bit (least efficient case)
124 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
125 * (wasted memory)
126 */
127 ptrs = (void **) node->dag_ptrs;
128 } else {
129 RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
130 }
131 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
132 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
133 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
134 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
135
136 if (nParam) {
137 if (nParam <= RF_DAG_PARAMCACHESIZE) {
138 node->params = (RF_DagParam_t *) node->dag_params;
139 } else {
140 RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
141 }
142 } else {
143 node->params = NULL;
144 }
145 }
146
147
148
149 /******************************************************************************
150 *
151 * allocation and deallocation routines
152 *
153 *****************************************************************************/
154
155 void
156 rf_FreeDAG(dag_h)
157 RF_DagHeader_t *dag_h;
158 {
159 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
160 RF_DagHeader_t *nextDag;
161 int i;
162
163 while (dag_h) {
164 nextDag = dag_h->next;
165 for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
166 /* release mem chunks */
167 rf_ReleaseMemChunk(dag_h->memChunk[i]);
168 dag_h->memChunk[i] = NULL;
169 }
170
171 RF_ASSERT(i == dag_h->chunkIndex);
172 if (dag_h->xtraChunkCnt > 0) {
173 /* free xtraMemChunks */
174 for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
175 rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
176 dag_h->xtraMemChunk[i] = NULL;
177 }
178 RF_ASSERT(i == dag_h->xtraChunkIndex);
179 /* free ptrs to xtraMemChunks */
180 RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
181 }
182 rf_FreeAllocList(dag_h->allocList);
183 for (asmap = dag_h->asmList; asmap;) {
184 t_asmap = asmap;
185 asmap = asmap->next;
186 rf_FreeAccessStripeMap(t_asmap);
187 }
188 rf_FreeDAGHeader(dag_h);
189 dag_h = nextDag;
190 }
191 }
192
193 RF_PropHeader_t *
194 rf_MakePropListEntry(
195 RF_DagHeader_t * dag_h,
196 int resultNum,
197 int paramNum,
198 RF_PropHeader_t * next,
199 RF_AllocListElem_t * allocList)
200 {
201 RF_PropHeader_t *p;
202
203 RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
204 (RF_PropHeader_t *), allocList);
205 p->resultNum = resultNum;
206 p->paramNum = paramNum;
207 p->next = next;
208 return (p);
209 }
210
211 static RF_FreeList_t *rf_dagh_freelist;
212
213 #define RF_MAX_FREE_DAGH 128
214 #define RF_DAGH_INC 16
215 #define RF_DAGH_INITIAL 32
216
217 static void rf_ShutdownDAGs(void *);
218 static void
219 rf_ShutdownDAGs(ignored)
220 void *ignored;
221 {
222 RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
223 }
224
225 int
226 rf_ConfigureDAGs(listp)
227 RF_ShutdownList_t **listp;
228 {
229 int rc;
230
231 RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
232 RF_DAGH_INC, sizeof(RF_DagHeader_t));
233 if (rf_dagh_freelist == NULL)
234 return (ENOMEM);
235 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
236 if (rc) {
237 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
238 __FILE__, __LINE__, rc);
239 rf_ShutdownDAGs(NULL);
240 return (rc);
241 }
242 RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
243 (RF_DagHeader_t *));
244 return (0);
245 }
246
247 RF_DagHeader_t *
248 rf_AllocDAGHeader()
249 {
250 RF_DagHeader_t *dh;
251
252 RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
253 if (dh) {
254 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
255 }
256 return (dh);
257 }
258
259 void
260 rf_FreeDAGHeader(RF_DagHeader_t * dh)
261 {
262 RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
263 }
264 /* allocates a buffer big enough to hold the data described by pda */
265 void *
266 rf_AllocBuffer(
267 RF_Raid_t * raidPtr,
268 RF_DagHeader_t * dag_h,
269 RF_PhysDiskAddr_t * pda,
270 RF_AllocListElem_t * allocList)
271 {
272 char *p;
273
274 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
275 (char *), allocList);
276 return ((void *) p);
277 }
278 /******************************************************************************
279 *
280 * debug routines
281 *
282 *****************************************************************************/
283
284 char *
285 rf_NodeStatusString(RF_DagNode_t * node)
286 {
287 switch (node->status) {
288 case rf_wait:return ("wait");
289 case rf_fired:
290 return ("fired");
291 case rf_good:
292 return ("good");
293 case rf_bad:
294 return ("bad");
295 default:
296 return ("?");
297 }
298 }
299
300 void
301 rf_PrintNodeInfoString(RF_DagNode_t * node)
302 {
303 RF_PhysDiskAddr_t *pda;
304 int (*df) (RF_DagNode_t *) = node->doFunc;
305 int i, lk, unlk;
306 void *bufPtr;
307
308 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
309 || (df == rf_DiskReadMirrorIdleFunc)
310 || (df == rf_DiskReadMirrorPartitionFunc)) {
311 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
312 bufPtr = (void *) node->params[1].p;
313 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
314 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
315 RF_ASSERT(!(lk && unlk));
316 printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
317 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
318 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
319 return;
320 }
321 if (df == rf_DiskUnlockFunc) {
322 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
323 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
324 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
325 RF_ASSERT(!(lk && unlk));
326 printf("r %d c %d %s\n", pda->row, pda->col,
327 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
328 return;
329 }
330 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
331 || (df == rf_RecoveryXorFunc)) {
332 printf("result buf 0x%lx\n", (long) node->results[0]);
333 for (i = 0; i < node->numParams - 1; i += 2) {
334 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
335 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
336 printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
337 (long) bufPtr, pda->row, pda->col,
338 (long) pda->startSector, (int) pda->numSector);
339 }
340 return;
341 }
342 #if RF_INCLUDE_PARITYLOGGING > 0
343 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
344 for (i = 0; i < node->numParams - 1; i += 2) {
345 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
346 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
347 printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
348 pda->row, pda->col, (long) pda->startSector,
349 (int) pda->numSector, (long) bufPtr);
350 }
351 return;
352 }
353 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
354
355 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
356 printf("\n");
357 return;
358 }
359 printf("?\n");
360 }
361
362 static void
363 rf_RecurPrintDAG(node, depth, unvisited)
364 RF_DagNode_t *node;
365 int depth;
366 int unvisited;
367 {
368 char *anttype;
369 int i;
370
371 node->visited = (unvisited) ? 0 : 1;
372 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
373 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
374 node->numSuccedents, node->numSuccFired, node->numSuccDone,
375 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
376 for (i = 0; i < node->numSuccedents; i++) {
377 printf("%d%s", node->succedents[i]->nodeNum,
378 ((i == node->numSuccedents - 1) ? "\0" : " "));
379 }
380 printf("} A{");
381 for (i = 0; i < node->numAntecedents; i++) {
382 switch (node->antType[i]) {
383 case rf_trueData:
384 anttype = "T";
385 break;
386 case rf_antiData:
387 anttype = "A";
388 break;
389 case rf_outputData:
390 anttype = "O";
391 break;
392 case rf_control:
393 anttype = "C";
394 break;
395 default:
396 anttype = "?";
397 break;
398 }
399 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
400 }
401 printf("}; ");
402 rf_PrintNodeInfoString(node);
403 for (i = 0; i < node->numSuccedents; i++) {
404 if (node->succedents[i]->visited == unvisited)
405 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
406 }
407 }
408
409 static void
410 rf_PrintDAG(dag_h)
411 RF_DagHeader_t *dag_h;
412 {
413 int unvisited, i;
414 char *status;
415
416 /* set dag status */
417 switch (dag_h->status) {
418 case rf_enable:
419 status = "enable";
420 break;
421 case rf_rollForward:
422 status = "rollForward";
423 break;
424 case rf_rollBackward:
425 status = "rollBackward";
426 break;
427 default:
428 status = "illegal!";
429 break;
430 }
431 /* find out if visited bits are currently set or clear */
432 unvisited = dag_h->succedents[0]->visited;
433
434 printf("DAG type: %s\n", dag_h->creator);
435 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
436 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
437 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
438 for (i = 0; i < dag_h->numSuccedents; i++) {
439 printf("%d%s", dag_h->succedents[i]->nodeNum,
440 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
441 }
442 printf("};\n");
443 for (i = 0; i < dag_h->numSuccedents; i++) {
444 if (dag_h->succedents[i]->visited == unvisited)
445 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
446 }
447 }
448 /* assigns node numbers */
449 int
450 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
451 {
452 int unvisited, i, nnum;
453 RF_DagNode_t *node;
454
455 nnum = 0;
456 unvisited = dag_h->succedents[0]->visited;
457
458 dag_h->nodeNum = nnum++;
459 for (i = 0; i < dag_h->numSuccedents; i++) {
460 node = dag_h->succedents[i];
461 if (node->visited == unvisited) {
462 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
463 }
464 }
465 return (nnum);
466 }
467
468 int
469 rf_RecurAssignNodeNums(node, num, unvisited)
470 RF_DagNode_t *node;
471 int num;
472 int unvisited;
473 {
474 int i;
475
476 node->visited = (unvisited) ? 0 : 1;
477
478 node->nodeNum = num++;
479 for (i = 0; i < node->numSuccedents; i++) {
480 if (node->succedents[i]->visited == unvisited) {
481 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
482 }
483 }
484 return (num);
485 }
486 /* set the header pointers in each node to "newptr" */
487 void
488 rf_ResetDAGHeaderPointers(dag_h, newptr)
489 RF_DagHeader_t *dag_h;
490 RF_DagHeader_t *newptr;
491 {
492 int i;
493 for (i = 0; i < dag_h->numSuccedents; i++)
494 if (dag_h->succedents[i]->dagHdr != newptr)
495 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
496 }
497
498 void
499 rf_RecurResetDAGHeaderPointers(node, newptr)
500 RF_DagNode_t *node;
501 RF_DagHeader_t *newptr;
502 {
503 int i;
504 node->dagHdr = newptr;
505 for (i = 0; i < node->numSuccedents; i++)
506 if (node->succedents[i]->dagHdr != newptr)
507 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
508 }
509
510
511 void
512 rf_PrintDAGList(RF_DagHeader_t * dag_h)
513 {
514 int i = 0;
515
516 for (; dag_h; dag_h = dag_h->next) {
517 rf_AssignNodeNums(dag_h);
518 printf("\n\nDAG %d IN LIST:\n", i++);
519 rf_PrintDAG(dag_h);
520 }
521 }
522
523 static int
524 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
525 RF_DagNode_t *node;
526 int *scount;
527 int *acount;
528 RF_DagNode_t **nodes;
529 int unvisited;
530 {
531 int i, retcode = 0;
532
533 /* construct an array of node pointers indexed by node num */
534 node->visited = (unvisited) ? 0 : 1;
535 nodes[node->nodeNum] = node;
536
537 if (node->next != NULL) {
538 printf("INVALID DAG: next pointer in node is not NULL\n");
539 retcode = 1;
540 }
541 if (node->status != rf_wait) {
542 printf("INVALID DAG: Node status is not wait\n");
543 retcode = 1;
544 }
545 if (node->numAntDone != 0) {
546 printf("INVALID DAG: numAntDone is not zero\n");
547 retcode = 1;
548 }
549 if (node->doFunc == rf_TerminateFunc) {
550 if (node->numSuccedents != 0) {
551 printf("INVALID DAG: Terminator node has succedents\n");
552 retcode = 1;
553 }
554 } else {
555 if (node->numSuccedents == 0) {
556 printf("INVALID DAG: Non-terminator node has no succedents\n");
557 retcode = 1;
558 }
559 }
560 for (i = 0; i < node->numSuccedents; i++) {
561 if (!node->succedents[i]) {
562 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
563 retcode = 1;
564 }
565 scount[node->succedents[i]->nodeNum]++;
566 }
567 for (i = 0; i < node->numAntecedents; i++) {
568 if (!node->antecedents[i]) {
569 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
570 retcode = 1;
571 }
572 acount[node->antecedents[i]->nodeNum]++;
573 }
574 for (i = 0; i < node->numSuccedents; i++) {
575 if (node->succedents[i]->visited == unvisited) {
576 if (rf_ValidateBranch(node->succedents[i], scount,
577 acount, nodes, unvisited)) {
578 retcode = 1;
579 }
580 }
581 }
582 return (retcode);
583 }
584
585 static void
586 rf_ValidateBranchVisitedBits(node, unvisited, rl)
587 RF_DagNode_t *node;
588 int unvisited;
589 int rl;
590 {
591 int i;
592
593 RF_ASSERT(node->visited == unvisited);
594 for (i = 0; i < node->numSuccedents; i++) {
595 if (node->succedents[i] == NULL) {
596 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
597 RF_ASSERT(0);
598 }
599 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
600 }
601 }
602 /* NOTE: never call this on a big dag, because it is exponential
603 * in execution time
604 */
605 static void
606 rf_ValidateVisitedBits(dag)
607 RF_DagHeader_t *dag;
608 {
609 int i, unvisited;
610
611 unvisited = dag->succedents[0]->visited;
612
613 for (i = 0; i < dag->numSuccedents; i++) {
614 if (dag->succedents[i] == NULL) {
615 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
616 RF_ASSERT(0);
617 }
618 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
619 }
620 }
621 /* validate a DAG. _at entry_ verify that:
622 * -- numNodesCompleted is zero
623 * -- node queue is null
624 * -- dag status is rf_enable
625 * -- next pointer is null on every node
626 * -- all nodes have status wait
627 * -- numAntDone is zero in all nodes
628 * -- terminator node has zero successors
629 * -- no other node besides terminator has zero successors
630 * -- no successor or antecedent pointer in a node is NULL
631 * -- number of times that each node appears as a successor of another node
632 * is equal to the antecedent count on that node
633 * -- number of times that each node appears as an antecedent of another node
634 * is equal to the succedent count on that node
635 * -- what else?
636 */
637 int
638 rf_ValidateDAG(dag_h)
639 RF_DagHeader_t *dag_h;
640 {
641 int i, nodecount;
642 int *scount, *acount;/* per-node successor and antecedent counts */
643 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
644 int retcode = 0;
645 int unvisited;
646 int commitNodeCount = 0;
647
648 if (rf_validateVisitedDebug)
649 rf_ValidateVisitedBits(dag_h);
650
651 if (dag_h->numNodesCompleted != 0) {
652 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
653 retcode = 1;
654 goto validate_dag_bad;
655 }
656 if (dag_h->status != rf_enable) {
657 printf("INVALID DAG: not enabled\n");
658 retcode = 1;
659 goto validate_dag_bad;
660 }
661 if (dag_h->numCommits != 0) {
662 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
663 retcode = 1;
664 goto validate_dag_bad;
665 }
666 if (dag_h->numSuccedents != 1) {
667 /* currently, all dags must have only one succedent */
668 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
669 retcode = 1;
670 goto validate_dag_bad;
671 }
672 nodecount = rf_AssignNodeNums(dag_h);
673
674 unvisited = dag_h->succedents[0]->visited;
675
676 RF_Calloc(scount, nodecount, sizeof(int), (int *));
677 RF_Calloc(acount, nodecount, sizeof(int), (int *));
678 RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
679 for (i = 0; i < dag_h->numSuccedents; i++) {
680 if ((dag_h->succedents[i]->visited == unvisited)
681 && rf_ValidateBranch(dag_h->succedents[i], scount,
682 acount, nodes, unvisited)) {
683 retcode = 1;
684 }
685 }
686 /* start at 1 to skip the header node */
687 for (i = 1; i < nodecount; i++) {
688 if (nodes[i]->commitNode)
689 commitNodeCount++;
690 if (nodes[i]->doFunc == NULL) {
691 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
692 retcode = 1;
693 goto validate_dag_out;
694 }
695 if (nodes[i]->undoFunc == NULL) {
696 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
697 retcode = 1;
698 goto validate_dag_out;
699 }
700 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
701 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
702 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
703 retcode = 1;
704 goto validate_dag_out;
705 }
706 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
707 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
708 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
709 retcode = 1;
710 goto validate_dag_out;
711 }
712 }
713
714 if (dag_h->numCommitNodes != commitNodeCount) {
715 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
716 dag_h->numCommitNodes, commitNodeCount);
717 retcode = 1;
718 goto validate_dag_out;
719 }
720 validate_dag_out:
721 RF_Free(scount, nodecount * sizeof(int));
722 RF_Free(acount, nodecount * sizeof(int));
723 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
724 if (retcode)
725 rf_PrintDAGList(dag_h);
726
727 if (rf_validateVisitedDebug)
728 rf_ValidateVisitedBits(dag_h);
729
730 return (retcode);
731
732 validate_dag_bad:
733 rf_PrintDAGList(dag_h);
734 return (retcode);
735 }
736
737
738 /******************************************************************************
739 *
740 * misc construction routines
741 *
742 *****************************************************************************/
743
744 void
745 rf_redirect_asm(
746 RF_Raid_t * raidPtr,
747 RF_AccessStripeMap_t * asmap)
748 {
749 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
750 int row = asmap->physInfo->row;
751 int fcol = raidPtr->reconControl[row]->fcol;
752 int srow = raidPtr->reconControl[row]->spareRow;
753 int scol = raidPtr->reconControl[row]->spareCol;
754 RF_PhysDiskAddr_t *pda;
755
756 RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
757 for (pda = asmap->physInfo; pda; pda = pda->next) {
758 if (pda->col == fcol) {
759 if (rf_dagDebug) {
760 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
761 pda->startSector)) {
762 RF_PANIC();
763 }
764 }
765 /* printf("Remapped data for large write\n"); */
766 if (ds) {
767 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
768 &pda->row, &pda->col, &pda->startSector, RF_REMAP);
769 } else {
770 pda->row = srow;
771 pda->col = scol;
772 }
773 }
774 }
775 for (pda = asmap->parityInfo; pda; pda = pda->next) {
776 if (pda->col == fcol) {
777 if (rf_dagDebug) {
778 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
779 RF_PANIC();
780 }
781 }
782 }
783 if (ds) {
784 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
785 } else {
786 pda->row = srow;
787 pda->col = scol;
788 }
789 }
790 }
791
792
793 /* this routine allocates read buffers and generates stripe maps for the
794 * regions of the array from the start of the stripe to the start of the
795 * access, and from the end of the access to the end of the stripe. It also
796 * computes and returns the number of DAG nodes needed to read all this data.
797 * Note that this routine does the wrong thing if the access is fully
798 * contained within one stripe unit, so we RF_ASSERT against this case at the
799 * start.
800 */
801 void
802 rf_MapUnaccessedPortionOfStripe(
803 RF_Raid_t * raidPtr,
804 RF_RaidLayout_t * layoutPtr,/* in: layout information */
805 RF_AccessStripeMap_t * asmap, /* in: access stripe map */
806 RF_DagHeader_t * dag_h, /* in: header of the dag to create */
807 RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
808 * headers, to be filled in */
809 int *nRodNodes, /* out: num nodes to be generated to read
810 * unaccessed data */
811 char **sosBuffer, /* out: pointers to newly allocated buffer */
812 char **eosBuffer,
813 RF_AllocListElem_t * allocList)
814 {
815 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
816 RF_SectorNum_t sosNumSector, eosNumSector;
817
818 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
819 /* generate an access map for the region of the array from start of
820 * stripe to start of access */
821 new_asm_h[0] = new_asm_h[1] = NULL;
822 *nRodNodes = 0;
823 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
824 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
825 sosNumSector = asmap->raidAddress - sosRaidAddress;
826 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
827 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
828 new_asm_h[0]->next = dag_h->asmList;
829 dag_h->asmList = new_asm_h[0];
830 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
831
832 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
833 /* we're totally within one stripe here */
834 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
835 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
836 }
837 /* generate an access map for the region of the array from end of
838 * access to end of stripe */
839 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
840 eosRaidAddress = asmap->endRaidAddress;
841 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
842 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
843 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
844 new_asm_h[1]->next = dag_h->asmList;
845 dag_h->asmList = new_asm_h[1];
846 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
847
848 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
849 /* we're totally within one stripe here */
850 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
851 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
852 }
853 }
854
855
856
857 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
858 int
859 rf_PDAOverlap(
860 RF_RaidLayout_t * layoutPtr,
861 RF_PhysDiskAddr_t * src,
862 RF_PhysDiskAddr_t * dest)
863 {
864 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
865 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
866 /* use -1 to be sure we stay within SU */
867 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
868 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
869 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
870 }
871
872
873 /* GenerateFailedAccessASMs
874 *
875 * this routine figures out what portion of the stripe needs to be read
876 * to effect the degraded read or write operation. It's primary function
877 * is to identify everything required to recover the data, and then
878 * eliminate anything that is already being accessed by the user.
879 *
880 * The main result is two new ASMs, one for the region from the start of the
881 * stripe to the start of the access, and one for the region from the end of
882 * the access to the end of the stripe. These ASMs describe everything that
883 * needs to be read to effect the degraded access. Other results are:
884 * nXorBufs -- the total number of buffers that need to be XORed together to
885 * recover the lost data,
886 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
887 * at entry, not allocated.
888 * overlappingPDAs --
889 * describes which of the non-failed PDAs in the user access
890 * overlap data that needs to be read to effect recovery.
891 * overlappingPDAs[i]==1 if and only if, neglecting the failed
892 * PDA, the ith pda in the input asm overlaps data that needs
893 * to be read for recovery.
894 */
895 /* in: asm - ASM for the actual access, one stripe only */
896 /* in: failedPDA - which component of the access has failed */
897 /* in: dag_h - header of the DAG we're going to create */
898 /* out: new_asm_h - the two new ASMs */
899 /* out: nXorBufs - the total number of xor bufs required */
900 /* out: rpBufPtr - a buffer for the parity read */
901 void
902 rf_GenerateFailedAccessASMs(
903 RF_Raid_t * raidPtr,
904 RF_AccessStripeMap_t * asmap,
905 RF_PhysDiskAddr_t * failedPDA,
906 RF_DagHeader_t * dag_h,
907 RF_AccessStripeMapHeader_t ** new_asm_h,
908 int *nXorBufs,
909 char **rpBufPtr,
910 char *overlappingPDAs,
911 RF_AllocListElem_t * allocList)
912 {
913 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
914
915 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
916 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
917
918 RF_SectorCount_t numSect[2], numParitySect;
919 RF_PhysDiskAddr_t *pda;
920 char *rdBuf, *bufP;
921 int foundit, i;
922
923 bufP = NULL;
924 foundit = 0;
925 /* first compute the following raid addresses: start of stripe,
926 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
927 * MAX(end of access, end of failed SU), (eosStartAddr) end of
928 * stripe (i.e. start of next stripe) (eosAddr) */
929 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
930 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
931 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
932 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
933
934 /* now generate access stripe maps for each of the above regions of
935 * the stripe. Use a dummy (NULL) buf ptr for now */
936
937 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
938 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
939
940 /* walk through the PDAs and range-restrict each SU to the region of
941 * the SU touched on the failed PDA. also compute total data buffer
942 * space requirements in this step. Ignore the parity for now. */
943
944 numSect[0] = numSect[1] = 0;
945 if (new_asm_h[0]) {
946 new_asm_h[0]->next = dag_h->asmList;
947 dag_h->asmList = new_asm_h[0];
948 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
949 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
950 numSect[0] += pda->numSector;
951 }
952 }
953 if (new_asm_h[1]) {
954 new_asm_h[1]->next = dag_h->asmList;
955 dag_h->asmList = new_asm_h[1];
956 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
957 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
958 numSect[1] += pda->numSector;
959 }
960 }
961 numParitySect = failedPDA->numSector;
962
963 /* allocate buffer space for the data & parity we have to read to
964 * recover from the failure */
965
966 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
967 * buf if not needed */
968 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
969 bufP = rdBuf;
970 if (rf_degDagDebug)
971 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
972 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
973 }
974 /* now walk through the pdas one last time and assign buffer pointers
975 * (ugh!). Again, ignore the parity. also, count nodes to find out
976 * how many bufs need to be xored together */
977 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
978 * case, 1 is for failed data */
979 if (new_asm_h[0]) {
980 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
981 pda->bufPtr = bufP;
982 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
983 }
984 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
985 }
986 if (new_asm_h[1]) {
987 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
988 pda->bufPtr = bufP;
989 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
990 }
991 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
992 }
993 if (rpBufPtr)
994 *rpBufPtr = bufP; /* the rest of the buffer is for
995 * parity */
996
997 /* the last step is to figure out how many more distinct buffers need
998 * to get xor'd to produce the missing unit. there's one for each
999 * user-data read node that overlaps the portion of the failed unit
1000 * being accessed */
1001
1002 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1003 if (pda == failedPDA) {
1004 i--;
1005 foundit = 1;
1006 continue;
1007 }
1008 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1009 overlappingPDAs[i] = 1;
1010 (*nXorBufs)++;
1011 }
1012 }
1013 if (!foundit) {
1014 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1015 RF_ASSERT(0);
1016 }
1017 if (rf_degDagDebug) {
1018 if (new_asm_h[0]) {
1019 printf("First asm:\n");
1020 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1021 }
1022 if (new_asm_h[1]) {
1023 printf("Second asm:\n");
1024 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1025 }
1026 }
1027 }
1028
1029
1030 /* adjusts the offset and number of sectors in the destination pda so that
1031 * it covers at most the region of the SU covered by the source PDA. This
1032 * is exclusively a restriction: the number of sectors indicated by the
1033 * target PDA can only shrink.
1034 *
1035 * For example: s = sectors within SU indicated by source PDA
1036 * d = sectors within SU indicated by dest PDA
1037 * r = results, stored in dest PDA
1038 *
1039 * |--------------- one stripe unit ---------------------|
1040 * | sssssssssssssssssssssssssssssssss |
1041 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1042 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1043 *
1044 * Another example:
1045 *
1046 * |--------------- one stripe unit ---------------------|
1047 * | sssssssssssssssssssssssssssssssss |
1048 * | ddddddddddddddddddddddd |
1049 * | rrrrrrrrrrrrrrrr |
1050 *
1051 */
1052 void
1053 rf_RangeRestrictPDA(
1054 RF_Raid_t * raidPtr,
1055 RF_PhysDiskAddr_t * src,
1056 RF_PhysDiskAddr_t * dest,
1057 int dobuffer,
1058 int doraidaddr)
1059 {
1060 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1061 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1062 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1063 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1064 * stay within SU */
1065 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1066 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1067
1068 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1069 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1070
1071 if (dobuffer)
1072 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1073 if (doraidaddr) {
1074 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1075 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1076 }
1077 }
1078
1079 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1080
1081 /*
1082 * Want the highest of these primes to be the largest one
1083 * less than the max expected number of columns (won't hurt
1084 * to be too small or too large, but won't be optimal, either)
1085 * --jimz
1086 */
1087 #define NLOWPRIMES 8
1088 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1089 /*****************************************************************************
1090 * compute the workload shift factor. (chained declustering)
1091 *
1092 * return nonzero if access should shift to secondary, otherwise,
1093 * access is to primary
1094 *****************************************************************************/
1095 int
1096 rf_compute_workload_shift(
1097 RF_Raid_t * raidPtr,
1098 RF_PhysDiskAddr_t * pda)
1099 {
1100 /*
1101 * variables:
1102 * d = column of disk containing primary
1103 * f = column of failed disk
1104 * n = number of disks in array
1105 * sd = "shift distance" (number of columns that d is to the right of f)
1106 * row = row of array the access is in
1107 * v = numerator of redirection ratio
1108 * k = denominator of redirection ratio
1109 */
1110 RF_RowCol_t d, f, sd, row, n;
1111 int k, v, ret, i;
1112
1113 row = pda->row;
1114 n = raidPtr->numCol;
1115
1116 /* assign column of primary copy to d */
1117 d = pda->col;
1118
1119 /* assign column of dead disk to f */
1120 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1121
1122 RF_ASSERT(f < n);
1123 RF_ASSERT(f != d);
1124
1125 sd = (f > d) ? (n + d - f) : (d - f);
1126 RF_ASSERT(sd < n);
1127
1128 /*
1129 * v of every k accesses should be redirected
1130 *
1131 * v/k := (n-1-sd)/(n-1)
1132 */
1133 v = (n - 1 - sd);
1134 k = (n - 1);
1135
1136 #if 1
1137 /*
1138 * XXX
1139 * Is this worth it?
1140 *
1141 * Now reduce the fraction, by repeatedly factoring
1142 * out primes (just like they teach in elementary school!)
1143 */
1144 for (i = 0; i < NLOWPRIMES; i++) {
1145 if (lowprimes[i] > v)
1146 break;
1147 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1148 v /= lowprimes[i];
1149 k /= lowprimes[i];
1150 }
1151 }
1152 #endif
1153
1154 raidPtr->hist_diskreq[row][d]++;
1155 if (raidPtr->hist_diskreq[row][d] > v) {
1156 ret = 0; /* do not redirect */
1157 } else {
1158 ret = 1; /* redirect */
1159 }
1160
1161 #if 0
1162 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1163 raidPtr->hist_diskreq[row][d]);
1164 #endif
1165
1166 if (raidPtr->hist_diskreq[row][d] >= k) {
1167 /* reset counter */
1168 raidPtr->hist_diskreq[row][d] = 0;
1169 }
1170 return (ret);
1171 }
1172 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1173
1174 /*
1175 * Disk selection routines
1176 */
1177
1178 /*
1179 * Selects the disk with the shortest queue from a mirror pair.
1180 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1181 * disk are counted as members of the "queue"
1182 */
1183 void
1184 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1185 {
1186 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1187 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1188 int dataQueueLength, mirrorQueueLength, usemirror;
1189 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1190 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1191 RF_PhysDiskAddr_t *tmp_pda;
1192 RF_RaidDisk_t **disks = raidPtr->Disks;
1193 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1194
1195 /* return the [row col] of the disk with the shortest queue */
1196 rowData = data_pda->row;
1197 colData = data_pda->col;
1198 rowMirror = mirror_pda->row;
1199 colMirror = mirror_pda->col;
1200 dataQueue = &(dqs[rowData][colData]);
1201 mirrorQueue = &(dqs[rowMirror][colMirror]);
1202
1203 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1204 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1205 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1206 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1207 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1208 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1209 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1210 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1211 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1212 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1213 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1214 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1215
1216 usemirror = 0;
1217 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1218 usemirror = 0;
1219 } else
1220 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1221 usemirror = 1;
1222 } else
1223 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1224 /* Trust only the main disk */
1225 usemirror = 0;
1226 } else
1227 if (dataQueueLength < mirrorQueueLength) {
1228 usemirror = 0;
1229 } else
1230 if (mirrorQueueLength < dataQueueLength) {
1231 usemirror = 1;
1232 } else {
1233 /* queues are equal length. attempt
1234 * cleverness. */
1235 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1236 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1237 usemirror = 0;
1238 } else {
1239 usemirror = 1;
1240 }
1241 }
1242
1243 if (usemirror) {
1244 /* use mirror (parity) disk, swap params 0 & 4 */
1245 tmp_pda = data_pda;
1246 node->params[0].p = mirror_pda;
1247 node->params[4].p = tmp_pda;
1248 } else {
1249 /* use data disk, leave param 0 unchanged */
1250 }
1251 /* printf("dataQueueLength %d, mirrorQueueLength
1252 * %d\n",dataQueueLength, mirrorQueueLength); */
1253 }
1254 /*
1255 * Do simple partitioning. This assumes that
1256 * the data and parity disks are laid out identically.
1257 */
1258 void
1259 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1260 {
1261 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1262 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1263 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1264 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1265 RF_PhysDiskAddr_t *tmp_pda;
1266 RF_RaidDisk_t **disks = raidPtr->Disks;
1267 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1268 int usemirror;
1269
1270 /* return the [row col] of the disk with the shortest queue */
1271 rowData = data_pda->row;
1272 colData = data_pda->col;
1273 rowMirror = mirror_pda->row;
1274 colMirror = mirror_pda->col;
1275 dataQueue = &(dqs[rowData][colData]);
1276 mirrorQueue = &(dqs[rowMirror][colMirror]);
1277
1278 usemirror = 0;
1279 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1280 usemirror = 0;
1281 } else
1282 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1283 usemirror = 1;
1284 } else
1285 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1286 /* Trust only the main disk */
1287 usemirror = 0;
1288 } else
1289 if (data_pda->startSector <
1290 (disks[rowData][colData].numBlocks / 2)) {
1291 usemirror = 0;
1292 } else {
1293 usemirror = 1;
1294 }
1295
1296 if (usemirror) {
1297 /* use mirror (parity) disk, swap params 0 & 4 */
1298 tmp_pda = data_pda;
1299 node->params[0].p = mirror_pda;
1300 node->params[4].p = tmp_pda;
1301 } else {
1302 /* use data disk, leave param 0 unchanged */
1303 }
1304 }
1305