Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.15
      1 /*	$NetBSD: rf_dagutils.c,v 1.15 2002/09/14 17:53:59 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.15 2002/09/14 17:53:59 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_freelist.h"
     48 #include "rf_map.h"
     49 #include "rf_shutdown.h"
     50 
     51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     52 
     53 RF_RedFuncs_t rf_xorFuncs = {
     54 	rf_RegularXorFunc, "Reg Xr",
     55 rf_SimpleXorFunc, "Simple Xr"};
     56 
     57 RF_RedFuncs_t rf_xorRecoveryFuncs = {
     58 	rf_RecoveryXorFunc, "Recovery Xr",
     59 rf_RecoveryXorFunc, "Recovery Xr"};
     60 
     61 #if RF_DEBUG_VALIDATE_DAG
     62 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     63 static void rf_PrintDAG(RF_DagHeader_t *);
     64 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     65 			     RF_DagNode_t **, int);
     66 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     67 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     68 #endif /* RF_DEBUG_VALIDATE_DAG */
     69 
     70 /******************************************************************************
     71  *
     72  * InitNode - initialize a dag node
     73  *
     74  * the size of the propList array is always the same as that of the
     75  * successors array.
     76  *
     77  *****************************************************************************/
     78 void
     79 rf_InitNode(
     80     RF_DagNode_t * node,
     81     RF_NodeStatus_t initstatus,
     82     int commit,
     83     int (*doFunc) (RF_DagNode_t * node),
     84     int (*undoFunc) (RF_DagNode_t * node),
     85     int (*wakeFunc) (RF_DagNode_t * node, int status),
     86     int nSucc,
     87     int nAnte,
     88     int nParam,
     89     int nResult,
     90     RF_DagHeader_t * hdr,
     91     char *name,
     92     RF_AllocListElem_t * alist)
     93 {
     94 	void  **ptrs;
     95 	int     nptrs;
     96 
     97 	if (nAnte > RF_MAX_ANTECEDENTS)
     98 		RF_PANIC();
     99 	node->status = initstatus;
    100 	node->commitNode = commit;
    101 	node->doFunc = doFunc;
    102 	node->undoFunc = undoFunc;
    103 	node->wakeFunc = wakeFunc;
    104 	node->numParams = nParam;
    105 	node->numResults = nResult;
    106 	node->numAntecedents = nAnte;
    107 	node->numAntDone = 0;
    108 	node->next = NULL;
    109 	node->numSuccedents = nSucc;
    110 	node->name = name;
    111 	node->dagHdr = hdr;
    112 	node->visited = 0;
    113 
    114 	/* allocate all the pointers with one call to malloc */
    115 	nptrs = nSucc + nAnte + nResult + nSucc;
    116 
    117 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    118 		/*
    119 	         * The dag_ptrs field of the node is basically some scribble
    120 	         * space to be used here. We could get rid of it, and always
    121 	         * allocate the range of pointers, but that's expensive. So,
    122 	         * we pick a "common case" size for the pointer cache. Hopefully,
    123 	         * we'll find that:
    124 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    125 	         *     only a little bit (least efficient case)
    126 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    127 	         *     (wasted memory)
    128 	         */
    129 		ptrs = (void **) node->dag_ptrs;
    130 	} else {
    131 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
    132 	}
    133 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    134 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    135 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    136 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    137 
    138 	if (nParam) {
    139 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    140 			node->params = (RF_DagParam_t *) node->dag_params;
    141 		} else {
    142 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
    143 		}
    144 	} else {
    145 		node->params = NULL;
    146 	}
    147 }
    148 
    149 
    150 
    151 /******************************************************************************
    152  *
    153  * allocation and deallocation routines
    154  *
    155  *****************************************************************************/
    156 
    157 void
    158 rf_FreeDAG(dag_h)
    159 	RF_DagHeader_t *dag_h;
    160 {
    161 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    162 	RF_DagHeader_t *nextDag;
    163 
    164 	while (dag_h) {
    165 		nextDag = dag_h->next;
    166 		rf_FreeAllocList(dag_h->allocList);
    167 		for (asmap = dag_h->asmList; asmap;) {
    168 			t_asmap = asmap;
    169 			asmap = asmap->next;
    170 			rf_FreeAccessStripeMap(t_asmap);
    171 		}
    172 		rf_FreeDAGHeader(dag_h);
    173 		dag_h = nextDag;
    174 	}
    175 }
    176 
    177 RF_PropHeader_t *
    178 rf_MakePropListEntry(
    179     RF_DagHeader_t * dag_h,
    180     int resultNum,
    181     int paramNum,
    182     RF_PropHeader_t * next,
    183     RF_AllocListElem_t * allocList)
    184 {
    185 	RF_PropHeader_t *p;
    186 
    187 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
    188 	    (RF_PropHeader_t *), allocList);
    189 	p->resultNum = resultNum;
    190 	p->paramNum = paramNum;
    191 	p->next = next;
    192 	return (p);
    193 }
    194 
    195 static RF_FreeList_t *rf_dagh_freelist;
    196 
    197 #define RF_MAX_FREE_DAGH 128
    198 #define RF_DAGH_INC       16
    199 #define RF_DAGH_INITIAL   32
    200 
    201 static void rf_ShutdownDAGs(void *);
    202 static void
    203 rf_ShutdownDAGs(ignored)
    204 	void   *ignored;
    205 {
    206 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
    207 }
    208 
    209 int
    210 rf_ConfigureDAGs(listp)
    211 	RF_ShutdownList_t **listp;
    212 {
    213 	int     rc;
    214 
    215 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
    216 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
    217 	if (rf_dagh_freelist == NULL)
    218 		return (ENOMEM);
    219 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    220 	if (rc) {
    221 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    222 		rf_ShutdownDAGs(NULL);
    223 		return (rc);
    224 	}
    225 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
    226 	    (RF_DagHeader_t *));
    227 	return (0);
    228 }
    229 
    230 RF_DagHeader_t *
    231 rf_AllocDAGHeader()
    232 {
    233 	RF_DagHeader_t *dh;
    234 
    235 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
    236 	if (dh) {
    237 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    238 	}
    239 	return (dh);
    240 }
    241 
    242 void
    243 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    244 {
    245 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
    246 }
    247 /* allocates a buffer big enough to hold the data described by pda */
    248 void   *
    249 rf_AllocBuffer(
    250     RF_Raid_t * raidPtr,
    251     RF_DagHeader_t * dag_h,
    252     RF_PhysDiskAddr_t * pda,
    253     RF_AllocListElem_t * allocList)
    254 {
    255 	char   *p;
    256 
    257 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    258 	    (char *), allocList);
    259 	return ((void *) p);
    260 }
    261 #if RF_DEBUG_VALIDATE_DAG
    262 /******************************************************************************
    263  *
    264  * debug routines
    265  *
    266  *****************************************************************************/
    267 
    268 char   *
    269 rf_NodeStatusString(RF_DagNode_t * node)
    270 {
    271 	switch (node->status) {
    272 		case rf_wait:return ("wait");
    273 	case rf_fired:
    274 		return ("fired");
    275 	case rf_good:
    276 		return ("good");
    277 	case rf_bad:
    278 		return ("bad");
    279 	default:
    280 		return ("?");
    281 	}
    282 }
    283 
    284 void
    285 rf_PrintNodeInfoString(RF_DagNode_t * node)
    286 {
    287 	RF_PhysDiskAddr_t *pda;
    288 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    289 	int     i, lk, unlk;
    290 	void   *bufPtr;
    291 
    292 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    293 	    || (df == rf_DiskReadMirrorIdleFunc)
    294 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    295 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    296 		bufPtr = (void *) node->params[1].p;
    297 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    298 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    299 		RF_ASSERT(!(lk && unlk));
    300 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
    301 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    302 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    303 		return;
    304 	}
    305 	if (df == rf_DiskUnlockFunc) {
    306 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    307 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    308 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    309 		RF_ASSERT(!(lk && unlk));
    310 		printf("r %d c %d %s\n", pda->row, pda->col,
    311 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    312 		return;
    313 	}
    314 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    315 	    || (df == rf_RecoveryXorFunc)) {
    316 		printf("result buf 0x%lx\n", (long) node->results[0]);
    317 		for (i = 0; i < node->numParams - 1; i += 2) {
    318 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    319 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    320 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
    321 			    (long) bufPtr, pda->row, pda->col,
    322 			    (long) pda->startSector, (int) pda->numSector);
    323 		}
    324 		return;
    325 	}
    326 #if RF_INCLUDE_PARITYLOGGING > 0
    327 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    328 		for (i = 0; i < node->numParams - 1; i += 2) {
    329 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    330 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    331 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
    332 			    pda->row, pda->col, (long) pda->startSector,
    333 			    (int) pda->numSector, (long) bufPtr);
    334 		}
    335 		return;
    336 	}
    337 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    338 
    339 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    340 		printf("\n");
    341 		return;
    342 	}
    343 	printf("?\n");
    344 }
    345 
    346 static void
    347 rf_RecurPrintDAG(node, depth, unvisited)
    348 	RF_DagNode_t *node;
    349 	int     depth;
    350 	int     unvisited;
    351 {
    352 	char   *anttype;
    353 	int     i;
    354 
    355 	node->visited = (unvisited) ? 0 : 1;
    356 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    357 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    358 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    359 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    360 	for (i = 0; i < node->numSuccedents; i++) {
    361 		printf("%d%s", node->succedents[i]->nodeNum,
    362 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    363 	}
    364 	printf("} A{");
    365 	for (i = 0; i < node->numAntecedents; i++) {
    366 		switch (node->antType[i]) {
    367 		case rf_trueData:
    368 			anttype = "T";
    369 			break;
    370 		case rf_antiData:
    371 			anttype = "A";
    372 			break;
    373 		case rf_outputData:
    374 			anttype = "O";
    375 			break;
    376 		case rf_control:
    377 			anttype = "C";
    378 			break;
    379 		default:
    380 			anttype = "?";
    381 			break;
    382 		}
    383 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    384 	}
    385 	printf("}; ");
    386 	rf_PrintNodeInfoString(node);
    387 	for (i = 0; i < node->numSuccedents; i++) {
    388 		if (node->succedents[i]->visited == unvisited)
    389 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    390 	}
    391 }
    392 
    393 static void
    394 rf_PrintDAG(dag_h)
    395 	RF_DagHeader_t *dag_h;
    396 {
    397 	int     unvisited, i;
    398 	char   *status;
    399 
    400 	/* set dag status */
    401 	switch (dag_h->status) {
    402 	case rf_enable:
    403 		status = "enable";
    404 		break;
    405 	case rf_rollForward:
    406 		status = "rollForward";
    407 		break;
    408 	case rf_rollBackward:
    409 		status = "rollBackward";
    410 		break;
    411 	default:
    412 		status = "illegal!";
    413 		break;
    414 	}
    415 	/* find out if visited bits are currently set or clear */
    416 	unvisited = dag_h->succedents[0]->visited;
    417 
    418 	printf("DAG type:  %s\n", dag_h->creator);
    419 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    420 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    421 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    422 	for (i = 0; i < dag_h->numSuccedents; i++) {
    423 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    424 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    425 	}
    426 	printf("};\n");
    427 	for (i = 0; i < dag_h->numSuccedents; i++) {
    428 		if (dag_h->succedents[i]->visited == unvisited)
    429 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    430 	}
    431 }
    432 /* assigns node numbers */
    433 int
    434 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    435 {
    436 	int     unvisited, i, nnum;
    437 	RF_DagNode_t *node;
    438 
    439 	nnum = 0;
    440 	unvisited = dag_h->succedents[0]->visited;
    441 
    442 	dag_h->nodeNum = nnum++;
    443 	for (i = 0; i < dag_h->numSuccedents; i++) {
    444 		node = dag_h->succedents[i];
    445 		if (node->visited == unvisited) {
    446 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    447 		}
    448 	}
    449 	return (nnum);
    450 }
    451 
    452 int
    453 rf_RecurAssignNodeNums(node, num, unvisited)
    454 	RF_DagNode_t *node;
    455 	int     num;
    456 	int     unvisited;
    457 {
    458 	int     i;
    459 
    460 	node->visited = (unvisited) ? 0 : 1;
    461 
    462 	node->nodeNum = num++;
    463 	for (i = 0; i < node->numSuccedents; i++) {
    464 		if (node->succedents[i]->visited == unvisited) {
    465 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    466 		}
    467 	}
    468 	return (num);
    469 }
    470 /* set the header pointers in each node to "newptr" */
    471 void
    472 rf_ResetDAGHeaderPointers(dag_h, newptr)
    473 	RF_DagHeader_t *dag_h;
    474 	RF_DagHeader_t *newptr;
    475 {
    476 	int     i;
    477 	for (i = 0; i < dag_h->numSuccedents; i++)
    478 		if (dag_h->succedents[i]->dagHdr != newptr)
    479 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    480 }
    481 
    482 void
    483 rf_RecurResetDAGHeaderPointers(node, newptr)
    484 	RF_DagNode_t *node;
    485 	RF_DagHeader_t *newptr;
    486 {
    487 	int     i;
    488 	node->dagHdr = newptr;
    489 	for (i = 0; i < node->numSuccedents; i++)
    490 		if (node->succedents[i]->dagHdr != newptr)
    491 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    492 }
    493 
    494 
    495 void
    496 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    497 {
    498 	int     i = 0;
    499 
    500 	for (; dag_h; dag_h = dag_h->next) {
    501 		rf_AssignNodeNums(dag_h);
    502 		printf("\n\nDAG %d IN LIST:\n", i++);
    503 		rf_PrintDAG(dag_h);
    504 	}
    505 }
    506 
    507 static int
    508 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
    509 	RF_DagNode_t *node;
    510 	int    *scount;
    511 	int    *acount;
    512 	RF_DagNode_t **nodes;
    513 	int     unvisited;
    514 {
    515 	int     i, retcode = 0;
    516 
    517 	/* construct an array of node pointers indexed by node num */
    518 	node->visited = (unvisited) ? 0 : 1;
    519 	nodes[node->nodeNum] = node;
    520 
    521 	if (node->next != NULL) {
    522 		printf("INVALID DAG: next pointer in node is not NULL\n");
    523 		retcode = 1;
    524 	}
    525 	if (node->status != rf_wait) {
    526 		printf("INVALID DAG: Node status is not wait\n");
    527 		retcode = 1;
    528 	}
    529 	if (node->numAntDone != 0) {
    530 		printf("INVALID DAG: numAntDone is not zero\n");
    531 		retcode = 1;
    532 	}
    533 	if (node->doFunc == rf_TerminateFunc) {
    534 		if (node->numSuccedents != 0) {
    535 			printf("INVALID DAG: Terminator node has succedents\n");
    536 			retcode = 1;
    537 		}
    538 	} else {
    539 		if (node->numSuccedents == 0) {
    540 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    541 			retcode = 1;
    542 		}
    543 	}
    544 	for (i = 0; i < node->numSuccedents; i++) {
    545 		if (!node->succedents[i]) {
    546 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    547 			retcode = 1;
    548 		}
    549 		scount[node->succedents[i]->nodeNum]++;
    550 	}
    551 	for (i = 0; i < node->numAntecedents; i++) {
    552 		if (!node->antecedents[i]) {
    553 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    554 			retcode = 1;
    555 		}
    556 		acount[node->antecedents[i]->nodeNum]++;
    557 	}
    558 	for (i = 0; i < node->numSuccedents; i++) {
    559 		if (node->succedents[i]->visited == unvisited) {
    560 			if (rf_ValidateBranch(node->succedents[i], scount,
    561 				acount, nodes, unvisited)) {
    562 				retcode = 1;
    563 			}
    564 		}
    565 	}
    566 	return (retcode);
    567 }
    568 
    569 static void
    570 rf_ValidateBranchVisitedBits(node, unvisited, rl)
    571 	RF_DagNode_t *node;
    572 	int     unvisited;
    573 	int     rl;
    574 {
    575 	int     i;
    576 
    577 	RF_ASSERT(node->visited == unvisited);
    578 	for (i = 0; i < node->numSuccedents; i++) {
    579 		if (node->succedents[i] == NULL) {
    580 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    581 			RF_ASSERT(0);
    582 		}
    583 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    584 	}
    585 }
    586 /* NOTE:  never call this on a big dag, because it is exponential
    587  * in execution time
    588  */
    589 static void
    590 rf_ValidateVisitedBits(dag)
    591 	RF_DagHeader_t *dag;
    592 {
    593 	int     i, unvisited;
    594 
    595 	unvisited = dag->succedents[0]->visited;
    596 
    597 	for (i = 0; i < dag->numSuccedents; i++) {
    598 		if (dag->succedents[i] == NULL) {
    599 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    600 			RF_ASSERT(0);
    601 		}
    602 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    603 	}
    604 }
    605 /* validate a DAG.  _at entry_ verify that:
    606  *   -- numNodesCompleted is zero
    607  *   -- node queue is null
    608  *   -- dag status is rf_enable
    609  *   -- next pointer is null on every node
    610  *   -- all nodes have status wait
    611  *   -- numAntDone is zero in all nodes
    612  *   -- terminator node has zero successors
    613  *   -- no other node besides terminator has zero successors
    614  *   -- no successor or antecedent pointer in a node is NULL
    615  *   -- number of times that each node appears as a successor of another node
    616  *      is equal to the antecedent count on that node
    617  *   -- number of times that each node appears as an antecedent of another node
    618  *      is equal to the succedent count on that node
    619  *   -- what else?
    620  */
    621 int
    622 rf_ValidateDAG(dag_h)
    623 	RF_DagHeader_t *dag_h;
    624 {
    625 	int     i, nodecount;
    626 	int    *scount, *acount;/* per-node successor and antecedent counts */
    627 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    628 	int     retcode = 0;
    629 	int     unvisited;
    630 	int     commitNodeCount = 0;
    631 
    632 	if (rf_validateVisitedDebug)
    633 		rf_ValidateVisitedBits(dag_h);
    634 
    635 	if (dag_h->numNodesCompleted != 0) {
    636 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    637 		retcode = 1;
    638 		goto validate_dag_bad;
    639 	}
    640 	if (dag_h->status != rf_enable) {
    641 		printf("INVALID DAG: not enabled\n");
    642 		retcode = 1;
    643 		goto validate_dag_bad;
    644 	}
    645 	if (dag_h->numCommits != 0) {
    646 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    647 		retcode = 1;
    648 		goto validate_dag_bad;
    649 	}
    650 	if (dag_h->numSuccedents != 1) {
    651 		/* currently, all dags must have only one succedent */
    652 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    653 		retcode = 1;
    654 		goto validate_dag_bad;
    655 	}
    656 	nodecount = rf_AssignNodeNums(dag_h);
    657 
    658 	unvisited = dag_h->succedents[0]->visited;
    659 
    660 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
    661 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
    662 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
    663 	for (i = 0; i < dag_h->numSuccedents; i++) {
    664 		if ((dag_h->succedents[i]->visited == unvisited)
    665 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    666 			acount, nodes, unvisited)) {
    667 			retcode = 1;
    668 		}
    669 	}
    670 	/* start at 1 to skip the header node */
    671 	for (i = 1; i < nodecount; i++) {
    672 		if (nodes[i]->commitNode)
    673 			commitNodeCount++;
    674 		if (nodes[i]->doFunc == NULL) {
    675 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    676 			retcode = 1;
    677 			goto validate_dag_out;
    678 		}
    679 		if (nodes[i]->undoFunc == NULL) {
    680 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    681 			retcode = 1;
    682 			goto validate_dag_out;
    683 		}
    684 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    685 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    686 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    687 			retcode = 1;
    688 			goto validate_dag_out;
    689 		}
    690 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    691 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    692 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    693 			retcode = 1;
    694 			goto validate_dag_out;
    695 		}
    696 	}
    697 
    698 	if (dag_h->numCommitNodes != commitNodeCount) {
    699 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    700 		    dag_h->numCommitNodes, commitNodeCount);
    701 		retcode = 1;
    702 		goto validate_dag_out;
    703 	}
    704 validate_dag_out:
    705 	RF_Free(scount, nodecount * sizeof(int));
    706 	RF_Free(acount, nodecount * sizeof(int));
    707 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    708 	if (retcode)
    709 		rf_PrintDAGList(dag_h);
    710 
    711 	if (rf_validateVisitedDebug)
    712 		rf_ValidateVisitedBits(dag_h);
    713 
    714 	return (retcode);
    715 
    716 validate_dag_bad:
    717 	rf_PrintDAGList(dag_h);
    718 	return (retcode);
    719 }
    720 
    721 #endif /* RF_DEBUG_VALIDATE_DAG */
    722 
    723 /******************************************************************************
    724  *
    725  * misc construction routines
    726  *
    727  *****************************************************************************/
    728 
    729 void
    730 rf_redirect_asm(
    731     RF_Raid_t * raidPtr,
    732     RF_AccessStripeMap_t * asmap)
    733 {
    734 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    735 	int     row = asmap->physInfo->row;
    736 	int     fcol = raidPtr->reconControl[row]->fcol;
    737 	int     srow = raidPtr->reconControl[row]->spareRow;
    738 	int     scol = raidPtr->reconControl[row]->spareCol;
    739 	RF_PhysDiskAddr_t *pda;
    740 
    741 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
    742 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    743 		if (pda->col == fcol) {
    744 			if (rf_dagDebug) {
    745 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
    746 					pda->startSector)) {
    747 					RF_PANIC();
    748 				}
    749 			}
    750 			/* printf("Remapped data for large write\n"); */
    751 			if (ds) {
    752 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    753 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    754 			} else {
    755 				pda->row = srow;
    756 				pda->col = scol;
    757 			}
    758 		}
    759 	}
    760 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    761 		if (pda->col == fcol) {
    762 			if (rf_dagDebug) {
    763 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
    764 					RF_PANIC();
    765 				}
    766 			}
    767 		}
    768 		if (ds) {
    769 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    770 		} else {
    771 			pda->row = srow;
    772 			pda->col = scol;
    773 		}
    774 	}
    775 }
    776 
    777 
    778 /* this routine allocates read buffers and generates stripe maps for the
    779  * regions of the array from the start of the stripe to the start of the
    780  * access, and from the end of the access to the end of the stripe.  It also
    781  * computes and returns the number of DAG nodes needed to read all this data.
    782  * Note that this routine does the wrong thing if the access is fully
    783  * contained within one stripe unit, so we RF_ASSERT against this case at the
    784  * start.
    785  */
    786 void
    787 rf_MapUnaccessedPortionOfStripe(
    788     RF_Raid_t * raidPtr,
    789     RF_RaidLayout_t * layoutPtr,/* in: layout information */
    790     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    791     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    792     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
    793 						 * headers, to be filled in */
    794     int *nRodNodes,		/* out: num nodes to be generated to read
    795 				 * unaccessed data */
    796     char **sosBuffer,		/* out: pointers to newly allocated buffer */
    797     char **eosBuffer,
    798     RF_AllocListElem_t * allocList)
    799 {
    800 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    801 	RF_SectorNum_t sosNumSector, eosNumSector;
    802 
    803 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    804 	/* generate an access map for the region of the array from start of
    805 	 * stripe to start of access */
    806 	new_asm_h[0] = new_asm_h[1] = NULL;
    807 	*nRodNodes = 0;
    808 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    809 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    810 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    811 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    812 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    813 		new_asm_h[0]->next = dag_h->asmList;
    814 		dag_h->asmList = new_asm_h[0];
    815 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    816 
    817 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    818 		/* we're totally within one stripe here */
    819 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    820 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    821 	}
    822 	/* generate an access map for the region of the array from end of
    823 	 * access to end of stripe */
    824 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    825 		eosRaidAddress = asmap->endRaidAddress;
    826 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    827 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    828 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    829 		new_asm_h[1]->next = dag_h->asmList;
    830 		dag_h->asmList = new_asm_h[1];
    831 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    832 
    833 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    834 		/* we're totally within one stripe here */
    835 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    836 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    837 	}
    838 }
    839 
    840 
    841 
    842 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    843 int
    844 rf_PDAOverlap(
    845     RF_RaidLayout_t * layoutPtr,
    846     RF_PhysDiskAddr_t * src,
    847     RF_PhysDiskAddr_t * dest)
    848 {
    849 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    850 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    851 	/* use -1 to be sure we stay within SU */
    852 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    853 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    854 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    855 }
    856 
    857 
    858 /* GenerateFailedAccessASMs
    859  *
    860  * this routine figures out what portion of the stripe needs to be read
    861  * to effect the degraded read or write operation.  It's primary function
    862  * is to identify everything required to recover the data, and then
    863  * eliminate anything that is already being accessed by the user.
    864  *
    865  * The main result is two new ASMs, one for the region from the start of the
    866  * stripe to the start of the access, and one for the region from the end of
    867  * the access to the end of the stripe.  These ASMs describe everything that
    868  * needs to be read to effect the degraded access.  Other results are:
    869  *    nXorBufs -- the total number of buffers that need to be XORed together to
    870  *                recover the lost data,
    871  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    872  *                at entry, not allocated.
    873  *    overlappingPDAs --
    874  *                describes which of the non-failed PDAs in the user access
    875  *                overlap data that needs to be read to effect recovery.
    876  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    877  *                PDA, the ith pda in the input asm overlaps data that needs
    878  *                to be read for recovery.
    879  */
    880  /* in: asm - ASM for the actual access, one stripe only */
    881  /* in: failedPDA - which component of the access has failed */
    882  /* in: dag_h - header of the DAG we're going to create */
    883  /* out: new_asm_h - the two new ASMs */
    884  /* out: nXorBufs - the total number of xor bufs required */
    885  /* out: rpBufPtr - a buffer for the parity read */
    886 void
    887 rf_GenerateFailedAccessASMs(
    888     RF_Raid_t * raidPtr,
    889     RF_AccessStripeMap_t * asmap,
    890     RF_PhysDiskAddr_t * failedPDA,
    891     RF_DagHeader_t * dag_h,
    892     RF_AccessStripeMapHeader_t ** new_asm_h,
    893     int *nXorBufs,
    894     char **rpBufPtr,
    895     char *overlappingPDAs,
    896     RF_AllocListElem_t * allocList)
    897 {
    898 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    899 
    900 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    901 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    902 
    903 	RF_SectorCount_t numSect[2], numParitySect;
    904 	RF_PhysDiskAddr_t *pda;
    905 	char   *rdBuf, *bufP;
    906 	int     foundit, i;
    907 
    908 	bufP = NULL;
    909 	foundit = 0;
    910 	/* first compute the following raid addresses: start of stripe,
    911 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    912 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    913 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    914 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    915 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    916 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    917 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    918 
    919 	/* now generate access stripe maps for each of the above regions of
    920 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    921 
    922 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    923 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    924 
    925 	/* walk through the PDAs and range-restrict each SU to the region of
    926 	 * the SU touched on the failed PDA.  also compute total data buffer
    927 	 * space requirements in this step.  Ignore the parity for now. */
    928 
    929 	numSect[0] = numSect[1] = 0;
    930 	if (new_asm_h[0]) {
    931 		new_asm_h[0]->next = dag_h->asmList;
    932 		dag_h->asmList = new_asm_h[0];
    933 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    934 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    935 			numSect[0] += pda->numSector;
    936 		}
    937 	}
    938 	if (new_asm_h[1]) {
    939 		new_asm_h[1]->next = dag_h->asmList;
    940 		dag_h->asmList = new_asm_h[1];
    941 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    942 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    943 			numSect[1] += pda->numSector;
    944 		}
    945 	}
    946 	numParitySect = failedPDA->numSector;
    947 
    948 	/* allocate buffer space for the data & parity we have to read to
    949 	 * recover from the failure */
    950 
    951 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    952 										 * buf if not needed */
    953 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    954 		bufP = rdBuf;
    955 		if (rf_degDagDebug)
    956 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    957 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    958 	}
    959 	/* now walk through the pdas one last time and assign buffer pointers
    960 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    961 	 * how many bufs need to be xored together */
    962 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    963 				 * case, 1 is for failed data */
    964 	if (new_asm_h[0]) {
    965 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    966 			pda->bufPtr = bufP;
    967 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    968 		}
    969 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    970 	}
    971 	if (new_asm_h[1]) {
    972 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    973 			pda->bufPtr = bufP;
    974 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    975 		}
    976 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    977 	}
    978 	if (rpBufPtr)
    979 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    980 					 * parity */
    981 
    982 	/* the last step is to figure out how many more distinct buffers need
    983 	 * to get xor'd to produce the missing unit.  there's one for each
    984 	 * user-data read node that overlaps the portion of the failed unit
    985 	 * being accessed */
    986 
    987 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
    988 		if (pda == failedPDA) {
    989 			i--;
    990 			foundit = 1;
    991 			continue;
    992 		}
    993 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
    994 			overlappingPDAs[i] = 1;
    995 			(*nXorBufs)++;
    996 		}
    997 	}
    998 	if (!foundit) {
    999 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1000 		RF_ASSERT(0);
   1001 	}
   1002 	if (rf_degDagDebug) {
   1003 		if (new_asm_h[0]) {
   1004 			printf("First asm:\n");
   1005 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1006 		}
   1007 		if (new_asm_h[1]) {
   1008 			printf("Second asm:\n");
   1009 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1010 		}
   1011 	}
   1012 }
   1013 
   1014 
   1015 /* adjusts the offset and number of sectors in the destination pda so that
   1016  * it covers at most the region of the SU covered by the source PDA.  This
   1017  * is exclusively a restriction:  the number of sectors indicated by the
   1018  * target PDA can only shrink.
   1019  *
   1020  * For example:  s = sectors within SU indicated by source PDA
   1021  *               d = sectors within SU indicated by dest PDA
   1022  *               r = results, stored in dest PDA
   1023  *
   1024  * |--------------- one stripe unit ---------------------|
   1025  * |           sssssssssssssssssssssssssssssssss         |
   1026  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1027  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1028  *
   1029  * Another example:
   1030  *
   1031  * |--------------- one stripe unit ---------------------|
   1032  * |           sssssssssssssssssssssssssssssssss         |
   1033  * |    ddddddddddddddddddddddd                          |
   1034  * |           rrrrrrrrrrrrrrrr                          |
   1035  *
   1036  */
   1037 void
   1038 rf_RangeRestrictPDA(
   1039     RF_Raid_t * raidPtr,
   1040     RF_PhysDiskAddr_t * src,
   1041     RF_PhysDiskAddr_t * dest,
   1042     int dobuffer,
   1043     int doraidaddr)
   1044 {
   1045 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1046 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1047 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1048 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1049 													 * stay within SU */
   1050 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1051 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1052 
   1053 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1054 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1055 
   1056 	if (dobuffer)
   1057 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1058 	if (doraidaddr) {
   1059 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1060 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1061 	}
   1062 }
   1063 
   1064 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1065 
   1066 /*
   1067  * Want the highest of these primes to be the largest one
   1068  * less than the max expected number of columns (won't hurt
   1069  * to be too small or too large, but won't be optimal, either)
   1070  * --jimz
   1071  */
   1072 #define NLOWPRIMES 8
   1073 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1074 /*****************************************************************************
   1075  * compute the workload shift factor.  (chained declustering)
   1076  *
   1077  * return nonzero if access should shift to secondary, otherwise,
   1078  * access is to primary
   1079  *****************************************************************************/
   1080 int
   1081 rf_compute_workload_shift(
   1082     RF_Raid_t * raidPtr,
   1083     RF_PhysDiskAddr_t * pda)
   1084 {
   1085 	/*
   1086          * variables:
   1087          *  d   = column of disk containing primary
   1088          *  f   = column of failed disk
   1089          *  n   = number of disks in array
   1090          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1091          *  row = row of array the access is in
   1092          *  v   = numerator of redirection ratio
   1093          *  k   = denominator of redirection ratio
   1094          */
   1095 	RF_RowCol_t d, f, sd, row, n;
   1096 	int     k, v, ret, i;
   1097 
   1098 	row = pda->row;
   1099 	n = raidPtr->numCol;
   1100 
   1101 	/* assign column of primary copy to d */
   1102 	d = pda->col;
   1103 
   1104 	/* assign column of dead disk to f */
   1105 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
   1106 
   1107 	RF_ASSERT(f < n);
   1108 	RF_ASSERT(f != d);
   1109 
   1110 	sd = (f > d) ? (n + d - f) : (d - f);
   1111 	RF_ASSERT(sd < n);
   1112 
   1113 	/*
   1114          * v of every k accesses should be redirected
   1115          *
   1116          * v/k := (n-1-sd)/(n-1)
   1117          */
   1118 	v = (n - 1 - sd);
   1119 	k = (n - 1);
   1120 
   1121 #if 1
   1122 	/*
   1123          * XXX
   1124          * Is this worth it?
   1125          *
   1126          * Now reduce the fraction, by repeatedly factoring
   1127          * out primes (just like they teach in elementary school!)
   1128          */
   1129 	for (i = 0; i < NLOWPRIMES; i++) {
   1130 		if (lowprimes[i] > v)
   1131 			break;
   1132 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1133 			v /= lowprimes[i];
   1134 			k /= lowprimes[i];
   1135 		}
   1136 	}
   1137 #endif
   1138 
   1139 	raidPtr->hist_diskreq[row][d]++;
   1140 	if (raidPtr->hist_diskreq[row][d] > v) {
   1141 		ret = 0;	/* do not redirect */
   1142 	} else {
   1143 		ret = 1;	/* redirect */
   1144 	}
   1145 
   1146 #if 0
   1147 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1148 	    raidPtr->hist_diskreq[row][d]);
   1149 #endif
   1150 
   1151 	if (raidPtr->hist_diskreq[row][d] >= k) {
   1152 		/* reset counter */
   1153 		raidPtr->hist_diskreq[row][d] = 0;
   1154 	}
   1155 	return (ret);
   1156 }
   1157 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1158 
   1159 /*
   1160  * Disk selection routines
   1161  */
   1162 
   1163 /*
   1164  * Selects the disk with the shortest queue from a mirror pair.
   1165  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1166  * disk are counted as members of the "queue"
   1167  */
   1168 void
   1169 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1170 {
   1171 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1172 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1173 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1174 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1175 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1176 	RF_PhysDiskAddr_t *tmp_pda;
   1177 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1178 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1179 
   1180 	/* return the [row col] of the disk with the shortest queue */
   1181 	rowData = data_pda->row;
   1182 	colData = data_pda->col;
   1183 	rowMirror = mirror_pda->row;
   1184 	colMirror = mirror_pda->col;
   1185 	dataQueue = &(dqs[rowData][colData]);
   1186 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1187 
   1188 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1189 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1190 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1191 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1192 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1193 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1194 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1195 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1196 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1197 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1198 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1199 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1200 
   1201 	usemirror = 0;
   1202 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1203 		usemirror = 0;
   1204 	} else
   1205 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1206 			usemirror = 1;
   1207 		} else
   1208 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1209 				/* Trust only the main disk */
   1210 				usemirror = 0;
   1211 			} else
   1212 				if (dataQueueLength < mirrorQueueLength) {
   1213 					usemirror = 0;
   1214 				} else
   1215 					if (mirrorQueueLength < dataQueueLength) {
   1216 						usemirror = 1;
   1217 					} else {
   1218 						/* queues are equal length. attempt
   1219 						 * cleverness. */
   1220 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1221 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1222 							usemirror = 0;
   1223 						} else {
   1224 							usemirror = 1;
   1225 						}
   1226 					}
   1227 
   1228 	if (usemirror) {
   1229 		/* use mirror (parity) disk, swap params 0 & 4 */
   1230 		tmp_pda = data_pda;
   1231 		node->params[0].p = mirror_pda;
   1232 		node->params[4].p = tmp_pda;
   1233 	} else {
   1234 		/* use data disk, leave param 0 unchanged */
   1235 	}
   1236 	/* printf("dataQueueLength %d, mirrorQueueLength
   1237 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1238 }
   1239 /*
   1240  * Do simple partitioning. This assumes that
   1241  * the data and parity disks are laid out identically.
   1242  */
   1243 void
   1244 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1245 {
   1246 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1247 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1248 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1249 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1250 	RF_PhysDiskAddr_t *tmp_pda;
   1251 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1252 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1253 	int     usemirror;
   1254 
   1255 	/* return the [row col] of the disk with the shortest queue */
   1256 	rowData = data_pda->row;
   1257 	colData = data_pda->col;
   1258 	rowMirror = mirror_pda->row;
   1259 	colMirror = mirror_pda->col;
   1260 	dataQueue = &(dqs[rowData][colData]);
   1261 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1262 
   1263 	usemirror = 0;
   1264 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1265 		usemirror = 0;
   1266 	} else
   1267 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1268 			usemirror = 1;
   1269 		} else
   1270 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1271 				/* Trust only the main disk */
   1272 				usemirror = 0;
   1273 			} else
   1274 				if (data_pda->startSector <
   1275 				    (disks[rowData][colData].numBlocks / 2)) {
   1276 					usemirror = 0;
   1277 				} else {
   1278 					usemirror = 1;
   1279 				}
   1280 
   1281 	if (usemirror) {
   1282 		/* use mirror (parity) disk, swap params 0 & 4 */
   1283 		tmp_pda = data_pda;
   1284 		node->params[0].p = mirror_pda;
   1285 		node->params[4].p = tmp_pda;
   1286 	} else {
   1287 		/* use data disk, leave param 0 unchanged */
   1288 	}
   1289 }
   1290