rf_dagutils.c revision 1.20 1 /* $NetBSD: rf_dagutils.c,v 1.20 2003/02/09 10:04:33 jdolecek Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.20 2003/02/09 10:04:33 jdolecek Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_freelist.h"
48 #include "rf_map.h"
49 #include "rf_shutdown.h"
50
51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
52
53 const RF_RedFuncs_t rf_xorFuncs = {
54 rf_RegularXorFunc, "Reg Xr",
55 rf_SimpleXorFunc, "Simple Xr"};
56
57 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
58 rf_RecoveryXorFunc, "Recovery Xr",
59 rf_RecoveryXorFunc, "Recovery Xr"};
60
61 #if RF_DEBUG_VALIDATE_DAG
62 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
63 static void rf_PrintDAG(RF_DagHeader_t *);
64 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
65 RF_DagNode_t **, int);
66 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
67 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
68 #endif /* RF_DEBUG_VALIDATE_DAG */
69
70 /******************************************************************************
71 *
72 * InitNode - initialize a dag node
73 *
74 * the size of the propList array is always the same as that of the
75 * successors array.
76 *
77 *****************************************************************************/
78 void
79 rf_InitNode(
80 RF_DagNode_t * node,
81 RF_NodeStatus_t initstatus,
82 int commit,
83 int (*doFunc) (RF_DagNode_t * node),
84 int (*undoFunc) (RF_DagNode_t * node),
85 int (*wakeFunc) (RF_DagNode_t * node, int status),
86 int nSucc,
87 int nAnte,
88 int nParam,
89 int nResult,
90 RF_DagHeader_t * hdr,
91 char *name,
92 RF_AllocListElem_t * alist)
93 {
94 void **ptrs;
95 int nptrs;
96
97 if (nAnte > RF_MAX_ANTECEDENTS)
98 RF_PANIC();
99 node->status = initstatus;
100 node->commitNode = commit;
101 node->doFunc = doFunc;
102 node->undoFunc = undoFunc;
103 node->wakeFunc = wakeFunc;
104 node->numParams = nParam;
105 node->numResults = nResult;
106 node->numAntecedents = nAnte;
107 node->numAntDone = 0;
108 node->next = NULL;
109 node->numSuccedents = nSucc;
110 node->name = name;
111 node->dagHdr = hdr;
112 node->visited = 0;
113
114 /* allocate all the pointers with one call to malloc */
115 nptrs = nSucc + nAnte + nResult + nSucc;
116
117 if (nptrs <= RF_DAG_PTRCACHESIZE) {
118 /*
119 * The dag_ptrs field of the node is basically some scribble
120 * space to be used here. We could get rid of it, and always
121 * allocate the range of pointers, but that's expensive. So,
122 * we pick a "common case" size for the pointer cache. Hopefully,
123 * we'll find that:
124 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
125 * only a little bit (least efficient case)
126 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
127 * (wasted memory)
128 */
129 ptrs = (void **) node->dag_ptrs;
130 } else {
131 RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
132 }
133 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
134 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
135 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
136 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
137
138 if (nParam) {
139 if (nParam <= RF_DAG_PARAMCACHESIZE) {
140 node->params = (RF_DagParam_t *) node->dag_params;
141 } else {
142 RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
143 }
144 } else {
145 node->params = NULL;
146 }
147 }
148
149
150
151 /******************************************************************************
152 *
153 * allocation and deallocation routines
154 *
155 *****************************************************************************/
156
157 void
158 rf_FreeDAG(dag_h)
159 RF_DagHeader_t *dag_h;
160 {
161 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
162 RF_DagHeader_t *nextDag;
163
164 while (dag_h) {
165 nextDag = dag_h->next;
166 rf_FreeAllocList(dag_h->allocList);
167 for (asmap = dag_h->asmList; asmap;) {
168 t_asmap = asmap;
169 asmap = asmap->next;
170 rf_FreeAccessStripeMap(t_asmap);
171 }
172 rf_FreeDAGHeader(dag_h);
173 dag_h = nextDag;
174 }
175 }
176
177
178 static RF_FreeList_t *rf_dagh_freelist;
179
180 #define RF_MAX_FREE_DAGH 128
181 #define RF_DAGH_INC 16
182 #define RF_DAGH_INITIAL 32
183
184 static void rf_ShutdownDAGs(void *);
185 static void
186 rf_ShutdownDAGs(ignored)
187 void *ignored;
188 {
189 RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
190 }
191
192 int
193 rf_ConfigureDAGs(listp)
194 RF_ShutdownList_t **listp;
195 {
196 int rc;
197
198 RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
199 RF_DAGH_INC, sizeof(RF_DagHeader_t));
200 if (rf_dagh_freelist == NULL)
201 return (ENOMEM);
202 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
203 if (rc) {
204 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
205 rf_ShutdownDAGs(NULL);
206 return (rc);
207 }
208 RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
209 (RF_DagHeader_t *));
210 return (0);
211 }
212
213 RF_DagHeader_t *
214 rf_AllocDAGHeader()
215 {
216 RF_DagHeader_t *dh;
217
218 RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
219 if (dh) {
220 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
221 }
222 return (dh);
223 }
224
225 void
226 rf_FreeDAGHeader(RF_DagHeader_t * dh)
227 {
228 RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
229 }
230 /* allocates a buffer big enough to hold the data described by pda */
231 void *
232 rf_AllocBuffer(
233 RF_Raid_t * raidPtr,
234 RF_DagHeader_t * dag_h,
235 RF_PhysDiskAddr_t * pda,
236 RF_AllocListElem_t * allocList)
237 {
238 char *p;
239
240 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
241 (char *), allocList);
242 return ((void *) p);
243 }
244 #if RF_DEBUG_VALIDATE_DAG
245 /******************************************************************************
246 *
247 * debug routines
248 *
249 *****************************************************************************/
250
251 char *
252 rf_NodeStatusString(RF_DagNode_t * node)
253 {
254 switch (node->status) {
255 case rf_wait:return ("wait");
256 case rf_fired:
257 return ("fired");
258 case rf_good:
259 return ("good");
260 case rf_bad:
261 return ("bad");
262 default:
263 return ("?");
264 }
265 }
266
267 void
268 rf_PrintNodeInfoString(RF_DagNode_t * node)
269 {
270 RF_PhysDiskAddr_t *pda;
271 int (*df) (RF_DagNode_t *) = node->doFunc;
272 int i, lk, unlk;
273 void *bufPtr;
274
275 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
276 || (df == rf_DiskReadMirrorIdleFunc)
277 || (df == rf_DiskReadMirrorPartitionFunc)) {
278 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
279 bufPtr = (void *) node->params[1].p;
280 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
281 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
282 RF_ASSERT(!(lk && unlk));
283 printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
284 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
285 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
286 return;
287 }
288 if (df == rf_DiskUnlockFunc) {
289 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
290 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
291 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
292 RF_ASSERT(!(lk && unlk));
293 printf("r %d c %d %s\n", pda->row, pda->col,
294 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
295 return;
296 }
297 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
298 || (df == rf_RecoveryXorFunc)) {
299 printf("result buf 0x%lx\n", (long) node->results[0]);
300 for (i = 0; i < node->numParams - 1; i += 2) {
301 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
302 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
303 printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
304 (long) bufPtr, pda->row, pda->col,
305 (long) pda->startSector, (int) pda->numSector);
306 }
307 return;
308 }
309 #if RF_INCLUDE_PARITYLOGGING > 0
310 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
311 for (i = 0; i < node->numParams - 1; i += 2) {
312 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
313 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
314 printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
315 pda->row, pda->col, (long) pda->startSector,
316 (int) pda->numSector, (long) bufPtr);
317 }
318 return;
319 }
320 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
321
322 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
323 printf("\n");
324 return;
325 }
326 printf("?\n");
327 }
328 #ifdef DEBUG
329 static void
330 rf_RecurPrintDAG(node, depth, unvisited)
331 RF_DagNode_t *node;
332 int depth;
333 int unvisited;
334 {
335 char *anttype;
336 int i;
337
338 node->visited = (unvisited) ? 0 : 1;
339 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
340 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
341 node->numSuccedents, node->numSuccFired, node->numSuccDone,
342 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
343 for (i = 0; i < node->numSuccedents; i++) {
344 printf("%d%s", node->succedents[i]->nodeNum,
345 ((i == node->numSuccedents - 1) ? "\0" : " "));
346 }
347 printf("} A{");
348 for (i = 0; i < node->numAntecedents; i++) {
349 switch (node->antType[i]) {
350 case rf_trueData:
351 anttype = "T";
352 break;
353 case rf_antiData:
354 anttype = "A";
355 break;
356 case rf_outputData:
357 anttype = "O";
358 break;
359 case rf_control:
360 anttype = "C";
361 break;
362 default:
363 anttype = "?";
364 break;
365 }
366 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
367 }
368 printf("}; ");
369 rf_PrintNodeInfoString(node);
370 for (i = 0; i < node->numSuccedents; i++) {
371 if (node->succedents[i]->visited == unvisited)
372 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
373 }
374 }
375
376 static void
377 rf_PrintDAG(dag_h)
378 RF_DagHeader_t *dag_h;
379 {
380 int unvisited, i;
381 char *status;
382
383 /* set dag status */
384 switch (dag_h->status) {
385 case rf_enable:
386 status = "enable";
387 break;
388 case rf_rollForward:
389 status = "rollForward";
390 break;
391 case rf_rollBackward:
392 status = "rollBackward";
393 break;
394 default:
395 status = "illegal!";
396 break;
397 }
398 /* find out if visited bits are currently set or clear */
399 unvisited = dag_h->succedents[0]->visited;
400
401 printf("DAG type: %s\n", dag_h->creator);
402 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
403 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
404 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
405 for (i = 0; i < dag_h->numSuccedents; i++) {
406 printf("%d%s", dag_h->succedents[i]->nodeNum,
407 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
408 }
409 printf("};\n");
410 for (i = 0; i < dag_h->numSuccedents; i++) {
411 if (dag_h->succedents[i]->visited == unvisited)
412 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
413 }
414 }
415 #endif
416 /* assigns node numbers */
417 int
418 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
419 {
420 int unvisited, i, nnum;
421 RF_DagNode_t *node;
422
423 nnum = 0;
424 unvisited = dag_h->succedents[0]->visited;
425
426 dag_h->nodeNum = nnum++;
427 for (i = 0; i < dag_h->numSuccedents; i++) {
428 node = dag_h->succedents[i];
429 if (node->visited == unvisited) {
430 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
431 }
432 }
433 return (nnum);
434 }
435
436 int
437 rf_RecurAssignNodeNums(node, num, unvisited)
438 RF_DagNode_t *node;
439 int num;
440 int unvisited;
441 {
442 int i;
443
444 node->visited = (unvisited) ? 0 : 1;
445
446 node->nodeNum = num++;
447 for (i = 0; i < node->numSuccedents; i++) {
448 if (node->succedents[i]->visited == unvisited) {
449 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
450 }
451 }
452 return (num);
453 }
454 /* set the header pointers in each node to "newptr" */
455 void
456 rf_ResetDAGHeaderPointers(dag_h, newptr)
457 RF_DagHeader_t *dag_h;
458 RF_DagHeader_t *newptr;
459 {
460 int i;
461 for (i = 0; i < dag_h->numSuccedents; i++)
462 if (dag_h->succedents[i]->dagHdr != newptr)
463 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
464 }
465
466 void
467 rf_RecurResetDAGHeaderPointers(node, newptr)
468 RF_DagNode_t *node;
469 RF_DagHeader_t *newptr;
470 {
471 int i;
472 node->dagHdr = newptr;
473 for (i = 0; i < node->numSuccedents; i++)
474 if (node->succedents[i]->dagHdr != newptr)
475 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
476 }
477
478
479 void
480 rf_PrintDAGList(RF_DagHeader_t * dag_h)
481 {
482 int i = 0;
483
484 for (; dag_h; dag_h = dag_h->next) {
485 rf_AssignNodeNums(dag_h);
486 printf("\n\nDAG %d IN LIST:\n", i++);
487 rf_PrintDAG(dag_h);
488 }
489 }
490
491 static int
492 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
493 RF_DagNode_t *node;
494 int *scount;
495 int *acount;
496 RF_DagNode_t **nodes;
497 int unvisited;
498 {
499 int i, retcode = 0;
500
501 /* construct an array of node pointers indexed by node num */
502 node->visited = (unvisited) ? 0 : 1;
503 nodes[node->nodeNum] = node;
504
505 if (node->next != NULL) {
506 printf("INVALID DAG: next pointer in node is not NULL\n");
507 retcode = 1;
508 }
509 if (node->status != rf_wait) {
510 printf("INVALID DAG: Node status is not wait\n");
511 retcode = 1;
512 }
513 if (node->numAntDone != 0) {
514 printf("INVALID DAG: numAntDone is not zero\n");
515 retcode = 1;
516 }
517 if (node->doFunc == rf_TerminateFunc) {
518 if (node->numSuccedents != 0) {
519 printf("INVALID DAG: Terminator node has succedents\n");
520 retcode = 1;
521 }
522 } else {
523 if (node->numSuccedents == 0) {
524 printf("INVALID DAG: Non-terminator node has no succedents\n");
525 retcode = 1;
526 }
527 }
528 for (i = 0; i < node->numSuccedents; i++) {
529 if (!node->succedents[i]) {
530 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
531 retcode = 1;
532 }
533 scount[node->succedents[i]->nodeNum]++;
534 }
535 for (i = 0; i < node->numAntecedents; i++) {
536 if (!node->antecedents[i]) {
537 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
538 retcode = 1;
539 }
540 acount[node->antecedents[i]->nodeNum]++;
541 }
542 for (i = 0; i < node->numSuccedents; i++) {
543 if (node->succedents[i]->visited == unvisited) {
544 if (rf_ValidateBranch(node->succedents[i], scount,
545 acount, nodes, unvisited)) {
546 retcode = 1;
547 }
548 }
549 }
550 return (retcode);
551 }
552
553 static void
554 rf_ValidateBranchVisitedBits(node, unvisited, rl)
555 RF_DagNode_t *node;
556 int unvisited;
557 int rl;
558 {
559 int i;
560
561 RF_ASSERT(node->visited == unvisited);
562 for (i = 0; i < node->numSuccedents; i++) {
563 if (node->succedents[i] == NULL) {
564 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
565 RF_ASSERT(0);
566 }
567 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
568 }
569 }
570 /* NOTE: never call this on a big dag, because it is exponential
571 * in execution time
572 */
573 static void
574 rf_ValidateVisitedBits(dag)
575 RF_DagHeader_t *dag;
576 {
577 int i, unvisited;
578
579 unvisited = dag->succedents[0]->visited;
580
581 for (i = 0; i < dag->numSuccedents; i++) {
582 if (dag->succedents[i] == NULL) {
583 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
584 RF_ASSERT(0);
585 }
586 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
587 }
588 }
589 /* validate a DAG. _at entry_ verify that:
590 * -- numNodesCompleted is zero
591 * -- node queue is null
592 * -- dag status is rf_enable
593 * -- next pointer is null on every node
594 * -- all nodes have status wait
595 * -- numAntDone is zero in all nodes
596 * -- terminator node has zero successors
597 * -- no other node besides terminator has zero successors
598 * -- no successor or antecedent pointer in a node is NULL
599 * -- number of times that each node appears as a successor of another node
600 * is equal to the antecedent count on that node
601 * -- number of times that each node appears as an antecedent of another node
602 * is equal to the succedent count on that node
603 * -- what else?
604 */
605 int
606 rf_ValidateDAG(dag_h)
607 RF_DagHeader_t *dag_h;
608 {
609 int i, nodecount;
610 int *scount, *acount;/* per-node successor and antecedent counts */
611 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
612 int retcode = 0;
613 int unvisited;
614 int commitNodeCount = 0;
615
616 if (rf_validateVisitedDebug)
617 rf_ValidateVisitedBits(dag_h);
618
619 if (dag_h->numNodesCompleted != 0) {
620 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
621 retcode = 1;
622 goto validate_dag_bad;
623 }
624 if (dag_h->status != rf_enable) {
625 printf("INVALID DAG: not enabled\n");
626 retcode = 1;
627 goto validate_dag_bad;
628 }
629 if (dag_h->numCommits != 0) {
630 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
631 retcode = 1;
632 goto validate_dag_bad;
633 }
634 if (dag_h->numSuccedents != 1) {
635 /* currently, all dags must have only one succedent */
636 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
637 retcode = 1;
638 goto validate_dag_bad;
639 }
640 nodecount = rf_AssignNodeNums(dag_h);
641
642 unvisited = dag_h->succedents[0]->visited;
643
644 RF_Calloc(scount, nodecount, sizeof(int), (int *));
645 RF_Calloc(acount, nodecount, sizeof(int), (int *));
646 RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
647 for (i = 0; i < dag_h->numSuccedents; i++) {
648 if ((dag_h->succedents[i]->visited == unvisited)
649 && rf_ValidateBranch(dag_h->succedents[i], scount,
650 acount, nodes, unvisited)) {
651 retcode = 1;
652 }
653 }
654 /* start at 1 to skip the header node */
655 for (i = 1; i < nodecount; i++) {
656 if (nodes[i]->commitNode)
657 commitNodeCount++;
658 if (nodes[i]->doFunc == NULL) {
659 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
660 retcode = 1;
661 goto validate_dag_out;
662 }
663 if (nodes[i]->undoFunc == NULL) {
664 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
665 retcode = 1;
666 goto validate_dag_out;
667 }
668 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
669 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
670 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
671 retcode = 1;
672 goto validate_dag_out;
673 }
674 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
675 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
676 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
677 retcode = 1;
678 goto validate_dag_out;
679 }
680 }
681
682 if (dag_h->numCommitNodes != commitNodeCount) {
683 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
684 dag_h->numCommitNodes, commitNodeCount);
685 retcode = 1;
686 goto validate_dag_out;
687 }
688 validate_dag_out:
689 RF_Free(scount, nodecount * sizeof(int));
690 RF_Free(acount, nodecount * sizeof(int));
691 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
692 if (retcode)
693 rf_PrintDAGList(dag_h);
694
695 if (rf_validateVisitedDebug)
696 rf_ValidateVisitedBits(dag_h);
697
698 return (retcode);
699
700 validate_dag_bad:
701 rf_PrintDAGList(dag_h);
702 return (retcode);
703 }
704
705 #endif /* RF_DEBUG_VALIDATE_DAG */
706
707 /******************************************************************************
708 *
709 * misc construction routines
710 *
711 *****************************************************************************/
712
713 void
714 rf_redirect_asm(
715 RF_Raid_t * raidPtr,
716 RF_AccessStripeMap_t * asmap)
717 {
718 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
719 int row = asmap->physInfo->row;
720 int fcol = raidPtr->reconControl[row]->fcol;
721 int srow = raidPtr->reconControl[row]->spareRow;
722 int scol = raidPtr->reconControl[row]->spareCol;
723 RF_PhysDiskAddr_t *pda;
724
725 RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
726 for (pda = asmap->physInfo; pda; pda = pda->next) {
727 if (pda->col == fcol) {
728 if (rf_dagDebug) {
729 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
730 pda->startSector)) {
731 RF_PANIC();
732 }
733 }
734 /* printf("Remapped data for large write\n"); */
735 if (ds) {
736 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
737 &pda->row, &pda->col, &pda->startSector, RF_REMAP);
738 } else {
739 pda->row = srow;
740 pda->col = scol;
741 }
742 }
743 }
744 for (pda = asmap->parityInfo; pda; pda = pda->next) {
745 if (pda->col == fcol) {
746 if (rf_dagDebug) {
747 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
748 RF_PANIC();
749 }
750 }
751 }
752 if (ds) {
753 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
754 } else {
755 pda->row = srow;
756 pda->col = scol;
757 }
758 }
759 }
760
761
762 /* this routine allocates read buffers and generates stripe maps for the
763 * regions of the array from the start of the stripe to the start of the
764 * access, and from the end of the access to the end of the stripe. It also
765 * computes and returns the number of DAG nodes needed to read all this data.
766 * Note that this routine does the wrong thing if the access is fully
767 * contained within one stripe unit, so we RF_ASSERT against this case at the
768 * start.
769 */
770 void
771 rf_MapUnaccessedPortionOfStripe(
772 RF_Raid_t * raidPtr,
773 RF_RaidLayout_t * layoutPtr,/* in: layout information */
774 RF_AccessStripeMap_t * asmap, /* in: access stripe map */
775 RF_DagHeader_t * dag_h, /* in: header of the dag to create */
776 RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
777 * headers, to be filled in */
778 int *nRodNodes, /* out: num nodes to be generated to read
779 * unaccessed data */
780 char **sosBuffer, /* out: pointers to newly allocated buffer */
781 char **eosBuffer,
782 RF_AllocListElem_t * allocList)
783 {
784 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
785 RF_SectorNum_t sosNumSector, eosNumSector;
786
787 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
788 /* generate an access map for the region of the array from start of
789 * stripe to start of access */
790 new_asm_h[0] = new_asm_h[1] = NULL;
791 *nRodNodes = 0;
792 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
793 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
794 sosNumSector = asmap->raidAddress - sosRaidAddress;
795 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
796 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
797 new_asm_h[0]->next = dag_h->asmList;
798 dag_h->asmList = new_asm_h[0];
799 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
800
801 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
802 /* we're totally within one stripe here */
803 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
804 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
805 }
806 /* generate an access map for the region of the array from end of
807 * access to end of stripe */
808 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
809 eosRaidAddress = asmap->endRaidAddress;
810 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
811 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
812 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
813 new_asm_h[1]->next = dag_h->asmList;
814 dag_h->asmList = new_asm_h[1];
815 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
816
817 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
818 /* we're totally within one stripe here */
819 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
820 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
821 }
822 }
823
824
825
826 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
827 int
828 rf_PDAOverlap(
829 RF_RaidLayout_t * layoutPtr,
830 RF_PhysDiskAddr_t * src,
831 RF_PhysDiskAddr_t * dest)
832 {
833 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
834 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
835 /* use -1 to be sure we stay within SU */
836 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
837 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
838 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
839 }
840
841
842 /* GenerateFailedAccessASMs
843 *
844 * this routine figures out what portion of the stripe needs to be read
845 * to effect the degraded read or write operation. It's primary function
846 * is to identify everything required to recover the data, and then
847 * eliminate anything that is already being accessed by the user.
848 *
849 * The main result is two new ASMs, one for the region from the start of the
850 * stripe to the start of the access, and one for the region from the end of
851 * the access to the end of the stripe. These ASMs describe everything that
852 * needs to be read to effect the degraded access. Other results are:
853 * nXorBufs -- the total number of buffers that need to be XORed together to
854 * recover the lost data,
855 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
856 * at entry, not allocated.
857 * overlappingPDAs --
858 * describes which of the non-failed PDAs in the user access
859 * overlap data that needs to be read to effect recovery.
860 * overlappingPDAs[i]==1 if and only if, neglecting the failed
861 * PDA, the ith pda in the input asm overlaps data that needs
862 * to be read for recovery.
863 */
864 /* in: asm - ASM for the actual access, one stripe only */
865 /* in: failedPDA - which component of the access has failed */
866 /* in: dag_h - header of the DAG we're going to create */
867 /* out: new_asm_h - the two new ASMs */
868 /* out: nXorBufs - the total number of xor bufs required */
869 /* out: rpBufPtr - a buffer for the parity read */
870 void
871 rf_GenerateFailedAccessASMs(
872 RF_Raid_t * raidPtr,
873 RF_AccessStripeMap_t * asmap,
874 RF_PhysDiskAddr_t * failedPDA,
875 RF_DagHeader_t * dag_h,
876 RF_AccessStripeMapHeader_t ** new_asm_h,
877 int *nXorBufs,
878 char **rpBufPtr,
879 char *overlappingPDAs,
880 RF_AllocListElem_t * allocList)
881 {
882 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
883
884 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
885 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
886
887 RF_SectorCount_t numSect[2], numParitySect;
888 RF_PhysDiskAddr_t *pda;
889 char *rdBuf, *bufP;
890 int foundit, i;
891
892 bufP = NULL;
893 foundit = 0;
894 /* first compute the following raid addresses: start of stripe,
895 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
896 * MAX(end of access, end of failed SU), (eosStartAddr) end of
897 * stripe (i.e. start of next stripe) (eosAddr) */
898 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
899 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
900 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
901 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
902
903 /* now generate access stripe maps for each of the above regions of
904 * the stripe. Use a dummy (NULL) buf ptr for now */
905
906 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
907 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
908
909 /* walk through the PDAs and range-restrict each SU to the region of
910 * the SU touched on the failed PDA. also compute total data buffer
911 * space requirements in this step. Ignore the parity for now. */
912
913 numSect[0] = numSect[1] = 0;
914 if (new_asm_h[0]) {
915 new_asm_h[0]->next = dag_h->asmList;
916 dag_h->asmList = new_asm_h[0];
917 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
918 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
919 numSect[0] += pda->numSector;
920 }
921 }
922 if (new_asm_h[1]) {
923 new_asm_h[1]->next = dag_h->asmList;
924 dag_h->asmList = new_asm_h[1];
925 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
926 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
927 numSect[1] += pda->numSector;
928 }
929 }
930 numParitySect = failedPDA->numSector;
931
932 /* allocate buffer space for the data & parity we have to read to
933 * recover from the failure */
934
935 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
936 * buf if not needed */
937 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
938 bufP = rdBuf;
939 if (rf_degDagDebug)
940 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
941 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
942 }
943 /* now walk through the pdas one last time and assign buffer pointers
944 * (ugh!). Again, ignore the parity. also, count nodes to find out
945 * how many bufs need to be xored together */
946 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
947 * case, 1 is for failed data */
948 if (new_asm_h[0]) {
949 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
950 pda->bufPtr = bufP;
951 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
952 }
953 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
954 }
955 if (new_asm_h[1]) {
956 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
957 pda->bufPtr = bufP;
958 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
959 }
960 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
961 }
962 if (rpBufPtr)
963 *rpBufPtr = bufP; /* the rest of the buffer is for
964 * parity */
965
966 /* the last step is to figure out how many more distinct buffers need
967 * to get xor'd to produce the missing unit. there's one for each
968 * user-data read node that overlaps the portion of the failed unit
969 * being accessed */
970
971 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
972 if (pda == failedPDA) {
973 i--;
974 foundit = 1;
975 continue;
976 }
977 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
978 overlappingPDAs[i] = 1;
979 (*nXorBufs)++;
980 }
981 }
982 if (!foundit) {
983 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
984 RF_ASSERT(0);
985 }
986 if (rf_degDagDebug) {
987 if (new_asm_h[0]) {
988 printf("First asm:\n");
989 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
990 }
991 if (new_asm_h[1]) {
992 printf("Second asm:\n");
993 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
994 }
995 }
996 }
997
998
999 /* adjusts the offset and number of sectors in the destination pda so that
1000 * it covers at most the region of the SU covered by the source PDA. This
1001 * is exclusively a restriction: the number of sectors indicated by the
1002 * target PDA can only shrink.
1003 *
1004 * For example: s = sectors within SU indicated by source PDA
1005 * d = sectors within SU indicated by dest PDA
1006 * r = results, stored in dest PDA
1007 *
1008 * |--------------- one stripe unit ---------------------|
1009 * | sssssssssssssssssssssssssssssssss |
1010 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1011 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1012 *
1013 * Another example:
1014 *
1015 * |--------------- one stripe unit ---------------------|
1016 * | sssssssssssssssssssssssssssssssss |
1017 * | ddddddddddddddddddddddd |
1018 * | rrrrrrrrrrrrrrrr |
1019 *
1020 */
1021 void
1022 rf_RangeRestrictPDA(
1023 RF_Raid_t * raidPtr,
1024 RF_PhysDiskAddr_t * src,
1025 RF_PhysDiskAddr_t * dest,
1026 int dobuffer,
1027 int doraidaddr)
1028 {
1029 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1030 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1031 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1032 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1033 * stay within SU */
1034 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1035 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1036
1037 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1038 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1039
1040 if (dobuffer)
1041 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1042 if (doraidaddr) {
1043 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1044 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1045 }
1046 }
1047
1048 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1049
1050 /*
1051 * Want the highest of these primes to be the largest one
1052 * less than the max expected number of columns (won't hurt
1053 * to be too small or too large, but won't be optimal, either)
1054 * --jimz
1055 */
1056 #define NLOWPRIMES 8
1057 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1058 /*****************************************************************************
1059 * compute the workload shift factor. (chained declustering)
1060 *
1061 * return nonzero if access should shift to secondary, otherwise,
1062 * access is to primary
1063 *****************************************************************************/
1064 int
1065 rf_compute_workload_shift(
1066 RF_Raid_t * raidPtr,
1067 RF_PhysDiskAddr_t * pda)
1068 {
1069 /*
1070 * variables:
1071 * d = column of disk containing primary
1072 * f = column of failed disk
1073 * n = number of disks in array
1074 * sd = "shift distance" (number of columns that d is to the right of f)
1075 * row = row of array the access is in
1076 * v = numerator of redirection ratio
1077 * k = denominator of redirection ratio
1078 */
1079 RF_RowCol_t d, f, sd, row, n;
1080 int k, v, ret, i;
1081
1082 row = pda->row;
1083 n = raidPtr->numCol;
1084
1085 /* assign column of primary copy to d */
1086 d = pda->col;
1087
1088 /* assign column of dead disk to f */
1089 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1090
1091 RF_ASSERT(f < n);
1092 RF_ASSERT(f != d);
1093
1094 sd = (f > d) ? (n + d - f) : (d - f);
1095 RF_ASSERT(sd < n);
1096
1097 /*
1098 * v of every k accesses should be redirected
1099 *
1100 * v/k := (n-1-sd)/(n-1)
1101 */
1102 v = (n - 1 - sd);
1103 k = (n - 1);
1104
1105 #if 1
1106 /*
1107 * XXX
1108 * Is this worth it?
1109 *
1110 * Now reduce the fraction, by repeatedly factoring
1111 * out primes (just like they teach in elementary school!)
1112 */
1113 for (i = 0; i < NLOWPRIMES; i++) {
1114 if (lowprimes[i] > v)
1115 break;
1116 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1117 v /= lowprimes[i];
1118 k /= lowprimes[i];
1119 }
1120 }
1121 #endif
1122
1123 raidPtr->hist_diskreq[row][d]++;
1124 if (raidPtr->hist_diskreq[row][d] > v) {
1125 ret = 0; /* do not redirect */
1126 } else {
1127 ret = 1; /* redirect */
1128 }
1129
1130 #if 0
1131 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1132 raidPtr->hist_diskreq[row][d]);
1133 #endif
1134
1135 if (raidPtr->hist_diskreq[row][d] >= k) {
1136 /* reset counter */
1137 raidPtr->hist_diskreq[row][d] = 0;
1138 }
1139 return (ret);
1140 }
1141 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1142
1143 /*
1144 * Disk selection routines
1145 */
1146
1147 /*
1148 * Selects the disk with the shortest queue from a mirror pair.
1149 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1150 * disk are counted as members of the "queue"
1151 */
1152 void
1153 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1154 {
1155 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1156 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1157 int dataQueueLength, mirrorQueueLength, usemirror;
1158 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1159 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1160 RF_PhysDiskAddr_t *tmp_pda;
1161 RF_RaidDisk_t **disks = raidPtr->Disks;
1162 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1163
1164 /* return the [row col] of the disk with the shortest queue */
1165 rowData = data_pda->row;
1166 colData = data_pda->col;
1167 rowMirror = mirror_pda->row;
1168 colMirror = mirror_pda->col;
1169 dataQueue = &(dqs[rowData][colData]);
1170 mirrorQueue = &(dqs[rowMirror][colMirror]);
1171
1172 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1173 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1174 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1175 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1176 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1177 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1178 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1179 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1180 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1181 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1182 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1183 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1184
1185 usemirror = 0;
1186 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1187 usemirror = 0;
1188 } else
1189 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1190 usemirror = 1;
1191 } else
1192 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1193 /* Trust only the main disk */
1194 usemirror = 0;
1195 } else
1196 if (dataQueueLength < mirrorQueueLength) {
1197 usemirror = 0;
1198 } else
1199 if (mirrorQueueLength < dataQueueLength) {
1200 usemirror = 1;
1201 } else {
1202 /* queues are equal length. attempt
1203 * cleverness. */
1204 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1205 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1206 usemirror = 0;
1207 } else {
1208 usemirror = 1;
1209 }
1210 }
1211
1212 if (usemirror) {
1213 /* use mirror (parity) disk, swap params 0 & 4 */
1214 tmp_pda = data_pda;
1215 node->params[0].p = mirror_pda;
1216 node->params[4].p = tmp_pda;
1217 } else {
1218 /* use data disk, leave param 0 unchanged */
1219 }
1220 /* printf("dataQueueLength %d, mirrorQueueLength
1221 * %d\n",dataQueueLength, mirrorQueueLength); */
1222 }
1223 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1224 /*
1225 * Do simple partitioning. This assumes that
1226 * the data and parity disks are laid out identically.
1227 */
1228 void
1229 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1230 {
1231 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1232 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1233 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1234 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1235 RF_PhysDiskAddr_t *tmp_pda;
1236 RF_RaidDisk_t **disks = raidPtr->Disks;
1237 int usemirror;
1238
1239 /* return the [row col] of the disk with the shortest queue */
1240 rowData = data_pda->row;
1241 colData = data_pda->col;
1242 rowMirror = mirror_pda->row;
1243 colMirror = mirror_pda->col;
1244
1245 usemirror = 0;
1246 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1247 usemirror = 0;
1248 } else
1249 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1250 usemirror = 1;
1251 } else
1252 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1253 /* Trust only the main disk */
1254 usemirror = 0;
1255 } else
1256 if (data_pda->startSector <
1257 (disks[rowData][colData].numBlocks / 2)) {
1258 usemirror = 0;
1259 } else {
1260 usemirror = 1;
1261 }
1262
1263 if (usemirror) {
1264 /* use mirror (parity) disk, swap params 0 & 4 */
1265 tmp_pda = data_pda;
1266 node->params[0].p = mirror_pda;
1267 node->params[4].p = tmp_pda;
1268 } else {
1269 /* use data disk, leave param 0 unchanged */
1270 }
1271 }
1272 #endif
1273