rf_dagutils.c revision 1.22 1 /* $NetBSD: rf_dagutils.c,v 1.22 2003/12/29 03:33:47 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.22 2003/12/29 03:33:47 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(
79 RF_DagNode_t * node,
80 RF_NodeStatus_t initstatus,
81 int commit,
82 int (*doFunc) (RF_DagNode_t * node),
83 int (*undoFunc) (RF_DagNode_t * node),
84 int (*wakeFunc) (RF_DagNode_t * node, int status),
85 int nSucc,
86 int nAnte,
87 int nParam,
88 int nResult,
89 RF_DagHeader_t * hdr,
90 char *name,
91 RF_AllocListElem_t * alist)
92 {
93 void **ptrs;
94 int nptrs;
95
96 if (nAnte > RF_MAX_ANTECEDENTS)
97 RF_PANIC();
98 node->status = initstatus;
99 node->commitNode = commit;
100 node->doFunc = doFunc;
101 node->undoFunc = undoFunc;
102 node->wakeFunc = wakeFunc;
103 node->numParams = nParam;
104 node->numResults = nResult;
105 node->numAntecedents = nAnte;
106 node->numAntDone = 0;
107 node->next = NULL;
108 node->numSuccedents = nSucc;
109 node->name = name;
110 node->dagHdr = hdr;
111 node->visited = 0;
112
113 /* allocate all the pointers with one call to malloc */
114 nptrs = nSucc + nAnte + nResult + nSucc;
115
116 if (nptrs <= RF_DAG_PTRCACHESIZE) {
117 /*
118 * The dag_ptrs field of the node is basically some scribble
119 * space to be used here. We could get rid of it, and always
120 * allocate the range of pointers, but that's expensive. So,
121 * we pick a "common case" size for the pointer cache. Hopefully,
122 * we'll find that:
123 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
124 * only a little bit (least efficient case)
125 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
126 * (wasted memory)
127 */
128 ptrs = (void **) node->dag_ptrs;
129 } else {
130 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
131 (void **), alist);
132 }
133 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
134 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
135 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
136 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
137
138 if (nParam) {
139 if (nParam <= RF_DAG_PARAMCACHESIZE) {
140 node->params = (RF_DagParam_t *) node->dag_params;
141 } else {
142 RF_MallocAndAdd(node->params,
143 nParam * sizeof(RF_DagParam_t),
144 (RF_DagParam_t *), alist);
145 }
146 } else {
147 node->params = NULL;
148 }
149 }
150
151
152
153 /******************************************************************************
154 *
155 * allocation and deallocation routines
156 *
157 *****************************************************************************/
158
159 void
160 rf_FreeDAG(dag_h)
161 RF_DagHeader_t *dag_h;
162 {
163 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
164 RF_DagHeader_t *nextDag;
165
166 while (dag_h) {
167 nextDag = dag_h->next;
168 rf_FreeAllocList(dag_h->allocList);
169 for (asmap = dag_h->asmList; asmap;) {
170 t_asmap = asmap;
171 asmap = asmap->next;
172 rf_FreeAccessStripeMap(t_asmap);
173 }
174 rf_FreeDAGHeader(dag_h);
175 dag_h = nextDag;
176 }
177 }
178
179 static struct pool rf_dagh_pool;
180 #define RF_MAX_FREE_DAGH 128
181 #define RF_DAGH_INC 16
182 #define RF_DAGH_INITIAL 32
183
184 static void rf_ShutdownDAGs(void *);
185 static void
186 rf_ShutdownDAGs(ignored)
187 void *ignored;
188 {
189 pool_destroy(&rf_dagh_pool);
190 }
191
192 int
193 rf_ConfigureDAGs(listp)
194 RF_ShutdownList_t **listp;
195 {
196 int rc;
197
198 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
199 "rf_dagh_pl", NULL);
200 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
201 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
202 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
203 if (rc) {
204 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
205 rf_ShutdownDAGs(NULL);
206 return (rc);
207 }
208 return (0);
209 }
210
211 RF_DagHeader_t *
212 rf_AllocDAGHeader()
213 {
214 RF_DagHeader_t *dh;
215
216 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
217 if (dh) {
218 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
219 }
220 return (dh);
221 }
222
223 void
224 rf_FreeDAGHeader(RF_DagHeader_t * dh)
225 {
226 pool_put(&rf_dagh_pool, dh);
227 }
228 /* allocates a buffer big enough to hold the data described by pda */
229 void *
230 rf_AllocBuffer(
231 RF_Raid_t * raidPtr,
232 RF_DagHeader_t * dag_h,
233 RF_PhysDiskAddr_t * pda,
234 RF_AllocListElem_t * allocList)
235 {
236 char *p;
237
238 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
239 (char *), allocList);
240 return ((void *) p);
241 }
242 #if RF_DEBUG_VALIDATE_DAG
243 /******************************************************************************
244 *
245 * debug routines
246 *
247 *****************************************************************************/
248
249 char *
250 rf_NodeStatusString(RF_DagNode_t * node)
251 {
252 switch (node->status) {
253 case rf_wait:return ("wait");
254 case rf_fired:
255 return ("fired");
256 case rf_good:
257 return ("good");
258 case rf_bad:
259 return ("bad");
260 default:
261 return ("?");
262 }
263 }
264
265 void
266 rf_PrintNodeInfoString(RF_DagNode_t * node)
267 {
268 RF_PhysDiskAddr_t *pda;
269 int (*df) (RF_DagNode_t *) = node->doFunc;
270 int i, lk, unlk;
271 void *bufPtr;
272
273 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
274 || (df == rf_DiskReadMirrorIdleFunc)
275 || (df == rf_DiskReadMirrorPartitionFunc)) {
276 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
277 bufPtr = (void *) node->params[1].p;
278 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
279 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
280 RF_ASSERT(!(lk && unlk));
281 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
282 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
283 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
284 return;
285 }
286 if (df == rf_DiskUnlockFunc) {
287 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
288 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
289 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
290 RF_ASSERT(!(lk && unlk));
291 printf("c %d %s\n", pda->col,
292 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
293 return;
294 }
295 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
296 || (df == rf_RecoveryXorFunc)) {
297 printf("result buf 0x%lx\n", (long) node->results[0]);
298 for (i = 0; i < node->numParams - 1; i += 2) {
299 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
300 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
301 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
302 (long) bufPtr, pda->col,
303 (long) pda->startSector, (int) pda->numSector);
304 }
305 return;
306 }
307 #if RF_INCLUDE_PARITYLOGGING > 0
308 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
309 for (i = 0; i < node->numParams - 1; i += 2) {
310 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
311 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
312 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
313 pda->col, (long) pda->startSector,
314 (int) pda->numSector, (long) bufPtr);
315 }
316 return;
317 }
318 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
319
320 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
321 printf("\n");
322 return;
323 }
324 printf("?\n");
325 }
326 #ifdef DEBUG
327 static void
328 rf_RecurPrintDAG(node, depth, unvisited)
329 RF_DagNode_t *node;
330 int depth;
331 int unvisited;
332 {
333 char *anttype;
334 int i;
335
336 node->visited = (unvisited) ? 0 : 1;
337 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
338 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
339 node->numSuccedents, node->numSuccFired, node->numSuccDone,
340 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
341 for (i = 0; i < node->numSuccedents; i++) {
342 printf("%d%s", node->succedents[i]->nodeNum,
343 ((i == node->numSuccedents - 1) ? "\0" : " "));
344 }
345 printf("} A{");
346 for (i = 0; i < node->numAntecedents; i++) {
347 switch (node->antType[i]) {
348 case rf_trueData:
349 anttype = "T";
350 break;
351 case rf_antiData:
352 anttype = "A";
353 break;
354 case rf_outputData:
355 anttype = "O";
356 break;
357 case rf_control:
358 anttype = "C";
359 break;
360 default:
361 anttype = "?";
362 break;
363 }
364 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
365 }
366 printf("}; ");
367 rf_PrintNodeInfoString(node);
368 for (i = 0; i < node->numSuccedents; i++) {
369 if (node->succedents[i]->visited == unvisited)
370 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
371 }
372 }
373
374 static void
375 rf_PrintDAG(dag_h)
376 RF_DagHeader_t *dag_h;
377 {
378 int unvisited, i;
379 char *status;
380
381 /* set dag status */
382 switch (dag_h->status) {
383 case rf_enable:
384 status = "enable";
385 break;
386 case rf_rollForward:
387 status = "rollForward";
388 break;
389 case rf_rollBackward:
390 status = "rollBackward";
391 break;
392 default:
393 status = "illegal!";
394 break;
395 }
396 /* find out if visited bits are currently set or clear */
397 unvisited = dag_h->succedents[0]->visited;
398
399 printf("DAG type: %s\n", dag_h->creator);
400 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
401 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
402 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
403 for (i = 0; i < dag_h->numSuccedents; i++) {
404 printf("%d%s", dag_h->succedents[i]->nodeNum,
405 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
406 }
407 printf("};\n");
408 for (i = 0; i < dag_h->numSuccedents; i++) {
409 if (dag_h->succedents[i]->visited == unvisited)
410 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
411 }
412 }
413 #endif
414 /* assigns node numbers */
415 int
416 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
417 {
418 int unvisited, i, nnum;
419 RF_DagNode_t *node;
420
421 nnum = 0;
422 unvisited = dag_h->succedents[0]->visited;
423
424 dag_h->nodeNum = nnum++;
425 for (i = 0; i < dag_h->numSuccedents; i++) {
426 node = dag_h->succedents[i];
427 if (node->visited == unvisited) {
428 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
429 }
430 }
431 return (nnum);
432 }
433
434 int
435 rf_RecurAssignNodeNums(node, num, unvisited)
436 RF_DagNode_t *node;
437 int num;
438 int unvisited;
439 {
440 int i;
441
442 node->visited = (unvisited) ? 0 : 1;
443
444 node->nodeNum = num++;
445 for (i = 0; i < node->numSuccedents; i++) {
446 if (node->succedents[i]->visited == unvisited) {
447 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
448 }
449 }
450 return (num);
451 }
452 /* set the header pointers in each node to "newptr" */
453 void
454 rf_ResetDAGHeaderPointers(dag_h, newptr)
455 RF_DagHeader_t *dag_h;
456 RF_DagHeader_t *newptr;
457 {
458 int i;
459 for (i = 0; i < dag_h->numSuccedents; i++)
460 if (dag_h->succedents[i]->dagHdr != newptr)
461 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
462 }
463
464 void
465 rf_RecurResetDAGHeaderPointers(node, newptr)
466 RF_DagNode_t *node;
467 RF_DagHeader_t *newptr;
468 {
469 int i;
470 node->dagHdr = newptr;
471 for (i = 0; i < node->numSuccedents; i++)
472 if (node->succedents[i]->dagHdr != newptr)
473 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
474 }
475
476
477 void
478 rf_PrintDAGList(RF_DagHeader_t * dag_h)
479 {
480 int i = 0;
481
482 for (; dag_h; dag_h = dag_h->next) {
483 rf_AssignNodeNums(dag_h);
484 printf("\n\nDAG %d IN LIST:\n", i++);
485 rf_PrintDAG(dag_h);
486 }
487 }
488
489 static int
490 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
491 RF_DagNode_t *node;
492 int *scount;
493 int *acount;
494 RF_DagNode_t **nodes;
495 int unvisited;
496 {
497 int i, retcode = 0;
498
499 /* construct an array of node pointers indexed by node num */
500 node->visited = (unvisited) ? 0 : 1;
501 nodes[node->nodeNum] = node;
502
503 if (node->next != NULL) {
504 printf("INVALID DAG: next pointer in node is not NULL\n");
505 retcode = 1;
506 }
507 if (node->status != rf_wait) {
508 printf("INVALID DAG: Node status is not wait\n");
509 retcode = 1;
510 }
511 if (node->numAntDone != 0) {
512 printf("INVALID DAG: numAntDone is not zero\n");
513 retcode = 1;
514 }
515 if (node->doFunc == rf_TerminateFunc) {
516 if (node->numSuccedents != 0) {
517 printf("INVALID DAG: Terminator node has succedents\n");
518 retcode = 1;
519 }
520 } else {
521 if (node->numSuccedents == 0) {
522 printf("INVALID DAG: Non-terminator node has no succedents\n");
523 retcode = 1;
524 }
525 }
526 for (i = 0; i < node->numSuccedents; i++) {
527 if (!node->succedents[i]) {
528 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
529 retcode = 1;
530 }
531 scount[node->succedents[i]->nodeNum]++;
532 }
533 for (i = 0; i < node->numAntecedents; i++) {
534 if (!node->antecedents[i]) {
535 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
536 retcode = 1;
537 }
538 acount[node->antecedents[i]->nodeNum]++;
539 }
540 for (i = 0; i < node->numSuccedents; i++) {
541 if (node->succedents[i]->visited == unvisited) {
542 if (rf_ValidateBranch(node->succedents[i], scount,
543 acount, nodes, unvisited)) {
544 retcode = 1;
545 }
546 }
547 }
548 return (retcode);
549 }
550
551 static void
552 rf_ValidateBranchVisitedBits(node, unvisited, rl)
553 RF_DagNode_t *node;
554 int unvisited;
555 int rl;
556 {
557 int i;
558
559 RF_ASSERT(node->visited == unvisited);
560 for (i = 0; i < node->numSuccedents; i++) {
561 if (node->succedents[i] == NULL) {
562 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
563 RF_ASSERT(0);
564 }
565 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
566 }
567 }
568 /* NOTE: never call this on a big dag, because it is exponential
569 * in execution time
570 */
571 static void
572 rf_ValidateVisitedBits(dag)
573 RF_DagHeader_t *dag;
574 {
575 int i, unvisited;
576
577 unvisited = dag->succedents[0]->visited;
578
579 for (i = 0; i < dag->numSuccedents; i++) {
580 if (dag->succedents[i] == NULL) {
581 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
582 RF_ASSERT(0);
583 }
584 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
585 }
586 }
587 /* validate a DAG. _at entry_ verify that:
588 * -- numNodesCompleted is zero
589 * -- node queue is null
590 * -- dag status is rf_enable
591 * -- next pointer is null on every node
592 * -- all nodes have status wait
593 * -- numAntDone is zero in all nodes
594 * -- terminator node has zero successors
595 * -- no other node besides terminator has zero successors
596 * -- no successor or antecedent pointer in a node is NULL
597 * -- number of times that each node appears as a successor of another node
598 * is equal to the antecedent count on that node
599 * -- number of times that each node appears as an antecedent of another node
600 * is equal to the succedent count on that node
601 * -- what else?
602 */
603 int
604 rf_ValidateDAG(dag_h)
605 RF_DagHeader_t *dag_h;
606 {
607 int i, nodecount;
608 int *scount, *acount;/* per-node successor and antecedent counts */
609 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
610 int retcode = 0;
611 int unvisited;
612 int commitNodeCount = 0;
613
614 if (rf_validateVisitedDebug)
615 rf_ValidateVisitedBits(dag_h);
616
617 if (dag_h->numNodesCompleted != 0) {
618 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
619 retcode = 1;
620 goto validate_dag_bad;
621 }
622 if (dag_h->status != rf_enable) {
623 printf("INVALID DAG: not enabled\n");
624 retcode = 1;
625 goto validate_dag_bad;
626 }
627 if (dag_h->numCommits != 0) {
628 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
629 retcode = 1;
630 goto validate_dag_bad;
631 }
632 if (dag_h->numSuccedents != 1) {
633 /* currently, all dags must have only one succedent */
634 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
635 retcode = 1;
636 goto validate_dag_bad;
637 }
638 nodecount = rf_AssignNodeNums(dag_h);
639
640 unvisited = dag_h->succedents[0]->visited;
641
642 RF_Malloc(scount, nodecount * sizeof(int), (int *));
643 RF_Malloc(acount, nodecount * sizeof(int), (int *));
644 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
645 (RF_DagNode_t **));
646 for (i = 0; i < dag_h->numSuccedents; i++) {
647 if ((dag_h->succedents[i]->visited == unvisited)
648 && rf_ValidateBranch(dag_h->succedents[i], scount,
649 acount, nodes, unvisited)) {
650 retcode = 1;
651 }
652 }
653 /* start at 1 to skip the header node */
654 for (i = 1; i < nodecount; i++) {
655 if (nodes[i]->commitNode)
656 commitNodeCount++;
657 if (nodes[i]->doFunc == NULL) {
658 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
659 retcode = 1;
660 goto validate_dag_out;
661 }
662 if (nodes[i]->undoFunc == NULL) {
663 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
664 retcode = 1;
665 goto validate_dag_out;
666 }
667 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
668 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
669 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
670 retcode = 1;
671 goto validate_dag_out;
672 }
673 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
674 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
675 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
676 retcode = 1;
677 goto validate_dag_out;
678 }
679 }
680
681 if (dag_h->numCommitNodes != commitNodeCount) {
682 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
683 dag_h->numCommitNodes, commitNodeCount);
684 retcode = 1;
685 goto validate_dag_out;
686 }
687 validate_dag_out:
688 RF_Free(scount, nodecount * sizeof(int));
689 RF_Free(acount, nodecount * sizeof(int));
690 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
691 if (retcode)
692 rf_PrintDAGList(dag_h);
693
694 if (rf_validateVisitedDebug)
695 rf_ValidateVisitedBits(dag_h);
696
697 return (retcode);
698
699 validate_dag_bad:
700 rf_PrintDAGList(dag_h);
701 return (retcode);
702 }
703
704 #endif /* RF_DEBUG_VALIDATE_DAG */
705
706 /******************************************************************************
707 *
708 * misc construction routines
709 *
710 *****************************************************************************/
711
712 void
713 rf_redirect_asm(
714 RF_Raid_t * raidPtr,
715 RF_AccessStripeMap_t * asmap)
716 {
717 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
718 int fcol = raidPtr->reconControl->fcol;
719 int scol = raidPtr->reconControl->spareCol;
720 RF_PhysDiskAddr_t *pda;
721
722 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
723 for (pda = asmap->physInfo; pda; pda = pda->next) {
724 if (pda->col == fcol) {
725 if (rf_dagDebug) {
726 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
727 pda->startSector)) {
728 RF_PANIC();
729 }
730 }
731 /* printf("Remapped data for large write\n"); */
732 if (ds) {
733 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
734 &pda->col, &pda->startSector, RF_REMAP);
735 } else {
736 pda->col = scol;
737 }
738 }
739 }
740 for (pda = asmap->parityInfo; pda; pda = pda->next) {
741 if (pda->col == fcol) {
742 if (rf_dagDebug) {
743 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
744 RF_PANIC();
745 }
746 }
747 }
748 if (ds) {
749 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
750 } else {
751 pda->col = scol;
752 }
753 }
754 }
755
756
757 /* this routine allocates read buffers and generates stripe maps for the
758 * regions of the array from the start of the stripe to the start of the
759 * access, and from the end of the access to the end of the stripe. It also
760 * computes and returns the number of DAG nodes needed to read all this data.
761 * Note that this routine does the wrong thing if the access is fully
762 * contained within one stripe unit, so we RF_ASSERT against this case at the
763 * start.
764 */
765 void
766 rf_MapUnaccessedPortionOfStripe(
767 RF_Raid_t * raidPtr,
768 RF_RaidLayout_t * layoutPtr,/* in: layout information */
769 RF_AccessStripeMap_t * asmap, /* in: access stripe map */
770 RF_DagHeader_t * dag_h, /* in: header of the dag to create */
771 RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
772 * headers, to be filled in */
773 int *nRodNodes, /* out: num nodes to be generated to read
774 * unaccessed data */
775 char **sosBuffer, /* out: pointers to newly allocated buffer */
776 char **eosBuffer,
777 RF_AllocListElem_t * allocList)
778 {
779 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
780 RF_SectorNum_t sosNumSector, eosNumSector;
781
782 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
783 /* generate an access map for the region of the array from start of
784 * stripe to start of access */
785 new_asm_h[0] = new_asm_h[1] = NULL;
786 *nRodNodes = 0;
787 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
788 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
789 sosNumSector = asmap->raidAddress - sosRaidAddress;
790 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
791 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
792 new_asm_h[0]->next = dag_h->asmList;
793 dag_h->asmList = new_asm_h[0];
794 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
795
796 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
797 /* we're totally within one stripe here */
798 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
799 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
800 }
801 /* generate an access map for the region of the array from end of
802 * access to end of stripe */
803 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
804 eosRaidAddress = asmap->endRaidAddress;
805 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
806 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
807 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
808 new_asm_h[1]->next = dag_h->asmList;
809 dag_h->asmList = new_asm_h[1];
810 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
811
812 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
813 /* we're totally within one stripe here */
814 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
815 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
816 }
817 }
818
819
820
821 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
822 int
823 rf_PDAOverlap(
824 RF_RaidLayout_t * layoutPtr,
825 RF_PhysDiskAddr_t * src,
826 RF_PhysDiskAddr_t * dest)
827 {
828 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
829 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
830 /* use -1 to be sure we stay within SU */
831 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
832 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
833 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
834 }
835
836
837 /* GenerateFailedAccessASMs
838 *
839 * this routine figures out what portion of the stripe needs to be read
840 * to effect the degraded read or write operation. It's primary function
841 * is to identify everything required to recover the data, and then
842 * eliminate anything that is already being accessed by the user.
843 *
844 * The main result is two new ASMs, one for the region from the start of the
845 * stripe to the start of the access, and one for the region from the end of
846 * the access to the end of the stripe. These ASMs describe everything that
847 * needs to be read to effect the degraded access. Other results are:
848 * nXorBufs -- the total number of buffers that need to be XORed together to
849 * recover the lost data,
850 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
851 * at entry, not allocated.
852 * overlappingPDAs --
853 * describes which of the non-failed PDAs in the user access
854 * overlap data that needs to be read to effect recovery.
855 * overlappingPDAs[i]==1 if and only if, neglecting the failed
856 * PDA, the ith pda in the input asm overlaps data that needs
857 * to be read for recovery.
858 */
859 /* in: asm - ASM for the actual access, one stripe only */
860 /* in: failedPDA - which component of the access has failed */
861 /* in: dag_h - header of the DAG we're going to create */
862 /* out: new_asm_h - the two new ASMs */
863 /* out: nXorBufs - the total number of xor bufs required */
864 /* out: rpBufPtr - a buffer for the parity read */
865 void
866 rf_GenerateFailedAccessASMs(
867 RF_Raid_t * raidPtr,
868 RF_AccessStripeMap_t * asmap,
869 RF_PhysDiskAddr_t * failedPDA,
870 RF_DagHeader_t * dag_h,
871 RF_AccessStripeMapHeader_t ** new_asm_h,
872 int *nXorBufs,
873 char **rpBufPtr,
874 char *overlappingPDAs,
875 RF_AllocListElem_t * allocList)
876 {
877 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
878
879 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
880 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
881
882 RF_SectorCount_t numSect[2], numParitySect;
883 RF_PhysDiskAddr_t *pda;
884 char *rdBuf, *bufP;
885 int foundit, i;
886
887 bufP = NULL;
888 foundit = 0;
889 /* first compute the following raid addresses: start of stripe,
890 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
891 * MAX(end of access, end of failed SU), (eosStartAddr) end of
892 * stripe (i.e. start of next stripe) (eosAddr) */
893 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
894 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
895 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
896 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
897
898 /* now generate access stripe maps for each of the above regions of
899 * the stripe. Use a dummy (NULL) buf ptr for now */
900
901 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
902 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
903
904 /* walk through the PDAs and range-restrict each SU to the region of
905 * the SU touched on the failed PDA. also compute total data buffer
906 * space requirements in this step. Ignore the parity for now. */
907
908 numSect[0] = numSect[1] = 0;
909 if (new_asm_h[0]) {
910 new_asm_h[0]->next = dag_h->asmList;
911 dag_h->asmList = new_asm_h[0];
912 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
913 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
914 numSect[0] += pda->numSector;
915 }
916 }
917 if (new_asm_h[1]) {
918 new_asm_h[1]->next = dag_h->asmList;
919 dag_h->asmList = new_asm_h[1];
920 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
921 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
922 numSect[1] += pda->numSector;
923 }
924 }
925 numParitySect = failedPDA->numSector;
926
927 /* allocate buffer space for the data & parity we have to read to
928 * recover from the failure */
929
930 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
931 * buf if not needed */
932 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
933 bufP = rdBuf;
934 if (rf_degDagDebug)
935 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
936 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
937 }
938 /* now walk through the pdas one last time and assign buffer pointers
939 * (ugh!). Again, ignore the parity. also, count nodes to find out
940 * how many bufs need to be xored together */
941 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
942 * case, 1 is for failed data */
943 if (new_asm_h[0]) {
944 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
945 pda->bufPtr = bufP;
946 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
947 }
948 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
949 }
950 if (new_asm_h[1]) {
951 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
952 pda->bufPtr = bufP;
953 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
954 }
955 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
956 }
957 if (rpBufPtr)
958 *rpBufPtr = bufP; /* the rest of the buffer is for
959 * parity */
960
961 /* the last step is to figure out how many more distinct buffers need
962 * to get xor'd to produce the missing unit. there's one for each
963 * user-data read node that overlaps the portion of the failed unit
964 * being accessed */
965
966 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
967 if (pda == failedPDA) {
968 i--;
969 foundit = 1;
970 continue;
971 }
972 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
973 overlappingPDAs[i] = 1;
974 (*nXorBufs)++;
975 }
976 }
977 if (!foundit) {
978 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
979 RF_ASSERT(0);
980 }
981 if (rf_degDagDebug) {
982 if (new_asm_h[0]) {
983 printf("First asm:\n");
984 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
985 }
986 if (new_asm_h[1]) {
987 printf("Second asm:\n");
988 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
989 }
990 }
991 }
992
993
994 /* adjusts the offset and number of sectors in the destination pda so that
995 * it covers at most the region of the SU covered by the source PDA. This
996 * is exclusively a restriction: the number of sectors indicated by the
997 * target PDA can only shrink.
998 *
999 * For example: s = sectors within SU indicated by source PDA
1000 * d = sectors within SU indicated by dest PDA
1001 * r = results, stored in dest PDA
1002 *
1003 * |--------------- one stripe unit ---------------------|
1004 * | sssssssssssssssssssssssssssssssss |
1005 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1006 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1007 *
1008 * Another example:
1009 *
1010 * |--------------- one stripe unit ---------------------|
1011 * | sssssssssssssssssssssssssssssssss |
1012 * | ddddddddddddddddddddddd |
1013 * | rrrrrrrrrrrrrrrr |
1014 *
1015 */
1016 void
1017 rf_RangeRestrictPDA(
1018 RF_Raid_t * raidPtr,
1019 RF_PhysDiskAddr_t * src,
1020 RF_PhysDiskAddr_t * dest,
1021 int dobuffer,
1022 int doraidaddr)
1023 {
1024 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1025 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1026 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1027 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1028 * stay within SU */
1029 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1030 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1031
1032 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1033 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1034
1035 if (dobuffer)
1036 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1037 if (doraidaddr) {
1038 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1039 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1040 }
1041 }
1042
1043 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1044
1045 /*
1046 * Want the highest of these primes to be the largest one
1047 * less than the max expected number of columns (won't hurt
1048 * to be too small or too large, but won't be optimal, either)
1049 * --jimz
1050 */
1051 #define NLOWPRIMES 8
1052 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1053 /*****************************************************************************
1054 * compute the workload shift factor. (chained declustering)
1055 *
1056 * return nonzero if access should shift to secondary, otherwise,
1057 * access is to primary
1058 *****************************************************************************/
1059 int
1060 rf_compute_workload_shift(
1061 RF_Raid_t * raidPtr,
1062 RF_PhysDiskAddr_t * pda)
1063 {
1064 /*
1065 * variables:
1066 * d = column of disk containing primary
1067 * f = column of failed disk
1068 * n = number of disks in array
1069 * sd = "shift distance" (number of columns that d is to the right of f)
1070 * v = numerator of redirection ratio
1071 * k = denominator of redirection ratio
1072 */
1073 RF_RowCol_t d, f, sd, n;
1074 int k, v, ret, i;
1075
1076 n = raidPtr->numCol;
1077
1078 /* assign column of primary copy to d */
1079 d = pda->col;
1080
1081 /* assign column of dead disk to f */
1082 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1083
1084 RF_ASSERT(f < n);
1085 RF_ASSERT(f != d);
1086
1087 sd = (f > d) ? (n + d - f) : (d - f);
1088 RF_ASSERT(sd < n);
1089
1090 /*
1091 * v of every k accesses should be redirected
1092 *
1093 * v/k := (n-1-sd)/(n-1)
1094 */
1095 v = (n - 1 - sd);
1096 k = (n - 1);
1097
1098 #if 1
1099 /*
1100 * XXX
1101 * Is this worth it?
1102 *
1103 * Now reduce the fraction, by repeatedly factoring
1104 * out primes (just like they teach in elementary school!)
1105 */
1106 for (i = 0; i < NLOWPRIMES; i++) {
1107 if (lowprimes[i] > v)
1108 break;
1109 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1110 v /= lowprimes[i];
1111 k /= lowprimes[i];
1112 }
1113 }
1114 #endif
1115
1116 raidPtr->hist_diskreq[d]++;
1117 if (raidPtr->hist_diskreq[d] > v) {
1118 ret = 0; /* do not redirect */
1119 } else {
1120 ret = 1; /* redirect */
1121 }
1122
1123 #if 0
1124 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1125 raidPtr->hist_diskreq[d]);
1126 #endif
1127
1128 if (raidPtr->hist_diskreq[d] >= k) {
1129 /* reset counter */
1130 raidPtr->hist_diskreq[d] = 0;
1131 }
1132 return (ret);
1133 }
1134 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1135
1136 /*
1137 * Disk selection routines
1138 */
1139
1140 /*
1141 * Selects the disk with the shortest queue from a mirror pair.
1142 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1143 * disk are counted as members of the "queue"
1144 */
1145 void
1146 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1147 {
1148 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1149 RF_RowCol_t colData, colMirror;
1150 int dataQueueLength, mirrorQueueLength, usemirror;
1151 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1152 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1153 RF_PhysDiskAddr_t *tmp_pda;
1154 RF_RaidDisk_t *disks = raidPtr->Disks;
1155 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1156
1157 /* return the [row col] of the disk with the shortest queue */
1158 colData = data_pda->col;
1159 colMirror = mirror_pda->col;
1160 dataQueue = &(dqs[colData]);
1161 mirrorQueue = &(dqs[colMirror]);
1162
1163 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1164 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1165 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1166 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1167 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1168 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1169 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1170 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1171 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1172 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1173 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1174 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1175
1176 usemirror = 0;
1177 if (RF_DEAD_DISK(disks[colMirror].status)) {
1178 usemirror = 0;
1179 } else
1180 if (RF_DEAD_DISK(disks[colData].status)) {
1181 usemirror = 1;
1182 } else
1183 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1184 /* Trust only the main disk */
1185 usemirror = 0;
1186 } else
1187 if (dataQueueLength < mirrorQueueLength) {
1188 usemirror = 0;
1189 } else
1190 if (mirrorQueueLength < dataQueueLength) {
1191 usemirror = 1;
1192 } else {
1193 /* queues are equal length. attempt
1194 * cleverness. */
1195 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1196 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1197 usemirror = 0;
1198 } else {
1199 usemirror = 1;
1200 }
1201 }
1202
1203 if (usemirror) {
1204 /* use mirror (parity) disk, swap params 0 & 4 */
1205 tmp_pda = data_pda;
1206 node->params[0].p = mirror_pda;
1207 node->params[4].p = tmp_pda;
1208 } else {
1209 /* use data disk, leave param 0 unchanged */
1210 }
1211 /* printf("dataQueueLength %d, mirrorQueueLength
1212 * %d\n",dataQueueLength, mirrorQueueLength); */
1213 }
1214 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1215 /*
1216 * Do simple partitioning. This assumes that
1217 * the data and parity disks are laid out identically.
1218 */
1219 void
1220 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1221 {
1222 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1223 RF_RowCol_t colData, colMirror;
1224 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1225 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1226 RF_PhysDiskAddr_t *tmp_pda;
1227 RF_RaidDisk_t *disks = raidPtr->Disks;
1228 int usemirror;
1229
1230 /* return the [row col] of the disk with the shortest queue */
1231 colData = data_pda->col;
1232 colMirror = mirror_pda->col;
1233
1234 usemirror = 0;
1235 if (RF_DEAD_DISK(disks[colMirror].status)) {
1236 usemirror = 0;
1237 } else
1238 if (RF_DEAD_DISK(disks[colData].status)) {
1239 usemirror = 1;
1240 } else
1241 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1242 /* Trust only the main disk */
1243 usemirror = 0;
1244 } else
1245 if (data_pda->startSector <
1246 (disks[colData].numBlocks / 2)) {
1247 usemirror = 0;
1248 } else {
1249 usemirror = 1;
1250 }
1251
1252 if (usemirror) {
1253 /* use mirror (parity) disk, swap params 0 & 4 */
1254 tmp_pda = data_pda;
1255 node->params[0].p = mirror_pda;
1256 node->params[4].p = tmp_pda;
1257 } else {
1258 /* use data disk, leave param 0 unchanged */
1259 }
1260 }
1261 #endif
1262