Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.24
      1 /*	$NetBSD: rf_dagutils.c,v 1.24 2004/01/10 17:04:44 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.24 2004/01/10 17:04:44 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_map.h"
     48 #include "rf_shutdown.h"
     49 
     50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51 
     52 const RF_RedFuncs_t rf_xorFuncs = {
     53 	rf_RegularXorFunc, "Reg Xr",
     54 rf_SimpleXorFunc, "Simple Xr"};
     55 
     56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57 	rf_RecoveryXorFunc, "Recovery Xr",
     58 rf_RecoveryXorFunc, "Recovery Xr"};
     59 
     60 #if RF_DEBUG_VALIDATE_DAG
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64 			     RF_DagNode_t **, int);
     65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67 #endif /* RF_DEBUG_VALIDATE_DAG */
     68 
     69 /******************************************************************************
     70  *
     71  * InitNode - initialize a dag node
     72  *
     73  * the size of the propList array is always the same as that of the
     74  * successors array.
     75  *
     76  *****************************************************************************/
     77 void
     78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     79     int (*doFunc) (RF_DagNode_t *node),
     80     int (*undoFunc) (RF_DagNode_t *node),
     81     int (*wakeFunc) (RF_DagNode_t *node, int status),
     82     int nSucc, int nAnte, int nParam, int nResult,
     83     RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
     84 {
     85 	void  **ptrs;
     86 	int     nptrs;
     87 
     88 	if (nAnte > RF_MAX_ANTECEDENTS)
     89 		RF_PANIC();
     90 	node->status = initstatus;
     91 	node->commitNode = commit;
     92 	node->doFunc = doFunc;
     93 	node->undoFunc = undoFunc;
     94 	node->wakeFunc = wakeFunc;
     95 	node->numParams = nParam;
     96 	node->numResults = nResult;
     97 	node->numAntecedents = nAnte;
     98 	node->numAntDone = 0;
     99 	node->next = NULL;
    100 	node->numSuccedents = nSucc;
    101 	node->name = name;
    102 	node->dagHdr = hdr;
    103 	node->visited = 0;
    104 
    105 	/* allocate all the pointers with one call to malloc */
    106 	nptrs = nSucc + nAnte + nResult + nSucc;
    107 
    108 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    109 		/*
    110 	         * The dag_ptrs field of the node is basically some scribble
    111 	         * space to be used here. We could get rid of it, and always
    112 	         * allocate the range of pointers, but that's expensive. So,
    113 	         * we pick a "common case" size for the pointer cache. Hopefully,
    114 	         * we'll find that:
    115 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    116 	         *     only a little bit (least efficient case)
    117 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    118 	         *     (wasted memory)
    119 	         */
    120 		ptrs = (void **) node->dag_ptrs;
    121 	} else {
    122 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    123 				(void **), alist);
    124 	}
    125 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    126 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    127 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    128 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    129 
    130 	if (nParam) {
    131 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    132 			node->params = (RF_DagParam_t *) node->dag_params;
    133 		} else {
    134 			RF_MallocAndAdd(node->params,
    135 					nParam * sizeof(RF_DagParam_t),
    136 					(RF_DagParam_t *), alist);
    137 		}
    138 	} else {
    139 		node->params = NULL;
    140 	}
    141 }
    142 
    143 
    144 
    145 /******************************************************************************
    146  *
    147  * allocation and deallocation routines
    148  *
    149  *****************************************************************************/
    150 
    151 void
    152 rf_FreeDAG(RF_DagHeader_t *dag_h)
    153 {
    154 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    155 	RF_DagHeader_t *nextDag;
    156 
    157 	while (dag_h) {
    158 		nextDag = dag_h->next;
    159 		rf_FreeAllocList(dag_h->allocList);
    160 		for (asmap = dag_h->asmList; asmap;) {
    161 			t_asmap = asmap;
    162 			asmap = asmap->next;
    163 			rf_FreeAccessStripeMap(t_asmap);
    164 		}
    165 		rf_FreeDAGHeader(dag_h);
    166 		dag_h = nextDag;
    167 	}
    168 }
    169 
    170 static struct pool rf_dagh_pool;
    171 #define RF_MAX_FREE_DAGH 128
    172 #define RF_DAGH_INC       16
    173 #define RF_DAGH_INITIAL   32
    174 
    175 static void rf_ShutdownDAGs(void *);
    176 static void
    177 rf_ShutdownDAGs(void *ignored)
    178 {
    179 	pool_destroy(&rf_dagh_pool);
    180 }
    181 
    182 int
    183 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    184 {
    185 	int     rc;
    186 
    187 	pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
    188 		  "rf_dagh_pl", NULL);
    189 	pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
    190 	pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
    191 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    192 	if (rc) {
    193 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    194 		rf_ShutdownDAGs(NULL);
    195 		return (rc);
    196 	}
    197 	return (0);
    198 }
    199 
    200 RF_DagHeader_t *
    201 rf_AllocDAGHeader()
    202 {
    203 	RF_DagHeader_t *dh;
    204 
    205 	dh = pool_get(&rf_dagh_pool, PR_WAITOK);
    206 	if (dh) {
    207 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    208 	}
    209 	return (dh);
    210 }
    211 
    212 void
    213 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    214 {
    215 	pool_put(&rf_dagh_pool, dh);
    216 }
    217 /* allocates a buffer big enough to hold the data described by pda */
    218 void   *
    219 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    220 	       RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
    221 {
    222 	char   *p;
    223 
    224 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    225 	    (char *), allocList);
    226 	return ((void *) p);
    227 }
    228 #if RF_DEBUG_VALIDATE_DAG
    229 /******************************************************************************
    230  *
    231  * debug routines
    232  *
    233  *****************************************************************************/
    234 
    235 char   *
    236 rf_NodeStatusString(RF_DagNode_t *node)
    237 {
    238 	switch (node->status) {
    239 		case rf_wait:return ("wait");
    240 	case rf_fired:
    241 		return ("fired");
    242 	case rf_good:
    243 		return ("good");
    244 	case rf_bad:
    245 		return ("bad");
    246 	default:
    247 		return ("?");
    248 	}
    249 }
    250 
    251 void
    252 rf_PrintNodeInfoString(RF_DagNode_t *node)
    253 {
    254 	RF_PhysDiskAddr_t *pda;
    255 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    256 	int     i, lk, unlk;
    257 	void   *bufPtr;
    258 
    259 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    260 	    || (df == rf_DiskReadMirrorIdleFunc)
    261 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    262 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    263 		bufPtr = (void *) node->params[1].p;
    264 		lk = 0;
    265 		unlk = 0;
    266 		RF_ASSERT(!(lk && unlk));
    267 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    268 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    269 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    270 		return;
    271 	}
    272 	if (df == rf_DiskUnlockFunc) {
    273 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    274 		lk = 0;
    275 		unlk = 0;
    276 		RF_ASSERT(!(lk && unlk));
    277 		printf("c %d %s\n", pda->col,
    278 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    279 		return;
    280 	}
    281 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    282 	    || (df == rf_RecoveryXorFunc)) {
    283 		printf("result buf 0x%lx\n", (long) node->results[0]);
    284 		for (i = 0; i < node->numParams - 1; i += 2) {
    285 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    286 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    287 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    288 			    (long) bufPtr, pda->col,
    289 			    (long) pda->startSector, (int) pda->numSector);
    290 		}
    291 		return;
    292 	}
    293 #if RF_INCLUDE_PARITYLOGGING > 0
    294 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    295 		for (i = 0; i < node->numParams - 1; i += 2) {
    296 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    297 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    298 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    299 			    pda->col, (long) pda->startSector,
    300 			    (int) pda->numSector, (long) bufPtr);
    301 		}
    302 		return;
    303 	}
    304 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    305 
    306 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    307 		printf("\n");
    308 		return;
    309 	}
    310 	printf("?\n");
    311 }
    312 #ifdef DEBUG
    313 static void
    314 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    315 {
    316 	char   *anttype;
    317 	int     i;
    318 
    319 	node->visited = (unvisited) ? 0 : 1;
    320 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    321 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    322 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    323 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    324 	for (i = 0; i < node->numSuccedents; i++) {
    325 		printf("%d%s", node->succedents[i]->nodeNum,
    326 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    327 	}
    328 	printf("} A{");
    329 	for (i = 0; i < node->numAntecedents; i++) {
    330 		switch (node->antType[i]) {
    331 		case rf_trueData:
    332 			anttype = "T";
    333 			break;
    334 		case rf_antiData:
    335 			anttype = "A";
    336 			break;
    337 		case rf_outputData:
    338 			anttype = "O";
    339 			break;
    340 		case rf_control:
    341 			anttype = "C";
    342 			break;
    343 		default:
    344 			anttype = "?";
    345 			break;
    346 		}
    347 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    348 	}
    349 	printf("}; ");
    350 	rf_PrintNodeInfoString(node);
    351 	for (i = 0; i < node->numSuccedents; i++) {
    352 		if (node->succedents[i]->visited == unvisited)
    353 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    354 	}
    355 }
    356 
    357 static void
    358 rf_PrintDAG(RF_DagHeader_t *dag_h)
    359 {
    360 	int     unvisited, i;
    361 	char   *status;
    362 
    363 	/* set dag status */
    364 	switch (dag_h->status) {
    365 	case rf_enable:
    366 		status = "enable";
    367 		break;
    368 	case rf_rollForward:
    369 		status = "rollForward";
    370 		break;
    371 	case rf_rollBackward:
    372 		status = "rollBackward";
    373 		break;
    374 	default:
    375 		status = "illegal!";
    376 		break;
    377 	}
    378 	/* find out if visited bits are currently set or clear */
    379 	unvisited = dag_h->succedents[0]->visited;
    380 
    381 	printf("DAG type:  %s\n", dag_h->creator);
    382 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    383 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    384 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    385 	for (i = 0; i < dag_h->numSuccedents; i++) {
    386 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    387 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    388 	}
    389 	printf("};\n");
    390 	for (i = 0; i < dag_h->numSuccedents; i++) {
    391 		if (dag_h->succedents[i]->visited == unvisited)
    392 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    393 	}
    394 }
    395 #endif
    396 /* assigns node numbers */
    397 int
    398 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    399 {
    400 	int     unvisited, i, nnum;
    401 	RF_DagNode_t *node;
    402 
    403 	nnum = 0;
    404 	unvisited = dag_h->succedents[0]->visited;
    405 
    406 	dag_h->nodeNum = nnum++;
    407 	for (i = 0; i < dag_h->numSuccedents; i++) {
    408 		node = dag_h->succedents[i];
    409 		if (node->visited == unvisited) {
    410 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    411 		}
    412 	}
    413 	return (nnum);
    414 }
    415 
    416 int
    417 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    418 {
    419 	int     i;
    420 
    421 	node->visited = (unvisited) ? 0 : 1;
    422 
    423 	node->nodeNum = num++;
    424 	for (i = 0; i < node->numSuccedents; i++) {
    425 		if (node->succedents[i]->visited == unvisited) {
    426 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    427 		}
    428 	}
    429 	return (num);
    430 }
    431 /* set the header pointers in each node to "newptr" */
    432 void
    433 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    434 {
    435 	int     i;
    436 	for (i = 0; i < dag_h->numSuccedents; i++)
    437 		if (dag_h->succedents[i]->dagHdr != newptr)
    438 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    439 }
    440 
    441 void
    442 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    443 {
    444 	int     i;
    445 	node->dagHdr = newptr;
    446 	for (i = 0; i < node->numSuccedents; i++)
    447 		if (node->succedents[i]->dagHdr != newptr)
    448 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    449 }
    450 
    451 
    452 void
    453 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    454 {
    455 	int     i = 0;
    456 
    457 	for (; dag_h; dag_h = dag_h->next) {
    458 		rf_AssignNodeNums(dag_h);
    459 		printf("\n\nDAG %d IN LIST:\n", i++);
    460 		rf_PrintDAG(dag_h);
    461 	}
    462 }
    463 
    464 static int
    465 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    466 		  RF_DagNode_t **nodes, int unvisited)
    467 {
    468 	int     i, retcode = 0;
    469 
    470 	/* construct an array of node pointers indexed by node num */
    471 	node->visited = (unvisited) ? 0 : 1;
    472 	nodes[node->nodeNum] = node;
    473 
    474 	if (node->next != NULL) {
    475 		printf("INVALID DAG: next pointer in node is not NULL\n");
    476 		retcode = 1;
    477 	}
    478 	if (node->status != rf_wait) {
    479 		printf("INVALID DAG: Node status is not wait\n");
    480 		retcode = 1;
    481 	}
    482 	if (node->numAntDone != 0) {
    483 		printf("INVALID DAG: numAntDone is not zero\n");
    484 		retcode = 1;
    485 	}
    486 	if (node->doFunc == rf_TerminateFunc) {
    487 		if (node->numSuccedents != 0) {
    488 			printf("INVALID DAG: Terminator node has succedents\n");
    489 			retcode = 1;
    490 		}
    491 	} else {
    492 		if (node->numSuccedents == 0) {
    493 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    494 			retcode = 1;
    495 		}
    496 	}
    497 	for (i = 0; i < node->numSuccedents; i++) {
    498 		if (!node->succedents[i]) {
    499 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    500 			retcode = 1;
    501 		}
    502 		scount[node->succedents[i]->nodeNum]++;
    503 	}
    504 	for (i = 0; i < node->numAntecedents; i++) {
    505 		if (!node->antecedents[i]) {
    506 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    507 			retcode = 1;
    508 		}
    509 		acount[node->antecedents[i]->nodeNum]++;
    510 	}
    511 	for (i = 0; i < node->numSuccedents; i++) {
    512 		if (node->succedents[i]->visited == unvisited) {
    513 			if (rf_ValidateBranch(node->succedents[i], scount,
    514 				acount, nodes, unvisited)) {
    515 				retcode = 1;
    516 			}
    517 		}
    518 	}
    519 	return (retcode);
    520 }
    521 
    522 static void
    523 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    524 {
    525 	int     i;
    526 
    527 	RF_ASSERT(node->visited == unvisited);
    528 	for (i = 0; i < node->numSuccedents; i++) {
    529 		if (node->succedents[i] == NULL) {
    530 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    531 			RF_ASSERT(0);
    532 		}
    533 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    534 	}
    535 }
    536 /* NOTE:  never call this on a big dag, because it is exponential
    537  * in execution time
    538  */
    539 static void
    540 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    541 {
    542 	int     i, unvisited;
    543 
    544 	unvisited = dag->succedents[0]->visited;
    545 
    546 	for (i = 0; i < dag->numSuccedents; i++) {
    547 		if (dag->succedents[i] == NULL) {
    548 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    549 			RF_ASSERT(0);
    550 		}
    551 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    552 	}
    553 }
    554 /* validate a DAG.  _at entry_ verify that:
    555  *   -- numNodesCompleted is zero
    556  *   -- node queue is null
    557  *   -- dag status is rf_enable
    558  *   -- next pointer is null on every node
    559  *   -- all nodes have status wait
    560  *   -- numAntDone is zero in all nodes
    561  *   -- terminator node has zero successors
    562  *   -- no other node besides terminator has zero successors
    563  *   -- no successor or antecedent pointer in a node is NULL
    564  *   -- number of times that each node appears as a successor of another node
    565  *      is equal to the antecedent count on that node
    566  *   -- number of times that each node appears as an antecedent of another node
    567  *      is equal to the succedent count on that node
    568  *   -- what else?
    569  */
    570 int
    571 rf_ValidateDAG(RF_DagHeader_t *dag_h)
    572 {
    573 	int     i, nodecount;
    574 	int    *scount, *acount;/* per-node successor and antecedent counts */
    575 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    576 	int     retcode = 0;
    577 	int     unvisited;
    578 	int     commitNodeCount = 0;
    579 
    580 	if (rf_validateVisitedDebug)
    581 		rf_ValidateVisitedBits(dag_h);
    582 
    583 	if (dag_h->numNodesCompleted != 0) {
    584 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    585 		retcode = 1;
    586 		goto validate_dag_bad;
    587 	}
    588 	if (dag_h->status != rf_enable) {
    589 		printf("INVALID DAG: not enabled\n");
    590 		retcode = 1;
    591 		goto validate_dag_bad;
    592 	}
    593 	if (dag_h->numCommits != 0) {
    594 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    595 		retcode = 1;
    596 		goto validate_dag_bad;
    597 	}
    598 	if (dag_h->numSuccedents != 1) {
    599 		/* currently, all dags must have only one succedent */
    600 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    601 		retcode = 1;
    602 		goto validate_dag_bad;
    603 	}
    604 	nodecount = rf_AssignNodeNums(dag_h);
    605 
    606 	unvisited = dag_h->succedents[0]->visited;
    607 
    608 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    609 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    610 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    611 		  (RF_DagNode_t **));
    612 	for (i = 0; i < dag_h->numSuccedents; i++) {
    613 		if ((dag_h->succedents[i]->visited == unvisited)
    614 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    615 			acount, nodes, unvisited)) {
    616 			retcode = 1;
    617 		}
    618 	}
    619 	/* start at 1 to skip the header node */
    620 	for (i = 1; i < nodecount; i++) {
    621 		if (nodes[i]->commitNode)
    622 			commitNodeCount++;
    623 		if (nodes[i]->doFunc == NULL) {
    624 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    625 			retcode = 1;
    626 			goto validate_dag_out;
    627 		}
    628 		if (nodes[i]->undoFunc == NULL) {
    629 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    630 			retcode = 1;
    631 			goto validate_dag_out;
    632 		}
    633 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    634 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    635 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    636 			retcode = 1;
    637 			goto validate_dag_out;
    638 		}
    639 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    640 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    641 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    642 			retcode = 1;
    643 			goto validate_dag_out;
    644 		}
    645 	}
    646 
    647 	if (dag_h->numCommitNodes != commitNodeCount) {
    648 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    649 		    dag_h->numCommitNodes, commitNodeCount);
    650 		retcode = 1;
    651 		goto validate_dag_out;
    652 	}
    653 validate_dag_out:
    654 	RF_Free(scount, nodecount * sizeof(int));
    655 	RF_Free(acount, nodecount * sizeof(int));
    656 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    657 	if (retcode)
    658 		rf_PrintDAGList(dag_h);
    659 
    660 	if (rf_validateVisitedDebug)
    661 		rf_ValidateVisitedBits(dag_h);
    662 
    663 	return (retcode);
    664 
    665 validate_dag_bad:
    666 	rf_PrintDAGList(dag_h);
    667 	return (retcode);
    668 }
    669 
    670 #endif /* RF_DEBUG_VALIDATE_DAG */
    671 
    672 /******************************************************************************
    673  *
    674  * misc construction routines
    675  *
    676  *****************************************************************************/
    677 
    678 void
    679 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    680 {
    681 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    682 	int     fcol = raidPtr->reconControl->fcol;
    683 	int     scol = raidPtr->reconControl->spareCol;
    684 	RF_PhysDiskAddr_t *pda;
    685 
    686 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    687 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    688 		if (pda->col == fcol) {
    689 			if (rf_dagDebug) {
    690 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    691 					pda->startSector)) {
    692 					RF_PANIC();
    693 				}
    694 			}
    695 			/* printf("Remapped data for large write\n"); */
    696 			if (ds) {
    697 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    698 				    &pda->col, &pda->startSector, RF_REMAP);
    699 			} else {
    700 				pda->col = scol;
    701 			}
    702 		}
    703 	}
    704 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    705 		if (pda->col == fcol) {
    706 			if (rf_dagDebug) {
    707 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    708 					RF_PANIC();
    709 				}
    710 			}
    711 		}
    712 		if (ds) {
    713 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    714 		} else {
    715 			pda->col = scol;
    716 		}
    717 	}
    718 }
    719 
    720 
    721 /* this routine allocates read buffers and generates stripe maps for the
    722  * regions of the array from the start of the stripe to the start of the
    723  * access, and from the end of the access to the end of the stripe.  It also
    724  * computes and returns the number of DAG nodes needed to read all this data.
    725  * Note that this routine does the wrong thing if the access is fully
    726  * contained within one stripe unit, so we RF_ASSERT against this case at the
    727  * start.
    728  *
    729  * layoutPtr - in: layout information
    730  * asmap     - in: access stripe map
    731  * dag_h     - in: header of the dag to create
    732  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    733  * nRodNodes - out: num nodes to be generated to read unaccessed data
    734  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    735  */
    736 void
    737 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    738 				RF_RaidLayout_t *layoutPtr,
    739 				RF_AccessStripeMap_t *asmap,
    740 				RF_DagHeader_t *dag_h,
    741 				RF_AccessStripeMapHeader_t **new_asm_h,
    742 				int *nRodNodes,
    743 				char **sosBuffer, char **eosBuffer,
    744 				RF_AllocListElem_t *allocList)
    745 {
    746 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    747 	RF_SectorNum_t sosNumSector, eosNumSector;
    748 
    749 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    750 	/* generate an access map for the region of the array from start of
    751 	 * stripe to start of access */
    752 	new_asm_h[0] = new_asm_h[1] = NULL;
    753 	*nRodNodes = 0;
    754 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    755 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    756 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    757 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    758 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    759 		new_asm_h[0]->next = dag_h->asmList;
    760 		dag_h->asmList = new_asm_h[0];
    761 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    762 
    763 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    764 		/* we're totally within one stripe here */
    765 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    766 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    767 	}
    768 	/* generate an access map for the region of the array from end of
    769 	 * access to end of stripe */
    770 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    771 		eosRaidAddress = asmap->endRaidAddress;
    772 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    773 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    774 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    775 		new_asm_h[1]->next = dag_h->asmList;
    776 		dag_h->asmList = new_asm_h[1];
    777 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    778 
    779 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    780 		/* we're totally within one stripe here */
    781 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    782 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    783 	}
    784 }
    785 
    786 
    787 
    788 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    789 int
    790 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
    791 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
    792 {
    793 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    794 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    795 	/* use -1 to be sure we stay within SU */
    796 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    797 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    798 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    799 }
    800 
    801 
    802 /* GenerateFailedAccessASMs
    803  *
    804  * this routine figures out what portion of the stripe needs to be read
    805  * to effect the degraded read or write operation.  It's primary function
    806  * is to identify everything required to recover the data, and then
    807  * eliminate anything that is already being accessed by the user.
    808  *
    809  * The main result is two new ASMs, one for the region from the start of the
    810  * stripe to the start of the access, and one for the region from the end of
    811  * the access to the end of the stripe.  These ASMs describe everything that
    812  * needs to be read to effect the degraded access.  Other results are:
    813  *    nXorBufs -- the total number of buffers that need to be XORed together to
    814  *                recover the lost data,
    815  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    816  *                at entry, not allocated.
    817  *    overlappingPDAs --
    818  *                describes which of the non-failed PDAs in the user access
    819  *                overlap data that needs to be read to effect recovery.
    820  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    821  *                PDA, the ith pda in the input asm overlaps data that needs
    822  *                to be read for recovery.
    823  */
    824  /* in: asm - ASM for the actual access, one stripe only */
    825  /* in: failedPDA - which component of the access has failed */
    826  /* in: dag_h - header of the DAG we're going to create */
    827  /* out: new_asm_h - the two new ASMs */
    828  /* out: nXorBufs - the total number of xor bufs required */
    829  /* out: rpBufPtr - a buffer for the parity read */
    830 void
    831 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    832 			    RF_PhysDiskAddr_t *failedPDA,
    833 			    RF_DagHeader_t *dag_h,
    834 			    RF_AccessStripeMapHeader_t **new_asm_h,
    835 			    int *nXorBufs, char **rpBufPtr,
    836 			    char *overlappingPDAs,
    837 			    RF_AllocListElem_t *allocList)
    838 {
    839 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    840 
    841 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    842 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    843 
    844 	RF_SectorCount_t numSect[2], numParitySect;
    845 	RF_PhysDiskAddr_t *pda;
    846 	char   *rdBuf, *bufP;
    847 	int     foundit, i;
    848 
    849 	bufP = NULL;
    850 	foundit = 0;
    851 	/* first compute the following raid addresses: start of stripe,
    852 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    853 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    854 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    855 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    856 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    857 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    858 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    859 
    860 	/* now generate access stripe maps for each of the above regions of
    861 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    862 
    863 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    864 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    865 
    866 	/* walk through the PDAs and range-restrict each SU to the region of
    867 	 * the SU touched on the failed PDA.  also compute total data buffer
    868 	 * space requirements in this step.  Ignore the parity for now. */
    869 
    870 	numSect[0] = numSect[1] = 0;
    871 	if (new_asm_h[0]) {
    872 		new_asm_h[0]->next = dag_h->asmList;
    873 		dag_h->asmList = new_asm_h[0];
    874 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    875 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    876 			numSect[0] += pda->numSector;
    877 		}
    878 	}
    879 	if (new_asm_h[1]) {
    880 		new_asm_h[1]->next = dag_h->asmList;
    881 		dag_h->asmList = new_asm_h[1];
    882 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    883 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    884 			numSect[1] += pda->numSector;
    885 		}
    886 	}
    887 	numParitySect = failedPDA->numSector;
    888 
    889 	/* allocate buffer space for the data & parity we have to read to
    890 	 * recover from the failure */
    891 
    892 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    893 										 * buf if not needed */
    894 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    895 		bufP = rdBuf;
    896 		if (rf_degDagDebug)
    897 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    898 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    899 	}
    900 	/* now walk through the pdas one last time and assign buffer pointers
    901 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    902 	 * how many bufs need to be xored together */
    903 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    904 				 * case, 1 is for failed data */
    905 	if (new_asm_h[0]) {
    906 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    907 			pda->bufPtr = bufP;
    908 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    909 		}
    910 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    911 	}
    912 	if (new_asm_h[1]) {
    913 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    914 			pda->bufPtr = bufP;
    915 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    916 		}
    917 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    918 	}
    919 	if (rpBufPtr)
    920 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    921 					 * parity */
    922 
    923 	/* the last step is to figure out how many more distinct buffers need
    924 	 * to get xor'd to produce the missing unit.  there's one for each
    925 	 * user-data read node that overlaps the portion of the failed unit
    926 	 * being accessed */
    927 
    928 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
    929 		if (pda == failedPDA) {
    930 			i--;
    931 			foundit = 1;
    932 			continue;
    933 		}
    934 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
    935 			overlappingPDAs[i] = 1;
    936 			(*nXorBufs)++;
    937 		}
    938 	}
    939 	if (!foundit) {
    940 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
    941 		RF_ASSERT(0);
    942 	}
    943 	if (rf_degDagDebug) {
    944 		if (new_asm_h[0]) {
    945 			printf("First asm:\n");
    946 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
    947 		}
    948 		if (new_asm_h[1]) {
    949 			printf("Second asm:\n");
    950 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
    951 		}
    952 	}
    953 }
    954 
    955 
    956 /* adjusts the offset and number of sectors in the destination pda so that
    957  * it covers at most the region of the SU covered by the source PDA.  This
    958  * is exclusively a restriction:  the number of sectors indicated by the
    959  * target PDA can only shrink.
    960  *
    961  * For example:  s = sectors within SU indicated by source PDA
    962  *               d = sectors within SU indicated by dest PDA
    963  *               r = results, stored in dest PDA
    964  *
    965  * |--------------- one stripe unit ---------------------|
    966  * |           sssssssssssssssssssssssssssssssss         |
    967  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
    968  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
    969  *
    970  * Another example:
    971  *
    972  * |--------------- one stripe unit ---------------------|
    973  * |           sssssssssssssssssssssssssssssssss         |
    974  * |    ddddddddddddddddddddddd                          |
    975  * |           rrrrrrrrrrrrrrrr                          |
    976  *
    977  */
    978 void
    979 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
    980 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
    981 {
    982 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    983 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    984 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    985 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
    986 													 * stay within SU */
    987 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    988 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
    989 
    990 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
    991 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
    992 
    993 	if (dobuffer)
    994 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
    995 	if (doraidaddr) {
    996 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
    997 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
    998 	}
    999 }
   1000 
   1001 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1002 
   1003 /*
   1004  * Want the highest of these primes to be the largest one
   1005  * less than the max expected number of columns (won't hurt
   1006  * to be too small or too large, but won't be optimal, either)
   1007  * --jimz
   1008  */
   1009 #define NLOWPRIMES 8
   1010 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1011 /*****************************************************************************
   1012  * compute the workload shift factor.  (chained declustering)
   1013  *
   1014  * return nonzero if access should shift to secondary, otherwise,
   1015  * access is to primary
   1016  *****************************************************************************/
   1017 int
   1018 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1019 {
   1020 	/*
   1021          * variables:
   1022          *  d   = column of disk containing primary
   1023          *  f   = column of failed disk
   1024          *  n   = number of disks in array
   1025          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1026          *  v   = numerator of redirection ratio
   1027          *  k   = denominator of redirection ratio
   1028          */
   1029 	RF_RowCol_t d, f, sd, n;
   1030 	int     k, v, ret, i;
   1031 
   1032 	n = raidPtr->numCol;
   1033 
   1034 	/* assign column of primary copy to d */
   1035 	d = pda->col;
   1036 
   1037 	/* assign column of dead disk to f */
   1038 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1039 
   1040 	RF_ASSERT(f < n);
   1041 	RF_ASSERT(f != d);
   1042 
   1043 	sd = (f > d) ? (n + d - f) : (d - f);
   1044 	RF_ASSERT(sd < n);
   1045 
   1046 	/*
   1047          * v of every k accesses should be redirected
   1048          *
   1049          * v/k := (n-1-sd)/(n-1)
   1050          */
   1051 	v = (n - 1 - sd);
   1052 	k = (n - 1);
   1053 
   1054 #if 1
   1055 	/*
   1056          * XXX
   1057          * Is this worth it?
   1058          *
   1059          * Now reduce the fraction, by repeatedly factoring
   1060          * out primes (just like they teach in elementary school!)
   1061          */
   1062 	for (i = 0; i < NLOWPRIMES; i++) {
   1063 		if (lowprimes[i] > v)
   1064 			break;
   1065 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1066 			v /= lowprimes[i];
   1067 			k /= lowprimes[i];
   1068 		}
   1069 	}
   1070 #endif
   1071 
   1072 	raidPtr->hist_diskreq[d]++;
   1073 	if (raidPtr->hist_diskreq[d] > v) {
   1074 		ret = 0;	/* do not redirect */
   1075 	} else {
   1076 		ret = 1;	/* redirect */
   1077 	}
   1078 
   1079 #if 0
   1080 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1081 	    raidPtr->hist_diskreq[d]);
   1082 #endif
   1083 
   1084 	if (raidPtr->hist_diskreq[d] >= k) {
   1085 		/* reset counter */
   1086 		raidPtr->hist_diskreq[d] = 0;
   1087 	}
   1088 	return (ret);
   1089 }
   1090 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1091 
   1092 /*
   1093  * Disk selection routines
   1094  */
   1095 
   1096 /*
   1097  * Selects the disk with the shortest queue from a mirror pair.
   1098  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1099  * disk are counted as members of the "queue"
   1100  */
   1101 void
   1102 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1103 {
   1104 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1105 	RF_RowCol_t colData, colMirror;
   1106 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1107 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1108 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1109 	RF_PhysDiskAddr_t *tmp_pda;
   1110 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1111 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1112 
   1113 	/* return the [row col] of the disk with the shortest queue */
   1114 	colData = data_pda->col;
   1115 	colMirror = mirror_pda->col;
   1116 	dataQueue = &(dqs[colData]);
   1117 	mirrorQueue = &(dqs[colMirror]);
   1118 
   1119 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1120 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1121 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1122 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1123 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1124 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1125 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1126 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1127 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1128 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1129 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1130 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1131 
   1132 	usemirror = 0;
   1133 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1134 		usemirror = 0;
   1135 	} else
   1136 		if (RF_DEAD_DISK(disks[colData].status)) {
   1137 			usemirror = 1;
   1138 		} else
   1139 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1140 				/* Trust only the main disk */
   1141 				usemirror = 0;
   1142 			} else
   1143 				if (dataQueueLength < mirrorQueueLength) {
   1144 					usemirror = 0;
   1145 				} else
   1146 					if (mirrorQueueLength < dataQueueLength) {
   1147 						usemirror = 1;
   1148 					} else {
   1149 						/* queues are equal length. attempt
   1150 						 * cleverness. */
   1151 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1152 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1153 							usemirror = 0;
   1154 						} else {
   1155 							usemirror = 1;
   1156 						}
   1157 					}
   1158 
   1159 	if (usemirror) {
   1160 		/* use mirror (parity) disk, swap params 0 & 4 */
   1161 		tmp_pda = data_pda;
   1162 		node->params[0].p = mirror_pda;
   1163 		node->params[4].p = tmp_pda;
   1164 	} else {
   1165 		/* use data disk, leave param 0 unchanged */
   1166 	}
   1167 	/* printf("dataQueueLength %d, mirrorQueueLength
   1168 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1169 }
   1170 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1171 /*
   1172  * Do simple partitioning. This assumes that
   1173  * the data and parity disks are laid out identically.
   1174  */
   1175 void
   1176 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1177 {
   1178 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1179 	RF_RowCol_t colData, colMirror;
   1180 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1181 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1182 	RF_PhysDiskAddr_t *tmp_pda;
   1183 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1184 	int     usemirror;
   1185 
   1186 	/* return the [row col] of the disk with the shortest queue */
   1187 	colData = data_pda->col;
   1188 	colMirror = mirror_pda->col;
   1189 
   1190 	usemirror = 0;
   1191 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1192 		usemirror = 0;
   1193 	} else
   1194 		if (RF_DEAD_DISK(disks[colData].status)) {
   1195 			usemirror = 1;
   1196 		} else
   1197 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1198 				/* Trust only the main disk */
   1199 				usemirror = 0;
   1200 			} else
   1201 				if (data_pda->startSector <
   1202 				    (disks[colData].numBlocks / 2)) {
   1203 					usemirror = 0;
   1204 				} else {
   1205 					usemirror = 1;
   1206 				}
   1207 
   1208 	if (usemirror) {
   1209 		/* use mirror (parity) disk, swap params 0 & 4 */
   1210 		tmp_pda = data_pda;
   1211 		node->params[0].p = mirror_pda;
   1212 		node->params[4].p = tmp_pda;
   1213 	} else {
   1214 		/* use data disk, leave param 0 unchanged */
   1215 	}
   1216 }
   1217 #endif
   1218