rf_dagutils.c revision 1.24 1 /* $NetBSD: rf_dagutils.c,v 1.24 2004/01/10 17:04:44 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.24 2004/01/10 17:04:44 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_DAGH_INC 16
173 #define RF_DAGH_INITIAL 32
174
175 static void rf_ShutdownDAGs(void *);
176 static void
177 rf_ShutdownDAGs(void *ignored)
178 {
179 pool_destroy(&rf_dagh_pool);
180 }
181
182 int
183 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
184 {
185 int rc;
186
187 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
188 "rf_dagh_pl", NULL);
189 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
190 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
191 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
192 if (rc) {
193 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
194 rf_ShutdownDAGs(NULL);
195 return (rc);
196 }
197 return (0);
198 }
199
200 RF_DagHeader_t *
201 rf_AllocDAGHeader()
202 {
203 RF_DagHeader_t *dh;
204
205 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
206 if (dh) {
207 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
208 }
209 return (dh);
210 }
211
212 void
213 rf_FreeDAGHeader(RF_DagHeader_t * dh)
214 {
215 pool_put(&rf_dagh_pool, dh);
216 }
217 /* allocates a buffer big enough to hold the data described by pda */
218 void *
219 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
220 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
221 {
222 char *p;
223
224 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
225 (char *), allocList);
226 return ((void *) p);
227 }
228 #if RF_DEBUG_VALIDATE_DAG
229 /******************************************************************************
230 *
231 * debug routines
232 *
233 *****************************************************************************/
234
235 char *
236 rf_NodeStatusString(RF_DagNode_t *node)
237 {
238 switch (node->status) {
239 case rf_wait:return ("wait");
240 case rf_fired:
241 return ("fired");
242 case rf_good:
243 return ("good");
244 case rf_bad:
245 return ("bad");
246 default:
247 return ("?");
248 }
249 }
250
251 void
252 rf_PrintNodeInfoString(RF_DagNode_t *node)
253 {
254 RF_PhysDiskAddr_t *pda;
255 int (*df) (RF_DagNode_t *) = node->doFunc;
256 int i, lk, unlk;
257 void *bufPtr;
258
259 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
260 || (df == rf_DiskReadMirrorIdleFunc)
261 || (df == rf_DiskReadMirrorPartitionFunc)) {
262 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
263 bufPtr = (void *) node->params[1].p;
264 lk = 0;
265 unlk = 0;
266 RF_ASSERT(!(lk && unlk));
267 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
268 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
269 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
270 return;
271 }
272 if (df == rf_DiskUnlockFunc) {
273 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
274 lk = 0;
275 unlk = 0;
276 RF_ASSERT(!(lk && unlk));
277 printf("c %d %s\n", pda->col,
278 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
279 return;
280 }
281 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
282 || (df == rf_RecoveryXorFunc)) {
283 printf("result buf 0x%lx\n", (long) node->results[0]);
284 for (i = 0; i < node->numParams - 1; i += 2) {
285 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
286 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
287 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
288 (long) bufPtr, pda->col,
289 (long) pda->startSector, (int) pda->numSector);
290 }
291 return;
292 }
293 #if RF_INCLUDE_PARITYLOGGING > 0
294 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
295 for (i = 0; i < node->numParams - 1; i += 2) {
296 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
297 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
298 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
299 pda->col, (long) pda->startSector,
300 (int) pda->numSector, (long) bufPtr);
301 }
302 return;
303 }
304 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
305
306 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
307 printf("\n");
308 return;
309 }
310 printf("?\n");
311 }
312 #ifdef DEBUG
313 static void
314 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
315 {
316 char *anttype;
317 int i;
318
319 node->visited = (unvisited) ? 0 : 1;
320 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
321 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
322 node->numSuccedents, node->numSuccFired, node->numSuccDone,
323 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
324 for (i = 0; i < node->numSuccedents; i++) {
325 printf("%d%s", node->succedents[i]->nodeNum,
326 ((i == node->numSuccedents - 1) ? "\0" : " "));
327 }
328 printf("} A{");
329 for (i = 0; i < node->numAntecedents; i++) {
330 switch (node->antType[i]) {
331 case rf_trueData:
332 anttype = "T";
333 break;
334 case rf_antiData:
335 anttype = "A";
336 break;
337 case rf_outputData:
338 anttype = "O";
339 break;
340 case rf_control:
341 anttype = "C";
342 break;
343 default:
344 anttype = "?";
345 break;
346 }
347 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
348 }
349 printf("}; ");
350 rf_PrintNodeInfoString(node);
351 for (i = 0; i < node->numSuccedents; i++) {
352 if (node->succedents[i]->visited == unvisited)
353 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
354 }
355 }
356
357 static void
358 rf_PrintDAG(RF_DagHeader_t *dag_h)
359 {
360 int unvisited, i;
361 char *status;
362
363 /* set dag status */
364 switch (dag_h->status) {
365 case rf_enable:
366 status = "enable";
367 break;
368 case rf_rollForward:
369 status = "rollForward";
370 break;
371 case rf_rollBackward:
372 status = "rollBackward";
373 break;
374 default:
375 status = "illegal!";
376 break;
377 }
378 /* find out if visited bits are currently set or clear */
379 unvisited = dag_h->succedents[0]->visited;
380
381 printf("DAG type: %s\n", dag_h->creator);
382 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
383 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
384 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
385 for (i = 0; i < dag_h->numSuccedents; i++) {
386 printf("%d%s", dag_h->succedents[i]->nodeNum,
387 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
388 }
389 printf("};\n");
390 for (i = 0; i < dag_h->numSuccedents; i++) {
391 if (dag_h->succedents[i]->visited == unvisited)
392 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
393 }
394 }
395 #endif
396 /* assigns node numbers */
397 int
398 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
399 {
400 int unvisited, i, nnum;
401 RF_DagNode_t *node;
402
403 nnum = 0;
404 unvisited = dag_h->succedents[0]->visited;
405
406 dag_h->nodeNum = nnum++;
407 for (i = 0; i < dag_h->numSuccedents; i++) {
408 node = dag_h->succedents[i];
409 if (node->visited == unvisited) {
410 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
411 }
412 }
413 return (nnum);
414 }
415
416 int
417 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
418 {
419 int i;
420
421 node->visited = (unvisited) ? 0 : 1;
422
423 node->nodeNum = num++;
424 for (i = 0; i < node->numSuccedents; i++) {
425 if (node->succedents[i]->visited == unvisited) {
426 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
427 }
428 }
429 return (num);
430 }
431 /* set the header pointers in each node to "newptr" */
432 void
433 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
434 {
435 int i;
436 for (i = 0; i < dag_h->numSuccedents; i++)
437 if (dag_h->succedents[i]->dagHdr != newptr)
438 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
439 }
440
441 void
442 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
443 {
444 int i;
445 node->dagHdr = newptr;
446 for (i = 0; i < node->numSuccedents; i++)
447 if (node->succedents[i]->dagHdr != newptr)
448 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
449 }
450
451
452 void
453 rf_PrintDAGList(RF_DagHeader_t * dag_h)
454 {
455 int i = 0;
456
457 for (; dag_h; dag_h = dag_h->next) {
458 rf_AssignNodeNums(dag_h);
459 printf("\n\nDAG %d IN LIST:\n", i++);
460 rf_PrintDAG(dag_h);
461 }
462 }
463
464 static int
465 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
466 RF_DagNode_t **nodes, int unvisited)
467 {
468 int i, retcode = 0;
469
470 /* construct an array of node pointers indexed by node num */
471 node->visited = (unvisited) ? 0 : 1;
472 nodes[node->nodeNum] = node;
473
474 if (node->next != NULL) {
475 printf("INVALID DAG: next pointer in node is not NULL\n");
476 retcode = 1;
477 }
478 if (node->status != rf_wait) {
479 printf("INVALID DAG: Node status is not wait\n");
480 retcode = 1;
481 }
482 if (node->numAntDone != 0) {
483 printf("INVALID DAG: numAntDone is not zero\n");
484 retcode = 1;
485 }
486 if (node->doFunc == rf_TerminateFunc) {
487 if (node->numSuccedents != 0) {
488 printf("INVALID DAG: Terminator node has succedents\n");
489 retcode = 1;
490 }
491 } else {
492 if (node->numSuccedents == 0) {
493 printf("INVALID DAG: Non-terminator node has no succedents\n");
494 retcode = 1;
495 }
496 }
497 for (i = 0; i < node->numSuccedents; i++) {
498 if (!node->succedents[i]) {
499 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
500 retcode = 1;
501 }
502 scount[node->succedents[i]->nodeNum]++;
503 }
504 for (i = 0; i < node->numAntecedents; i++) {
505 if (!node->antecedents[i]) {
506 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
507 retcode = 1;
508 }
509 acount[node->antecedents[i]->nodeNum]++;
510 }
511 for (i = 0; i < node->numSuccedents; i++) {
512 if (node->succedents[i]->visited == unvisited) {
513 if (rf_ValidateBranch(node->succedents[i], scount,
514 acount, nodes, unvisited)) {
515 retcode = 1;
516 }
517 }
518 }
519 return (retcode);
520 }
521
522 static void
523 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
524 {
525 int i;
526
527 RF_ASSERT(node->visited == unvisited);
528 for (i = 0; i < node->numSuccedents; i++) {
529 if (node->succedents[i] == NULL) {
530 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
531 RF_ASSERT(0);
532 }
533 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
534 }
535 }
536 /* NOTE: never call this on a big dag, because it is exponential
537 * in execution time
538 */
539 static void
540 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
541 {
542 int i, unvisited;
543
544 unvisited = dag->succedents[0]->visited;
545
546 for (i = 0; i < dag->numSuccedents; i++) {
547 if (dag->succedents[i] == NULL) {
548 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
549 RF_ASSERT(0);
550 }
551 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
552 }
553 }
554 /* validate a DAG. _at entry_ verify that:
555 * -- numNodesCompleted is zero
556 * -- node queue is null
557 * -- dag status is rf_enable
558 * -- next pointer is null on every node
559 * -- all nodes have status wait
560 * -- numAntDone is zero in all nodes
561 * -- terminator node has zero successors
562 * -- no other node besides terminator has zero successors
563 * -- no successor or antecedent pointer in a node is NULL
564 * -- number of times that each node appears as a successor of another node
565 * is equal to the antecedent count on that node
566 * -- number of times that each node appears as an antecedent of another node
567 * is equal to the succedent count on that node
568 * -- what else?
569 */
570 int
571 rf_ValidateDAG(RF_DagHeader_t *dag_h)
572 {
573 int i, nodecount;
574 int *scount, *acount;/* per-node successor and antecedent counts */
575 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
576 int retcode = 0;
577 int unvisited;
578 int commitNodeCount = 0;
579
580 if (rf_validateVisitedDebug)
581 rf_ValidateVisitedBits(dag_h);
582
583 if (dag_h->numNodesCompleted != 0) {
584 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
585 retcode = 1;
586 goto validate_dag_bad;
587 }
588 if (dag_h->status != rf_enable) {
589 printf("INVALID DAG: not enabled\n");
590 retcode = 1;
591 goto validate_dag_bad;
592 }
593 if (dag_h->numCommits != 0) {
594 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
595 retcode = 1;
596 goto validate_dag_bad;
597 }
598 if (dag_h->numSuccedents != 1) {
599 /* currently, all dags must have only one succedent */
600 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
601 retcode = 1;
602 goto validate_dag_bad;
603 }
604 nodecount = rf_AssignNodeNums(dag_h);
605
606 unvisited = dag_h->succedents[0]->visited;
607
608 RF_Malloc(scount, nodecount * sizeof(int), (int *));
609 RF_Malloc(acount, nodecount * sizeof(int), (int *));
610 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
611 (RF_DagNode_t **));
612 for (i = 0; i < dag_h->numSuccedents; i++) {
613 if ((dag_h->succedents[i]->visited == unvisited)
614 && rf_ValidateBranch(dag_h->succedents[i], scount,
615 acount, nodes, unvisited)) {
616 retcode = 1;
617 }
618 }
619 /* start at 1 to skip the header node */
620 for (i = 1; i < nodecount; i++) {
621 if (nodes[i]->commitNode)
622 commitNodeCount++;
623 if (nodes[i]->doFunc == NULL) {
624 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
625 retcode = 1;
626 goto validate_dag_out;
627 }
628 if (nodes[i]->undoFunc == NULL) {
629 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
630 retcode = 1;
631 goto validate_dag_out;
632 }
633 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
634 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
635 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
636 retcode = 1;
637 goto validate_dag_out;
638 }
639 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
640 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
641 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
642 retcode = 1;
643 goto validate_dag_out;
644 }
645 }
646
647 if (dag_h->numCommitNodes != commitNodeCount) {
648 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
649 dag_h->numCommitNodes, commitNodeCount);
650 retcode = 1;
651 goto validate_dag_out;
652 }
653 validate_dag_out:
654 RF_Free(scount, nodecount * sizeof(int));
655 RF_Free(acount, nodecount * sizeof(int));
656 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
657 if (retcode)
658 rf_PrintDAGList(dag_h);
659
660 if (rf_validateVisitedDebug)
661 rf_ValidateVisitedBits(dag_h);
662
663 return (retcode);
664
665 validate_dag_bad:
666 rf_PrintDAGList(dag_h);
667 return (retcode);
668 }
669
670 #endif /* RF_DEBUG_VALIDATE_DAG */
671
672 /******************************************************************************
673 *
674 * misc construction routines
675 *
676 *****************************************************************************/
677
678 void
679 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
680 {
681 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
682 int fcol = raidPtr->reconControl->fcol;
683 int scol = raidPtr->reconControl->spareCol;
684 RF_PhysDiskAddr_t *pda;
685
686 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
687 for (pda = asmap->physInfo; pda; pda = pda->next) {
688 if (pda->col == fcol) {
689 if (rf_dagDebug) {
690 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
691 pda->startSector)) {
692 RF_PANIC();
693 }
694 }
695 /* printf("Remapped data for large write\n"); */
696 if (ds) {
697 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
698 &pda->col, &pda->startSector, RF_REMAP);
699 } else {
700 pda->col = scol;
701 }
702 }
703 }
704 for (pda = asmap->parityInfo; pda; pda = pda->next) {
705 if (pda->col == fcol) {
706 if (rf_dagDebug) {
707 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
708 RF_PANIC();
709 }
710 }
711 }
712 if (ds) {
713 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
714 } else {
715 pda->col = scol;
716 }
717 }
718 }
719
720
721 /* this routine allocates read buffers and generates stripe maps for the
722 * regions of the array from the start of the stripe to the start of the
723 * access, and from the end of the access to the end of the stripe. It also
724 * computes and returns the number of DAG nodes needed to read all this data.
725 * Note that this routine does the wrong thing if the access is fully
726 * contained within one stripe unit, so we RF_ASSERT against this case at the
727 * start.
728 *
729 * layoutPtr - in: layout information
730 * asmap - in: access stripe map
731 * dag_h - in: header of the dag to create
732 * new_asm_h - in: ptr to array of 2 headers. to be filled in
733 * nRodNodes - out: num nodes to be generated to read unaccessed data
734 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
735 */
736 void
737 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
738 RF_RaidLayout_t *layoutPtr,
739 RF_AccessStripeMap_t *asmap,
740 RF_DagHeader_t *dag_h,
741 RF_AccessStripeMapHeader_t **new_asm_h,
742 int *nRodNodes,
743 char **sosBuffer, char **eosBuffer,
744 RF_AllocListElem_t *allocList)
745 {
746 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
747 RF_SectorNum_t sosNumSector, eosNumSector;
748
749 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
750 /* generate an access map for the region of the array from start of
751 * stripe to start of access */
752 new_asm_h[0] = new_asm_h[1] = NULL;
753 *nRodNodes = 0;
754 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
755 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
756 sosNumSector = asmap->raidAddress - sosRaidAddress;
757 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
758 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
759 new_asm_h[0]->next = dag_h->asmList;
760 dag_h->asmList = new_asm_h[0];
761 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
762
763 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
764 /* we're totally within one stripe here */
765 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
766 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
767 }
768 /* generate an access map for the region of the array from end of
769 * access to end of stripe */
770 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
771 eosRaidAddress = asmap->endRaidAddress;
772 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
773 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
774 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
775 new_asm_h[1]->next = dag_h->asmList;
776 dag_h->asmList = new_asm_h[1];
777 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
778
779 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
780 /* we're totally within one stripe here */
781 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
782 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
783 }
784 }
785
786
787
788 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
789 int
790 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
791 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
792 {
793 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
794 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
795 /* use -1 to be sure we stay within SU */
796 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
797 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
798 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
799 }
800
801
802 /* GenerateFailedAccessASMs
803 *
804 * this routine figures out what portion of the stripe needs to be read
805 * to effect the degraded read or write operation. It's primary function
806 * is to identify everything required to recover the data, and then
807 * eliminate anything that is already being accessed by the user.
808 *
809 * The main result is two new ASMs, one for the region from the start of the
810 * stripe to the start of the access, and one for the region from the end of
811 * the access to the end of the stripe. These ASMs describe everything that
812 * needs to be read to effect the degraded access. Other results are:
813 * nXorBufs -- the total number of buffers that need to be XORed together to
814 * recover the lost data,
815 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
816 * at entry, not allocated.
817 * overlappingPDAs --
818 * describes which of the non-failed PDAs in the user access
819 * overlap data that needs to be read to effect recovery.
820 * overlappingPDAs[i]==1 if and only if, neglecting the failed
821 * PDA, the ith pda in the input asm overlaps data that needs
822 * to be read for recovery.
823 */
824 /* in: asm - ASM for the actual access, one stripe only */
825 /* in: failedPDA - which component of the access has failed */
826 /* in: dag_h - header of the DAG we're going to create */
827 /* out: new_asm_h - the two new ASMs */
828 /* out: nXorBufs - the total number of xor bufs required */
829 /* out: rpBufPtr - a buffer for the parity read */
830 void
831 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
832 RF_PhysDiskAddr_t *failedPDA,
833 RF_DagHeader_t *dag_h,
834 RF_AccessStripeMapHeader_t **new_asm_h,
835 int *nXorBufs, char **rpBufPtr,
836 char *overlappingPDAs,
837 RF_AllocListElem_t *allocList)
838 {
839 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
840
841 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
842 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
843
844 RF_SectorCount_t numSect[2], numParitySect;
845 RF_PhysDiskAddr_t *pda;
846 char *rdBuf, *bufP;
847 int foundit, i;
848
849 bufP = NULL;
850 foundit = 0;
851 /* first compute the following raid addresses: start of stripe,
852 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
853 * MAX(end of access, end of failed SU), (eosStartAddr) end of
854 * stripe (i.e. start of next stripe) (eosAddr) */
855 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
856 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
857 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
858 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
859
860 /* now generate access stripe maps for each of the above regions of
861 * the stripe. Use a dummy (NULL) buf ptr for now */
862
863 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
864 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
865
866 /* walk through the PDAs and range-restrict each SU to the region of
867 * the SU touched on the failed PDA. also compute total data buffer
868 * space requirements in this step. Ignore the parity for now. */
869
870 numSect[0] = numSect[1] = 0;
871 if (new_asm_h[0]) {
872 new_asm_h[0]->next = dag_h->asmList;
873 dag_h->asmList = new_asm_h[0];
874 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
875 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
876 numSect[0] += pda->numSector;
877 }
878 }
879 if (new_asm_h[1]) {
880 new_asm_h[1]->next = dag_h->asmList;
881 dag_h->asmList = new_asm_h[1];
882 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
883 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
884 numSect[1] += pda->numSector;
885 }
886 }
887 numParitySect = failedPDA->numSector;
888
889 /* allocate buffer space for the data & parity we have to read to
890 * recover from the failure */
891
892 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
893 * buf if not needed */
894 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
895 bufP = rdBuf;
896 if (rf_degDagDebug)
897 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
898 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
899 }
900 /* now walk through the pdas one last time and assign buffer pointers
901 * (ugh!). Again, ignore the parity. also, count nodes to find out
902 * how many bufs need to be xored together */
903 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
904 * case, 1 is for failed data */
905 if (new_asm_h[0]) {
906 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
907 pda->bufPtr = bufP;
908 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
909 }
910 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
911 }
912 if (new_asm_h[1]) {
913 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
914 pda->bufPtr = bufP;
915 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
916 }
917 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
918 }
919 if (rpBufPtr)
920 *rpBufPtr = bufP; /* the rest of the buffer is for
921 * parity */
922
923 /* the last step is to figure out how many more distinct buffers need
924 * to get xor'd to produce the missing unit. there's one for each
925 * user-data read node that overlaps the portion of the failed unit
926 * being accessed */
927
928 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
929 if (pda == failedPDA) {
930 i--;
931 foundit = 1;
932 continue;
933 }
934 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
935 overlappingPDAs[i] = 1;
936 (*nXorBufs)++;
937 }
938 }
939 if (!foundit) {
940 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
941 RF_ASSERT(0);
942 }
943 if (rf_degDagDebug) {
944 if (new_asm_h[0]) {
945 printf("First asm:\n");
946 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
947 }
948 if (new_asm_h[1]) {
949 printf("Second asm:\n");
950 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
951 }
952 }
953 }
954
955
956 /* adjusts the offset and number of sectors in the destination pda so that
957 * it covers at most the region of the SU covered by the source PDA. This
958 * is exclusively a restriction: the number of sectors indicated by the
959 * target PDA can only shrink.
960 *
961 * For example: s = sectors within SU indicated by source PDA
962 * d = sectors within SU indicated by dest PDA
963 * r = results, stored in dest PDA
964 *
965 * |--------------- one stripe unit ---------------------|
966 * | sssssssssssssssssssssssssssssssss |
967 * | ddddddddddddddddddddddddddddddddddddddddddddd |
968 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
969 *
970 * Another example:
971 *
972 * |--------------- one stripe unit ---------------------|
973 * | sssssssssssssssssssssssssssssssss |
974 * | ddddddddddddddddddddddd |
975 * | rrrrrrrrrrrrrrrr |
976 *
977 */
978 void
979 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
980 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
981 {
982 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
983 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
984 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
985 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
986 * stay within SU */
987 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
988 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
989
990 dest->startSector = subAddr + RF_MAX(soffs, doffs);
991 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
992
993 if (dobuffer)
994 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
995 if (doraidaddr) {
996 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
997 rf_StripeUnitOffset(layoutPtr, dest->startSector);
998 }
999 }
1000
1001 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1002
1003 /*
1004 * Want the highest of these primes to be the largest one
1005 * less than the max expected number of columns (won't hurt
1006 * to be too small or too large, but won't be optimal, either)
1007 * --jimz
1008 */
1009 #define NLOWPRIMES 8
1010 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1011 /*****************************************************************************
1012 * compute the workload shift factor. (chained declustering)
1013 *
1014 * return nonzero if access should shift to secondary, otherwise,
1015 * access is to primary
1016 *****************************************************************************/
1017 int
1018 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1019 {
1020 /*
1021 * variables:
1022 * d = column of disk containing primary
1023 * f = column of failed disk
1024 * n = number of disks in array
1025 * sd = "shift distance" (number of columns that d is to the right of f)
1026 * v = numerator of redirection ratio
1027 * k = denominator of redirection ratio
1028 */
1029 RF_RowCol_t d, f, sd, n;
1030 int k, v, ret, i;
1031
1032 n = raidPtr->numCol;
1033
1034 /* assign column of primary copy to d */
1035 d = pda->col;
1036
1037 /* assign column of dead disk to f */
1038 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1039
1040 RF_ASSERT(f < n);
1041 RF_ASSERT(f != d);
1042
1043 sd = (f > d) ? (n + d - f) : (d - f);
1044 RF_ASSERT(sd < n);
1045
1046 /*
1047 * v of every k accesses should be redirected
1048 *
1049 * v/k := (n-1-sd)/(n-1)
1050 */
1051 v = (n - 1 - sd);
1052 k = (n - 1);
1053
1054 #if 1
1055 /*
1056 * XXX
1057 * Is this worth it?
1058 *
1059 * Now reduce the fraction, by repeatedly factoring
1060 * out primes (just like they teach in elementary school!)
1061 */
1062 for (i = 0; i < NLOWPRIMES; i++) {
1063 if (lowprimes[i] > v)
1064 break;
1065 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1066 v /= lowprimes[i];
1067 k /= lowprimes[i];
1068 }
1069 }
1070 #endif
1071
1072 raidPtr->hist_diskreq[d]++;
1073 if (raidPtr->hist_diskreq[d] > v) {
1074 ret = 0; /* do not redirect */
1075 } else {
1076 ret = 1; /* redirect */
1077 }
1078
1079 #if 0
1080 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1081 raidPtr->hist_diskreq[d]);
1082 #endif
1083
1084 if (raidPtr->hist_diskreq[d] >= k) {
1085 /* reset counter */
1086 raidPtr->hist_diskreq[d] = 0;
1087 }
1088 return (ret);
1089 }
1090 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1091
1092 /*
1093 * Disk selection routines
1094 */
1095
1096 /*
1097 * Selects the disk with the shortest queue from a mirror pair.
1098 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1099 * disk are counted as members of the "queue"
1100 */
1101 void
1102 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1103 {
1104 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1105 RF_RowCol_t colData, colMirror;
1106 int dataQueueLength, mirrorQueueLength, usemirror;
1107 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1108 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1109 RF_PhysDiskAddr_t *tmp_pda;
1110 RF_RaidDisk_t *disks = raidPtr->Disks;
1111 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1112
1113 /* return the [row col] of the disk with the shortest queue */
1114 colData = data_pda->col;
1115 colMirror = mirror_pda->col;
1116 dataQueue = &(dqs[colData]);
1117 mirrorQueue = &(dqs[colMirror]);
1118
1119 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1120 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1121 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1122 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1123 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1124 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1125 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1126 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1127 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1128 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1129 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1130 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1131
1132 usemirror = 0;
1133 if (RF_DEAD_DISK(disks[colMirror].status)) {
1134 usemirror = 0;
1135 } else
1136 if (RF_DEAD_DISK(disks[colData].status)) {
1137 usemirror = 1;
1138 } else
1139 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1140 /* Trust only the main disk */
1141 usemirror = 0;
1142 } else
1143 if (dataQueueLength < mirrorQueueLength) {
1144 usemirror = 0;
1145 } else
1146 if (mirrorQueueLength < dataQueueLength) {
1147 usemirror = 1;
1148 } else {
1149 /* queues are equal length. attempt
1150 * cleverness. */
1151 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1152 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1153 usemirror = 0;
1154 } else {
1155 usemirror = 1;
1156 }
1157 }
1158
1159 if (usemirror) {
1160 /* use mirror (parity) disk, swap params 0 & 4 */
1161 tmp_pda = data_pda;
1162 node->params[0].p = mirror_pda;
1163 node->params[4].p = tmp_pda;
1164 } else {
1165 /* use data disk, leave param 0 unchanged */
1166 }
1167 /* printf("dataQueueLength %d, mirrorQueueLength
1168 * %d\n",dataQueueLength, mirrorQueueLength); */
1169 }
1170 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1171 /*
1172 * Do simple partitioning. This assumes that
1173 * the data and parity disks are laid out identically.
1174 */
1175 void
1176 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1177 {
1178 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1179 RF_RowCol_t colData, colMirror;
1180 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1181 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1182 RF_PhysDiskAddr_t *tmp_pda;
1183 RF_RaidDisk_t *disks = raidPtr->Disks;
1184 int usemirror;
1185
1186 /* return the [row col] of the disk with the shortest queue */
1187 colData = data_pda->col;
1188 colMirror = mirror_pda->col;
1189
1190 usemirror = 0;
1191 if (RF_DEAD_DISK(disks[colMirror].status)) {
1192 usemirror = 0;
1193 } else
1194 if (RF_DEAD_DISK(disks[colData].status)) {
1195 usemirror = 1;
1196 } else
1197 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1198 /* Trust only the main disk */
1199 usemirror = 0;
1200 } else
1201 if (data_pda->startSector <
1202 (disks[colData].numBlocks / 2)) {
1203 usemirror = 0;
1204 } else {
1205 usemirror = 1;
1206 }
1207
1208 if (usemirror) {
1209 /* use mirror (parity) disk, swap params 0 & 4 */
1210 tmp_pda = data_pda;
1211 node->params[0].p = mirror_pda;
1212 node->params[4].p = tmp_pda;
1213 } else {
1214 /* use data disk, leave param 0 unchanged */
1215 }
1216 }
1217 #endif
1218