rf_dagutils.c revision 1.25 1 /* $NetBSD: rf_dagutils.c,v 1.25 2004/02/27 02:55:17 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.25 2004/02/27 02:55:17 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_DAGH_INC 16
173 #define RF_DAGH_INITIAL 32
174
175 static struct pool rf_daglist_pool;
176 #define RF_MAX_FREE_DAGLIST 128
177 #define RF_DAGLIST_INITIAL 32
178
179
180
181 static void rf_ShutdownDAGs(void *);
182 static void
183 rf_ShutdownDAGs(void *ignored)
184 {
185 pool_destroy(&rf_dagh_pool);
186 }
187
188 int
189 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
190 {
191 int rc;
192
193 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
194 "rf_dagh_pl", NULL);
195 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
196 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
197
198 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
199 "rf_daglist_pl", NULL);
200 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
201 pool_prime(&rf_daglist_pool, RF_DAGLIST_INITIAL);
202
203 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
204 if (rc) {
205 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
206 rf_ShutdownDAGs(NULL);
207 return (rc);
208 }
209 return (0);
210 }
211
212 RF_DagHeader_t *
213 rf_AllocDAGHeader()
214 {
215 RF_DagHeader_t *dh;
216
217 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
218 if (dh) {
219 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
220 }
221 return (dh);
222 }
223
224 void
225 rf_FreeDAGHeader(RF_DagHeader_t * dh)
226 {
227 pool_put(&rf_dagh_pool, dh);
228 }
229
230 RF_DagList_t *
231 rf_AllocDAGList()
232 {
233 RF_DagList_t *dagList;
234
235 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
236 memset(dagList, 0, sizeof(RF_DagList_t));
237
238 return (dagList);
239 }
240
241 void
242 rf_FreeDAGList(RF_DagList_t *dagList)
243 {
244 pool_put(&rf_daglist_pool, dagList);
245 }
246
247
248
249
250 /* allocates a buffer big enough to hold the data described by pda */
251 void *
252 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
253 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
254 {
255 char *p;
256
257 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
258 (char *), allocList);
259 return ((void *) p);
260 }
261 #if RF_DEBUG_VALIDATE_DAG
262 /******************************************************************************
263 *
264 * debug routines
265 *
266 *****************************************************************************/
267
268 char *
269 rf_NodeStatusString(RF_DagNode_t *node)
270 {
271 switch (node->status) {
272 case rf_wait:return ("wait");
273 case rf_fired:
274 return ("fired");
275 case rf_good:
276 return ("good");
277 case rf_bad:
278 return ("bad");
279 default:
280 return ("?");
281 }
282 }
283
284 void
285 rf_PrintNodeInfoString(RF_DagNode_t *node)
286 {
287 RF_PhysDiskAddr_t *pda;
288 int (*df) (RF_DagNode_t *) = node->doFunc;
289 int i, lk, unlk;
290 void *bufPtr;
291
292 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
293 || (df == rf_DiskReadMirrorIdleFunc)
294 || (df == rf_DiskReadMirrorPartitionFunc)) {
295 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
296 bufPtr = (void *) node->params[1].p;
297 lk = 0;
298 unlk = 0;
299 RF_ASSERT(!(lk && unlk));
300 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
301 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
302 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
303 return;
304 }
305 if (df == rf_DiskUnlockFunc) {
306 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
307 lk = 0;
308 unlk = 0;
309 RF_ASSERT(!(lk && unlk));
310 printf("c %d %s\n", pda->col,
311 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
312 return;
313 }
314 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
315 || (df == rf_RecoveryXorFunc)) {
316 printf("result buf 0x%lx\n", (long) node->results[0]);
317 for (i = 0; i < node->numParams - 1; i += 2) {
318 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
319 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
320 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
321 (long) bufPtr, pda->col,
322 (long) pda->startSector, (int) pda->numSector);
323 }
324 return;
325 }
326 #if RF_INCLUDE_PARITYLOGGING > 0
327 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
328 for (i = 0; i < node->numParams - 1; i += 2) {
329 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
330 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
331 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
332 pda->col, (long) pda->startSector,
333 (int) pda->numSector, (long) bufPtr);
334 }
335 return;
336 }
337 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
338
339 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
340 printf("\n");
341 return;
342 }
343 printf("?\n");
344 }
345 #ifdef DEBUG
346 static void
347 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
348 {
349 char *anttype;
350 int i;
351
352 node->visited = (unvisited) ? 0 : 1;
353 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
354 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
355 node->numSuccedents, node->numSuccFired, node->numSuccDone,
356 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
357 for (i = 0; i < node->numSuccedents; i++) {
358 printf("%d%s", node->succedents[i]->nodeNum,
359 ((i == node->numSuccedents - 1) ? "\0" : " "));
360 }
361 printf("} A{");
362 for (i = 0; i < node->numAntecedents; i++) {
363 switch (node->antType[i]) {
364 case rf_trueData:
365 anttype = "T";
366 break;
367 case rf_antiData:
368 anttype = "A";
369 break;
370 case rf_outputData:
371 anttype = "O";
372 break;
373 case rf_control:
374 anttype = "C";
375 break;
376 default:
377 anttype = "?";
378 break;
379 }
380 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
381 }
382 printf("}; ");
383 rf_PrintNodeInfoString(node);
384 for (i = 0; i < node->numSuccedents; i++) {
385 if (node->succedents[i]->visited == unvisited)
386 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
387 }
388 }
389
390 static void
391 rf_PrintDAG(RF_DagHeader_t *dag_h)
392 {
393 int unvisited, i;
394 char *status;
395
396 /* set dag status */
397 switch (dag_h->status) {
398 case rf_enable:
399 status = "enable";
400 break;
401 case rf_rollForward:
402 status = "rollForward";
403 break;
404 case rf_rollBackward:
405 status = "rollBackward";
406 break;
407 default:
408 status = "illegal!";
409 break;
410 }
411 /* find out if visited bits are currently set or clear */
412 unvisited = dag_h->succedents[0]->visited;
413
414 printf("DAG type: %s\n", dag_h->creator);
415 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
416 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
417 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
418 for (i = 0; i < dag_h->numSuccedents; i++) {
419 printf("%d%s", dag_h->succedents[i]->nodeNum,
420 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
421 }
422 printf("};\n");
423 for (i = 0; i < dag_h->numSuccedents; i++) {
424 if (dag_h->succedents[i]->visited == unvisited)
425 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
426 }
427 }
428 #endif
429 /* assigns node numbers */
430 int
431 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
432 {
433 int unvisited, i, nnum;
434 RF_DagNode_t *node;
435
436 nnum = 0;
437 unvisited = dag_h->succedents[0]->visited;
438
439 dag_h->nodeNum = nnum++;
440 for (i = 0; i < dag_h->numSuccedents; i++) {
441 node = dag_h->succedents[i];
442 if (node->visited == unvisited) {
443 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
444 }
445 }
446 return (nnum);
447 }
448
449 int
450 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
451 {
452 int i;
453
454 node->visited = (unvisited) ? 0 : 1;
455
456 node->nodeNum = num++;
457 for (i = 0; i < node->numSuccedents; i++) {
458 if (node->succedents[i]->visited == unvisited) {
459 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
460 }
461 }
462 return (num);
463 }
464 /* set the header pointers in each node to "newptr" */
465 void
466 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
467 {
468 int i;
469 for (i = 0; i < dag_h->numSuccedents; i++)
470 if (dag_h->succedents[i]->dagHdr != newptr)
471 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
472 }
473
474 void
475 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
476 {
477 int i;
478 node->dagHdr = newptr;
479 for (i = 0; i < node->numSuccedents; i++)
480 if (node->succedents[i]->dagHdr != newptr)
481 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
482 }
483
484
485 void
486 rf_PrintDAGList(RF_DagHeader_t * dag_h)
487 {
488 int i = 0;
489
490 for (; dag_h; dag_h = dag_h->next) {
491 rf_AssignNodeNums(dag_h);
492 printf("\n\nDAG %d IN LIST:\n", i++);
493 rf_PrintDAG(dag_h);
494 }
495 }
496
497 static int
498 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
499 RF_DagNode_t **nodes, int unvisited)
500 {
501 int i, retcode = 0;
502
503 /* construct an array of node pointers indexed by node num */
504 node->visited = (unvisited) ? 0 : 1;
505 nodes[node->nodeNum] = node;
506
507 if (node->next != NULL) {
508 printf("INVALID DAG: next pointer in node is not NULL\n");
509 retcode = 1;
510 }
511 if (node->status != rf_wait) {
512 printf("INVALID DAG: Node status is not wait\n");
513 retcode = 1;
514 }
515 if (node->numAntDone != 0) {
516 printf("INVALID DAG: numAntDone is not zero\n");
517 retcode = 1;
518 }
519 if (node->doFunc == rf_TerminateFunc) {
520 if (node->numSuccedents != 0) {
521 printf("INVALID DAG: Terminator node has succedents\n");
522 retcode = 1;
523 }
524 } else {
525 if (node->numSuccedents == 0) {
526 printf("INVALID DAG: Non-terminator node has no succedents\n");
527 retcode = 1;
528 }
529 }
530 for (i = 0; i < node->numSuccedents; i++) {
531 if (!node->succedents[i]) {
532 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
533 retcode = 1;
534 }
535 scount[node->succedents[i]->nodeNum]++;
536 }
537 for (i = 0; i < node->numAntecedents; i++) {
538 if (!node->antecedents[i]) {
539 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
540 retcode = 1;
541 }
542 acount[node->antecedents[i]->nodeNum]++;
543 }
544 for (i = 0; i < node->numSuccedents; i++) {
545 if (node->succedents[i]->visited == unvisited) {
546 if (rf_ValidateBranch(node->succedents[i], scount,
547 acount, nodes, unvisited)) {
548 retcode = 1;
549 }
550 }
551 }
552 return (retcode);
553 }
554
555 static void
556 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
557 {
558 int i;
559
560 RF_ASSERT(node->visited == unvisited);
561 for (i = 0; i < node->numSuccedents; i++) {
562 if (node->succedents[i] == NULL) {
563 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
564 RF_ASSERT(0);
565 }
566 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
567 }
568 }
569 /* NOTE: never call this on a big dag, because it is exponential
570 * in execution time
571 */
572 static void
573 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
574 {
575 int i, unvisited;
576
577 unvisited = dag->succedents[0]->visited;
578
579 for (i = 0; i < dag->numSuccedents; i++) {
580 if (dag->succedents[i] == NULL) {
581 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
582 RF_ASSERT(0);
583 }
584 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
585 }
586 }
587 /* validate a DAG. _at entry_ verify that:
588 * -- numNodesCompleted is zero
589 * -- node queue is null
590 * -- dag status is rf_enable
591 * -- next pointer is null on every node
592 * -- all nodes have status wait
593 * -- numAntDone is zero in all nodes
594 * -- terminator node has zero successors
595 * -- no other node besides terminator has zero successors
596 * -- no successor or antecedent pointer in a node is NULL
597 * -- number of times that each node appears as a successor of another node
598 * is equal to the antecedent count on that node
599 * -- number of times that each node appears as an antecedent of another node
600 * is equal to the succedent count on that node
601 * -- what else?
602 */
603 int
604 rf_ValidateDAG(RF_DagHeader_t *dag_h)
605 {
606 int i, nodecount;
607 int *scount, *acount;/* per-node successor and antecedent counts */
608 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
609 int retcode = 0;
610 int unvisited;
611 int commitNodeCount = 0;
612
613 if (rf_validateVisitedDebug)
614 rf_ValidateVisitedBits(dag_h);
615
616 if (dag_h->numNodesCompleted != 0) {
617 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
618 retcode = 1;
619 goto validate_dag_bad;
620 }
621 if (dag_h->status != rf_enable) {
622 printf("INVALID DAG: not enabled\n");
623 retcode = 1;
624 goto validate_dag_bad;
625 }
626 if (dag_h->numCommits != 0) {
627 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
628 retcode = 1;
629 goto validate_dag_bad;
630 }
631 if (dag_h->numSuccedents != 1) {
632 /* currently, all dags must have only one succedent */
633 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
634 retcode = 1;
635 goto validate_dag_bad;
636 }
637 nodecount = rf_AssignNodeNums(dag_h);
638
639 unvisited = dag_h->succedents[0]->visited;
640
641 RF_Malloc(scount, nodecount * sizeof(int), (int *));
642 RF_Malloc(acount, nodecount * sizeof(int), (int *));
643 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
644 (RF_DagNode_t **));
645 for (i = 0; i < dag_h->numSuccedents; i++) {
646 if ((dag_h->succedents[i]->visited == unvisited)
647 && rf_ValidateBranch(dag_h->succedents[i], scount,
648 acount, nodes, unvisited)) {
649 retcode = 1;
650 }
651 }
652 /* start at 1 to skip the header node */
653 for (i = 1; i < nodecount; i++) {
654 if (nodes[i]->commitNode)
655 commitNodeCount++;
656 if (nodes[i]->doFunc == NULL) {
657 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
658 retcode = 1;
659 goto validate_dag_out;
660 }
661 if (nodes[i]->undoFunc == NULL) {
662 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
663 retcode = 1;
664 goto validate_dag_out;
665 }
666 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
667 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
668 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
669 retcode = 1;
670 goto validate_dag_out;
671 }
672 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
673 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
674 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
675 retcode = 1;
676 goto validate_dag_out;
677 }
678 }
679
680 if (dag_h->numCommitNodes != commitNodeCount) {
681 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
682 dag_h->numCommitNodes, commitNodeCount);
683 retcode = 1;
684 goto validate_dag_out;
685 }
686 validate_dag_out:
687 RF_Free(scount, nodecount * sizeof(int));
688 RF_Free(acount, nodecount * sizeof(int));
689 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
690 if (retcode)
691 rf_PrintDAGList(dag_h);
692
693 if (rf_validateVisitedDebug)
694 rf_ValidateVisitedBits(dag_h);
695
696 return (retcode);
697
698 validate_dag_bad:
699 rf_PrintDAGList(dag_h);
700 return (retcode);
701 }
702
703 #endif /* RF_DEBUG_VALIDATE_DAG */
704
705 /******************************************************************************
706 *
707 * misc construction routines
708 *
709 *****************************************************************************/
710
711 void
712 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
713 {
714 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
715 int fcol = raidPtr->reconControl->fcol;
716 int scol = raidPtr->reconControl->spareCol;
717 RF_PhysDiskAddr_t *pda;
718
719 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
720 for (pda = asmap->physInfo; pda; pda = pda->next) {
721 if (pda->col == fcol) {
722 if (rf_dagDebug) {
723 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
724 pda->startSector)) {
725 RF_PANIC();
726 }
727 }
728 /* printf("Remapped data for large write\n"); */
729 if (ds) {
730 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
731 &pda->col, &pda->startSector, RF_REMAP);
732 } else {
733 pda->col = scol;
734 }
735 }
736 }
737 for (pda = asmap->parityInfo; pda; pda = pda->next) {
738 if (pda->col == fcol) {
739 if (rf_dagDebug) {
740 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
741 RF_PANIC();
742 }
743 }
744 }
745 if (ds) {
746 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
747 } else {
748 pda->col = scol;
749 }
750 }
751 }
752
753
754 /* this routine allocates read buffers and generates stripe maps for the
755 * regions of the array from the start of the stripe to the start of the
756 * access, and from the end of the access to the end of the stripe. It also
757 * computes and returns the number of DAG nodes needed to read all this data.
758 * Note that this routine does the wrong thing if the access is fully
759 * contained within one stripe unit, so we RF_ASSERT against this case at the
760 * start.
761 *
762 * layoutPtr - in: layout information
763 * asmap - in: access stripe map
764 * dag_h - in: header of the dag to create
765 * new_asm_h - in: ptr to array of 2 headers. to be filled in
766 * nRodNodes - out: num nodes to be generated to read unaccessed data
767 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
768 */
769 void
770 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
771 RF_RaidLayout_t *layoutPtr,
772 RF_AccessStripeMap_t *asmap,
773 RF_DagHeader_t *dag_h,
774 RF_AccessStripeMapHeader_t **new_asm_h,
775 int *nRodNodes,
776 char **sosBuffer, char **eosBuffer,
777 RF_AllocListElem_t *allocList)
778 {
779 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
780 RF_SectorNum_t sosNumSector, eosNumSector;
781
782 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
783 /* generate an access map for the region of the array from start of
784 * stripe to start of access */
785 new_asm_h[0] = new_asm_h[1] = NULL;
786 *nRodNodes = 0;
787 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
788 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
789 sosNumSector = asmap->raidAddress - sosRaidAddress;
790 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
791 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
792 new_asm_h[0]->next = dag_h->asmList;
793 dag_h->asmList = new_asm_h[0];
794 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
795
796 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
797 /* we're totally within one stripe here */
798 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
799 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
800 }
801 /* generate an access map for the region of the array from end of
802 * access to end of stripe */
803 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
804 eosRaidAddress = asmap->endRaidAddress;
805 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
806 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
807 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
808 new_asm_h[1]->next = dag_h->asmList;
809 dag_h->asmList = new_asm_h[1];
810 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
811
812 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
813 /* we're totally within one stripe here */
814 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
815 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
816 }
817 }
818
819
820
821 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
822 int
823 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
824 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
825 {
826 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
827 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
828 /* use -1 to be sure we stay within SU */
829 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
830 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
831 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
832 }
833
834
835 /* GenerateFailedAccessASMs
836 *
837 * this routine figures out what portion of the stripe needs to be read
838 * to effect the degraded read or write operation. It's primary function
839 * is to identify everything required to recover the data, and then
840 * eliminate anything that is already being accessed by the user.
841 *
842 * The main result is two new ASMs, one for the region from the start of the
843 * stripe to the start of the access, and one for the region from the end of
844 * the access to the end of the stripe. These ASMs describe everything that
845 * needs to be read to effect the degraded access. Other results are:
846 * nXorBufs -- the total number of buffers that need to be XORed together to
847 * recover the lost data,
848 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
849 * at entry, not allocated.
850 * overlappingPDAs --
851 * describes which of the non-failed PDAs in the user access
852 * overlap data that needs to be read to effect recovery.
853 * overlappingPDAs[i]==1 if and only if, neglecting the failed
854 * PDA, the ith pda in the input asm overlaps data that needs
855 * to be read for recovery.
856 */
857 /* in: asm - ASM for the actual access, one stripe only */
858 /* in: failedPDA - which component of the access has failed */
859 /* in: dag_h - header of the DAG we're going to create */
860 /* out: new_asm_h - the two new ASMs */
861 /* out: nXorBufs - the total number of xor bufs required */
862 /* out: rpBufPtr - a buffer for the parity read */
863 void
864 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
865 RF_PhysDiskAddr_t *failedPDA,
866 RF_DagHeader_t *dag_h,
867 RF_AccessStripeMapHeader_t **new_asm_h,
868 int *nXorBufs, char **rpBufPtr,
869 char *overlappingPDAs,
870 RF_AllocListElem_t *allocList)
871 {
872 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
873
874 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
875 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
876
877 RF_SectorCount_t numSect[2], numParitySect;
878 RF_PhysDiskAddr_t *pda;
879 char *rdBuf, *bufP;
880 int foundit, i;
881
882 bufP = NULL;
883 foundit = 0;
884 /* first compute the following raid addresses: start of stripe,
885 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
886 * MAX(end of access, end of failed SU), (eosStartAddr) end of
887 * stripe (i.e. start of next stripe) (eosAddr) */
888 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
889 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
890 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
891 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
892
893 /* now generate access stripe maps for each of the above regions of
894 * the stripe. Use a dummy (NULL) buf ptr for now */
895
896 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
897 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
898
899 /* walk through the PDAs and range-restrict each SU to the region of
900 * the SU touched on the failed PDA. also compute total data buffer
901 * space requirements in this step. Ignore the parity for now. */
902
903 numSect[0] = numSect[1] = 0;
904 if (new_asm_h[0]) {
905 new_asm_h[0]->next = dag_h->asmList;
906 dag_h->asmList = new_asm_h[0];
907 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
908 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
909 numSect[0] += pda->numSector;
910 }
911 }
912 if (new_asm_h[1]) {
913 new_asm_h[1]->next = dag_h->asmList;
914 dag_h->asmList = new_asm_h[1];
915 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
916 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
917 numSect[1] += pda->numSector;
918 }
919 }
920 numParitySect = failedPDA->numSector;
921
922 /* allocate buffer space for the data & parity we have to read to
923 * recover from the failure */
924
925 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
926 * buf if not needed */
927 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
928 bufP = rdBuf;
929 if (rf_degDagDebug)
930 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
931 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
932 }
933 /* now walk through the pdas one last time and assign buffer pointers
934 * (ugh!). Again, ignore the parity. also, count nodes to find out
935 * how many bufs need to be xored together */
936 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
937 * case, 1 is for failed data */
938 if (new_asm_h[0]) {
939 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
940 pda->bufPtr = bufP;
941 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
942 }
943 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
944 }
945 if (new_asm_h[1]) {
946 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
947 pda->bufPtr = bufP;
948 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
949 }
950 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
951 }
952 if (rpBufPtr)
953 *rpBufPtr = bufP; /* the rest of the buffer is for
954 * parity */
955
956 /* the last step is to figure out how many more distinct buffers need
957 * to get xor'd to produce the missing unit. there's one for each
958 * user-data read node that overlaps the portion of the failed unit
959 * being accessed */
960
961 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
962 if (pda == failedPDA) {
963 i--;
964 foundit = 1;
965 continue;
966 }
967 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
968 overlappingPDAs[i] = 1;
969 (*nXorBufs)++;
970 }
971 }
972 if (!foundit) {
973 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
974 RF_ASSERT(0);
975 }
976 if (rf_degDagDebug) {
977 if (new_asm_h[0]) {
978 printf("First asm:\n");
979 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
980 }
981 if (new_asm_h[1]) {
982 printf("Second asm:\n");
983 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
984 }
985 }
986 }
987
988
989 /* adjusts the offset and number of sectors in the destination pda so that
990 * it covers at most the region of the SU covered by the source PDA. This
991 * is exclusively a restriction: the number of sectors indicated by the
992 * target PDA can only shrink.
993 *
994 * For example: s = sectors within SU indicated by source PDA
995 * d = sectors within SU indicated by dest PDA
996 * r = results, stored in dest PDA
997 *
998 * |--------------- one stripe unit ---------------------|
999 * | sssssssssssssssssssssssssssssssss |
1000 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1001 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1002 *
1003 * Another example:
1004 *
1005 * |--------------- one stripe unit ---------------------|
1006 * | sssssssssssssssssssssssssssssssss |
1007 * | ddddddddddddddddddddddd |
1008 * | rrrrrrrrrrrrrrrr |
1009 *
1010 */
1011 void
1012 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1013 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1014 {
1015 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1016 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1017 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1018 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1019 * stay within SU */
1020 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1021 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1022
1023 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1024 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1025
1026 if (dobuffer)
1027 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1028 if (doraidaddr) {
1029 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1030 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1031 }
1032 }
1033
1034 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1035
1036 /*
1037 * Want the highest of these primes to be the largest one
1038 * less than the max expected number of columns (won't hurt
1039 * to be too small or too large, but won't be optimal, either)
1040 * --jimz
1041 */
1042 #define NLOWPRIMES 8
1043 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1044 /*****************************************************************************
1045 * compute the workload shift factor. (chained declustering)
1046 *
1047 * return nonzero if access should shift to secondary, otherwise,
1048 * access is to primary
1049 *****************************************************************************/
1050 int
1051 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1052 {
1053 /*
1054 * variables:
1055 * d = column of disk containing primary
1056 * f = column of failed disk
1057 * n = number of disks in array
1058 * sd = "shift distance" (number of columns that d is to the right of f)
1059 * v = numerator of redirection ratio
1060 * k = denominator of redirection ratio
1061 */
1062 RF_RowCol_t d, f, sd, n;
1063 int k, v, ret, i;
1064
1065 n = raidPtr->numCol;
1066
1067 /* assign column of primary copy to d */
1068 d = pda->col;
1069
1070 /* assign column of dead disk to f */
1071 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1072
1073 RF_ASSERT(f < n);
1074 RF_ASSERT(f != d);
1075
1076 sd = (f > d) ? (n + d - f) : (d - f);
1077 RF_ASSERT(sd < n);
1078
1079 /*
1080 * v of every k accesses should be redirected
1081 *
1082 * v/k := (n-1-sd)/(n-1)
1083 */
1084 v = (n - 1 - sd);
1085 k = (n - 1);
1086
1087 #if 1
1088 /*
1089 * XXX
1090 * Is this worth it?
1091 *
1092 * Now reduce the fraction, by repeatedly factoring
1093 * out primes (just like they teach in elementary school!)
1094 */
1095 for (i = 0; i < NLOWPRIMES; i++) {
1096 if (lowprimes[i] > v)
1097 break;
1098 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1099 v /= lowprimes[i];
1100 k /= lowprimes[i];
1101 }
1102 }
1103 #endif
1104
1105 raidPtr->hist_diskreq[d]++;
1106 if (raidPtr->hist_diskreq[d] > v) {
1107 ret = 0; /* do not redirect */
1108 } else {
1109 ret = 1; /* redirect */
1110 }
1111
1112 #if 0
1113 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1114 raidPtr->hist_diskreq[d]);
1115 #endif
1116
1117 if (raidPtr->hist_diskreq[d] >= k) {
1118 /* reset counter */
1119 raidPtr->hist_diskreq[d] = 0;
1120 }
1121 return (ret);
1122 }
1123 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1124
1125 /*
1126 * Disk selection routines
1127 */
1128
1129 /*
1130 * Selects the disk with the shortest queue from a mirror pair.
1131 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1132 * disk are counted as members of the "queue"
1133 */
1134 void
1135 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1136 {
1137 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1138 RF_RowCol_t colData, colMirror;
1139 int dataQueueLength, mirrorQueueLength, usemirror;
1140 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1141 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1142 RF_PhysDiskAddr_t *tmp_pda;
1143 RF_RaidDisk_t *disks = raidPtr->Disks;
1144 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1145
1146 /* return the [row col] of the disk with the shortest queue */
1147 colData = data_pda->col;
1148 colMirror = mirror_pda->col;
1149 dataQueue = &(dqs[colData]);
1150 mirrorQueue = &(dqs[colMirror]);
1151
1152 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1153 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1154 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1155 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1156 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1157 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1158 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1159 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1160 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1161 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1162 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1163 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1164
1165 usemirror = 0;
1166 if (RF_DEAD_DISK(disks[colMirror].status)) {
1167 usemirror = 0;
1168 } else
1169 if (RF_DEAD_DISK(disks[colData].status)) {
1170 usemirror = 1;
1171 } else
1172 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1173 /* Trust only the main disk */
1174 usemirror = 0;
1175 } else
1176 if (dataQueueLength < mirrorQueueLength) {
1177 usemirror = 0;
1178 } else
1179 if (mirrorQueueLength < dataQueueLength) {
1180 usemirror = 1;
1181 } else {
1182 /* queues are equal length. attempt
1183 * cleverness. */
1184 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1185 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1186 usemirror = 0;
1187 } else {
1188 usemirror = 1;
1189 }
1190 }
1191
1192 if (usemirror) {
1193 /* use mirror (parity) disk, swap params 0 & 4 */
1194 tmp_pda = data_pda;
1195 node->params[0].p = mirror_pda;
1196 node->params[4].p = tmp_pda;
1197 } else {
1198 /* use data disk, leave param 0 unchanged */
1199 }
1200 /* printf("dataQueueLength %d, mirrorQueueLength
1201 * %d\n",dataQueueLength, mirrorQueueLength); */
1202 }
1203 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1204 /*
1205 * Do simple partitioning. This assumes that
1206 * the data and parity disks are laid out identically.
1207 */
1208 void
1209 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1210 {
1211 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1212 RF_RowCol_t colData, colMirror;
1213 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1214 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1215 RF_PhysDiskAddr_t *tmp_pda;
1216 RF_RaidDisk_t *disks = raidPtr->Disks;
1217 int usemirror;
1218
1219 /* return the [row col] of the disk with the shortest queue */
1220 colData = data_pda->col;
1221 colMirror = mirror_pda->col;
1222
1223 usemirror = 0;
1224 if (RF_DEAD_DISK(disks[colMirror].status)) {
1225 usemirror = 0;
1226 } else
1227 if (RF_DEAD_DISK(disks[colData].status)) {
1228 usemirror = 1;
1229 } else
1230 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1231 /* Trust only the main disk */
1232 usemirror = 0;
1233 } else
1234 if (data_pda->startSector <
1235 (disks[colData].numBlocks / 2)) {
1236 usemirror = 0;
1237 } else {
1238 usemirror = 1;
1239 }
1240
1241 if (usemirror) {
1242 /* use mirror (parity) disk, swap params 0 & 4 */
1243 tmp_pda = data_pda;
1244 node->params[0].p = mirror_pda;
1245 node->params[4].p = tmp_pda;
1246 } else {
1247 /* use data disk, leave param 0 unchanged */
1248 }
1249 }
1250 #endif
1251