rf_dagutils.c revision 1.26 1 /* $NetBSD: rf_dagutils.c,v 1.26 2004/02/27 03:18:02 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.26 2004/02/27 03:18:02 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_DAGH_INC 16
173 #define RF_DAGH_INITIAL 32
174
175 static struct pool rf_daglist_pool;
176 #define RF_MAX_FREE_DAGLIST 128
177 #define RF_DAGLIST_INITIAL 32
178
179
180
181 static void rf_ShutdownDAGs(void *);
182 static void
183 rf_ShutdownDAGs(void *ignored)
184 {
185 pool_destroy(&rf_dagh_pool);
186 pool_destroy(&rf_daglist_pool);
187 }
188
189 int
190 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
191 {
192 int rc;
193
194 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
195 "rf_dagh_pl", NULL);
196 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
197 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
198
199 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
200 "rf_daglist_pl", NULL);
201 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
202 pool_prime(&rf_daglist_pool, RF_DAGLIST_INITIAL);
203
204 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
205 if (rc) {
206 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
207 rf_ShutdownDAGs(NULL);
208 return (rc);
209 }
210 return (0);
211 }
212
213 RF_DagHeader_t *
214 rf_AllocDAGHeader()
215 {
216 RF_DagHeader_t *dh;
217
218 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
219 if (dh) {
220 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
221 }
222 return (dh);
223 }
224
225 void
226 rf_FreeDAGHeader(RF_DagHeader_t * dh)
227 {
228 pool_put(&rf_dagh_pool, dh);
229 }
230
231 RF_DagList_t *
232 rf_AllocDAGList()
233 {
234 RF_DagList_t *dagList;
235
236 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
237 memset(dagList, 0, sizeof(RF_DagList_t));
238
239 return (dagList);
240 }
241
242 void
243 rf_FreeDAGList(RF_DagList_t *dagList)
244 {
245 pool_put(&rf_daglist_pool, dagList);
246 }
247
248
249
250
251 /* allocates a buffer big enough to hold the data described by pda */
252 void *
253 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
254 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
255 {
256 char *p;
257
258 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
259 (char *), allocList);
260 return ((void *) p);
261 }
262 #if RF_DEBUG_VALIDATE_DAG
263 /******************************************************************************
264 *
265 * debug routines
266 *
267 *****************************************************************************/
268
269 char *
270 rf_NodeStatusString(RF_DagNode_t *node)
271 {
272 switch (node->status) {
273 case rf_wait:return ("wait");
274 case rf_fired:
275 return ("fired");
276 case rf_good:
277 return ("good");
278 case rf_bad:
279 return ("bad");
280 default:
281 return ("?");
282 }
283 }
284
285 void
286 rf_PrintNodeInfoString(RF_DagNode_t *node)
287 {
288 RF_PhysDiskAddr_t *pda;
289 int (*df) (RF_DagNode_t *) = node->doFunc;
290 int i, lk, unlk;
291 void *bufPtr;
292
293 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
294 || (df == rf_DiskReadMirrorIdleFunc)
295 || (df == rf_DiskReadMirrorPartitionFunc)) {
296 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
297 bufPtr = (void *) node->params[1].p;
298 lk = 0;
299 unlk = 0;
300 RF_ASSERT(!(lk && unlk));
301 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
302 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
303 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
304 return;
305 }
306 if (df == rf_DiskUnlockFunc) {
307 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
308 lk = 0;
309 unlk = 0;
310 RF_ASSERT(!(lk && unlk));
311 printf("c %d %s\n", pda->col,
312 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
313 return;
314 }
315 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
316 || (df == rf_RecoveryXorFunc)) {
317 printf("result buf 0x%lx\n", (long) node->results[0]);
318 for (i = 0; i < node->numParams - 1; i += 2) {
319 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
320 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
321 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
322 (long) bufPtr, pda->col,
323 (long) pda->startSector, (int) pda->numSector);
324 }
325 return;
326 }
327 #if RF_INCLUDE_PARITYLOGGING > 0
328 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
329 for (i = 0; i < node->numParams - 1; i += 2) {
330 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
331 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
332 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
333 pda->col, (long) pda->startSector,
334 (int) pda->numSector, (long) bufPtr);
335 }
336 return;
337 }
338 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
339
340 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
341 printf("\n");
342 return;
343 }
344 printf("?\n");
345 }
346 #ifdef DEBUG
347 static void
348 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
349 {
350 char *anttype;
351 int i;
352
353 node->visited = (unvisited) ? 0 : 1;
354 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
355 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
356 node->numSuccedents, node->numSuccFired, node->numSuccDone,
357 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
358 for (i = 0; i < node->numSuccedents; i++) {
359 printf("%d%s", node->succedents[i]->nodeNum,
360 ((i == node->numSuccedents - 1) ? "\0" : " "));
361 }
362 printf("} A{");
363 for (i = 0; i < node->numAntecedents; i++) {
364 switch (node->antType[i]) {
365 case rf_trueData:
366 anttype = "T";
367 break;
368 case rf_antiData:
369 anttype = "A";
370 break;
371 case rf_outputData:
372 anttype = "O";
373 break;
374 case rf_control:
375 anttype = "C";
376 break;
377 default:
378 anttype = "?";
379 break;
380 }
381 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
382 }
383 printf("}; ");
384 rf_PrintNodeInfoString(node);
385 for (i = 0; i < node->numSuccedents; i++) {
386 if (node->succedents[i]->visited == unvisited)
387 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
388 }
389 }
390
391 static void
392 rf_PrintDAG(RF_DagHeader_t *dag_h)
393 {
394 int unvisited, i;
395 char *status;
396
397 /* set dag status */
398 switch (dag_h->status) {
399 case rf_enable:
400 status = "enable";
401 break;
402 case rf_rollForward:
403 status = "rollForward";
404 break;
405 case rf_rollBackward:
406 status = "rollBackward";
407 break;
408 default:
409 status = "illegal!";
410 break;
411 }
412 /* find out if visited bits are currently set or clear */
413 unvisited = dag_h->succedents[0]->visited;
414
415 printf("DAG type: %s\n", dag_h->creator);
416 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
417 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
418 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
419 for (i = 0; i < dag_h->numSuccedents; i++) {
420 printf("%d%s", dag_h->succedents[i]->nodeNum,
421 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
422 }
423 printf("};\n");
424 for (i = 0; i < dag_h->numSuccedents; i++) {
425 if (dag_h->succedents[i]->visited == unvisited)
426 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
427 }
428 }
429 #endif
430 /* assigns node numbers */
431 int
432 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
433 {
434 int unvisited, i, nnum;
435 RF_DagNode_t *node;
436
437 nnum = 0;
438 unvisited = dag_h->succedents[0]->visited;
439
440 dag_h->nodeNum = nnum++;
441 for (i = 0; i < dag_h->numSuccedents; i++) {
442 node = dag_h->succedents[i];
443 if (node->visited == unvisited) {
444 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
445 }
446 }
447 return (nnum);
448 }
449
450 int
451 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
452 {
453 int i;
454
455 node->visited = (unvisited) ? 0 : 1;
456
457 node->nodeNum = num++;
458 for (i = 0; i < node->numSuccedents; i++) {
459 if (node->succedents[i]->visited == unvisited) {
460 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
461 }
462 }
463 return (num);
464 }
465 /* set the header pointers in each node to "newptr" */
466 void
467 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
468 {
469 int i;
470 for (i = 0; i < dag_h->numSuccedents; i++)
471 if (dag_h->succedents[i]->dagHdr != newptr)
472 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
473 }
474
475 void
476 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
477 {
478 int i;
479 node->dagHdr = newptr;
480 for (i = 0; i < node->numSuccedents; i++)
481 if (node->succedents[i]->dagHdr != newptr)
482 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
483 }
484
485
486 void
487 rf_PrintDAGList(RF_DagHeader_t * dag_h)
488 {
489 int i = 0;
490
491 for (; dag_h; dag_h = dag_h->next) {
492 rf_AssignNodeNums(dag_h);
493 printf("\n\nDAG %d IN LIST:\n", i++);
494 rf_PrintDAG(dag_h);
495 }
496 }
497
498 static int
499 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
500 RF_DagNode_t **nodes, int unvisited)
501 {
502 int i, retcode = 0;
503
504 /* construct an array of node pointers indexed by node num */
505 node->visited = (unvisited) ? 0 : 1;
506 nodes[node->nodeNum] = node;
507
508 if (node->next != NULL) {
509 printf("INVALID DAG: next pointer in node is not NULL\n");
510 retcode = 1;
511 }
512 if (node->status != rf_wait) {
513 printf("INVALID DAG: Node status is not wait\n");
514 retcode = 1;
515 }
516 if (node->numAntDone != 0) {
517 printf("INVALID DAG: numAntDone is not zero\n");
518 retcode = 1;
519 }
520 if (node->doFunc == rf_TerminateFunc) {
521 if (node->numSuccedents != 0) {
522 printf("INVALID DAG: Terminator node has succedents\n");
523 retcode = 1;
524 }
525 } else {
526 if (node->numSuccedents == 0) {
527 printf("INVALID DAG: Non-terminator node has no succedents\n");
528 retcode = 1;
529 }
530 }
531 for (i = 0; i < node->numSuccedents; i++) {
532 if (!node->succedents[i]) {
533 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
534 retcode = 1;
535 }
536 scount[node->succedents[i]->nodeNum]++;
537 }
538 for (i = 0; i < node->numAntecedents; i++) {
539 if (!node->antecedents[i]) {
540 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
541 retcode = 1;
542 }
543 acount[node->antecedents[i]->nodeNum]++;
544 }
545 for (i = 0; i < node->numSuccedents; i++) {
546 if (node->succedents[i]->visited == unvisited) {
547 if (rf_ValidateBranch(node->succedents[i], scount,
548 acount, nodes, unvisited)) {
549 retcode = 1;
550 }
551 }
552 }
553 return (retcode);
554 }
555
556 static void
557 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
558 {
559 int i;
560
561 RF_ASSERT(node->visited == unvisited);
562 for (i = 0; i < node->numSuccedents; i++) {
563 if (node->succedents[i] == NULL) {
564 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
565 RF_ASSERT(0);
566 }
567 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
568 }
569 }
570 /* NOTE: never call this on a big dag, because it is exponential
571 * in execution time
572 */
573 static void
574 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
575 {
576 int i, unvisited;
577
578 unvisited = dag->succedents[0]->visited;
579
580 for (i = 0; i < dag->numSuccedents; i++) {
581 if (dag->succedents[i] == NULL) {
582 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
583 RF_ASSERT(0);
584 }
585 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
586 }
587 }
588 /* validate a DAG. _at entry_ verify that:
589 * -- numNodesCompleted is zero
590 * -- node queue is null
591 * -- dag status is rf_enable
592 * -- next pointer is null on every node
593 * -- all nodes have status wait
594 * -- numAntDone is zero in all nodes
595 * -- terminator node has zero successors
596 * -- no other node besides terminator has zero successors
597 * -- no successor or antecedent pointer in a node is NULL
598 * -- number of times that each node appears as a successor of another node
599 * is equal to the antecedent count on that node
600 * -- number of times that each node appears as an antecedent of another node
601 * is equal to the succedent count on that node
602 * -- what else?
603 */
604 int
605 rf_ValidateDAG(RF_DagHeader_t *dag_h)
606 {
607 int i, nodecount;
608 int *scount, *acount;/* per-node successor and antecedent counts */
609 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
610 int retcode = 0;
611 int unvisited;
612 int commitNodeCount = 0;
613
614 if (rf_validateVisitedDebug)
615 rf_ValidateVisitedBits(dag_h);
616
617 if (dag_h->numNodesCompleted != 0) {
618 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
619 retcode = 1;
620 goto validate_dag_bad;
621 }
622 if (dag_h->status != rf_enable) {
623 printf("INVALID DAG: not enabled\n");
624 retcode = 1;
625 goto validate_dag_bad;
626 }
627 if (dag_h->numCommits != 0) {
628 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
629 retcode = 1;
630 goto validate_dag_bad;
631 }
632 if (dag_h->numSuccedents != 1) {
633 /* currently, all dags must have only one succedent */
634 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
635 retcode = 1;
636 goto validate_dag_bad;
637 }
638 nodecount = rf_AssignNodeNums(dag_h);
639
640 unvisited = dag_h->succedents[0]->visited;
641
642 RF_Malloc(scount, nodecount * sizeof(int), (int *));
643 RF_Malloc(acount, nodecount * sizeof(int), (int *));
644 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
645 (RF_DagNode_t **));
646 for (i = 0; i < dag_h->numSuccedents; i++) {
647 if ((dag_h->succedents[i]->visited == unvisited)
648 && rf_ValidateBranch(dag_h->succedents[i], scount,
649 acount, nodes, unvisited)) {
650 retcode = 1;
651 }
652 }
653 /* start at 1 to skip the header node */
654 for (i = 1; i < nodecount; i++) {
655 if (nodes[i]->commitNode)
656 commitNodeCount++;
657 if (nodes[i]->doFunc == NULL) {
658 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
659 retcode = 1;
660 goto validate_dag_out;
661 }
662 if (nodes[i]->undoFunc == NULL) {
663 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
664 retcode = 1;
665 goto validate_dag_out;
666 }
667 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
668 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
669 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
670 retcode = 1;
671 goto validate_dag_out;
672 }
673 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
674 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
675 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
676 retcode = 1;
677 goto validate_dag_out;
678 }
679 }
680
681 if (dag_h->numCommitNodes != commitNodeCount) {
682 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
683 dag_h->numCommitNodes, commitNodeCount);
684 retcode = 1;
685 goto validate_dag_out;
686 }
687 validate_dag_out:
688 RF_Free(scount, nodecount * sizeof(int));
689 RF_Free(acount, nodecount * sizeof(int));
690 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
691 if (retcode)
692 rf_PrintDAGList(dag_h);
693
694 if (rf_validateVisitedDebug)
695 rf_ValidateVisitedBits(dag_h);
696
697 return (retcode);
698
699 validate_dag_bad:
700 rf_PrintDAGList(dag_h);
701 return (retcode);
702 }
703
704 #endif /* RF_DEBUG_VALIDATE_DAG */
705
706 /******************************************************************************
707 *
708 * misc construction routines
709 *
710 *****************************************************************************/
711
712 void
713 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
714 {
715 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
716 int fcol = raidPtr->reconControl->fcol;
717 int scol = raidPtr->reconControl->spareCol;
718 RF_PhysDiskAddr_t *pda;
719
720 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
721 for (pda = asmap->physInfo; pda; pda = pda->next) {
722 if (pda->col == fcol) {
723 if (rf_dagDebug) {
724 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
725 pda->startSector)) {
726 RF_PANIC();
727 }
728 }
729 /* printf("Remapped data for large write\n"); */
730 if (ds) {
731 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
732 &pda->col, &pda->startSector, RF_REMAP);
733 } else {
734 pda->col = scol;
735 }
736 }
737 }
738 for (pda = asmap->parityInfo; pda; pda = pda->next) {
739 if (pda->col == fcol) {
740 if (rf_dagDebug) {
741 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
742 RF_PANIC();
743 }
744 }
745 }
746 if (ds) {
747 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
748 } else {
749 pda->col = scol;
750 }
751 }
752 }
753
754
755 /* this routine allocates read buffers and generates stripe maps for the
756 * regions of the array from the start of the stripe to the start of the
757 * access, and from the end of the access to the end of the stripe. It also
758 * computes and returns the number of DAG nodes needed to read all this data.
759 * Note that this routine does the wrong thing if the access is fully
760 * contained within one stripe unit, so we RF_ASSERT against this case at the
761 * start.
762 *
763 * layoutPtr - in: layout information
764 * asmap - in: access stripe map
765 * dag_h - in: header of the dag to create
766 * new_asm_h - in: ptr to array of 2 headers. to be filled in
767 * nRodNodes - out: num nodes to be generated to read unaccessed data
768 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
769 */
770 void
771 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
772 RF_RaidLayout_t *layoutPtr,
773 RF_AccessStripeMap_t *asmap,
774 RF_DagHeader_t *dag_h,
775 RF_AccessStripeMapHeader_t **new_asm_h,
776 int *nRodNodes,
777 char **sosBuffer, char **eosBuffer,
778 RF_AllocListElem_t *allocList)
779 {
780 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
781 RF_SectorNum_t sosNumSector, eosNumSector;
782
783 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
784 /* generate an access map for the region of the array from start of
785 * stripe to start of access */
786 new_asm_h[0] = new_asm_h[1] = NULL;
787 *nRodNodes = 0;
788 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
789 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
790 sosNumSector = asmap->raidAddress - sosRaidAddress;
791 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
792 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
793 new_asm_h[0]->next = dag_h->asmList;
794 dag_h->asmList = new_asm_h[0];
795 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
796
797 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
798 /* we're totally within one stripe here */
799 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
800 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
801 }
802 /* generate an access map for the region of the array from end of
803 * access to end of stripe */
804 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
805 eosRaidAddress = asmap->endRaidAddress;
806 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
807 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
808 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
809 new_asm_h[1]->next = dag_h->asmList;
810 dag_h->asmList = new_asm_h[1];
811 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
812
813 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
814 /* we're totally within one stripe here */
815 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
816 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
817 }
818 }
819
820
821
822 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
823 int
824 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
825 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
826 {
827 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
828 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
829 /* use -1 to be sure we stay within SU */
830 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
831 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
832 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
833 }
834
835
836 /* GenerateFailedAccessASMs
837 *
838 * this routine figures out what portion of the stripe needs to be read
839 * to effect the degraded read or write operation. It's primary function
840 * is to identify everything required to recover the data, and then
841 * eliminate anything that is already being accessed by the user.
842 *
843 * The main result is two new ASMs, one for the region from the start of the
844 * stripe to the start of the access, and one for the region from the end of
845 * the access to the end of the stripe. These ASMs describe everything that
846 * needs to be read to effect the degraded access. Other results are:
847 * nXorBufs -- the total number of buffers that need to be XORed together to
848 * recover the lost data,
849 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
850 * at entry, not allocated.
851 * overlappingPDAs --
852 * describes which of the non-failed PDAs in the user access
853 * overlap data that needs to be read to effect recovery.
854 * overlappingPDAs[i]==1 if and only if, neglecting the failed
855 * PDA, the ith pda in the input asm overlaps data that needs
856 * to be read for recovery.
857 */
858 /* in: asm - ASM for the actual access, one stripe only */
859 /* in: failedPDA - which component of the access has failed */
860 /* in: dag_h - header of the DAG we're going to create */
861 /* out: new_asm_h - the two new ASMs */
862 /* out: nXorBufs - the total number of xor bufs required */
863 /* out: rpBufPtr - a buffer for the parity read */
864 void
865 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
866 RF_PhysDiskAddr_t *failedPDA,
867 RF_DagHeader_t *dag_h,
868 RF_AccessStripeMapHeader_t **new_asm_h,
869 int *nXorBufs, char **rpBufPtr,
870 char *overlappingPDAs,
871 RF_AllocListElem_t *allocList)
872 {
873 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
874
875 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
876 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
877
878 RF_SectorCount_t numSect[2], numParitySect;
879 RF_PhysDiskAddr_t *pda;
880 char *rdBuf, *bufP;
881 int foundit, i;
882
883 bufP = NULL;
884 foundit = 0;
885 /* first compute the following raid addresses: start of stripe,
886 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
887 * MAX(end of access, end of failed SU), (eosStartAddr) end of
888 * stripe (i.e. start of next stripe) (eosAddr) */
889 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
890 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
891 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
892 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
893
894 /* now generate access stripe maps for each of the above regions of
895 * the stripe. Use a dummy (NULL) buf ptr for now */
896
897 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
898 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
899
900 /* walk through the PDAs and range-restrict each SU to the region of
901 * the SU touched on the failed PDA. also compute total data buffer
902 * space requirements in this step. Ignore the parity for now. */
903
904 numSect[0] = numSect[1] = 0;
905 if (new_asm_h[0]) {
906 new_asm_h[0]->next = dag_h->asmList;
907 dag_h->asmList = new_asm_h[0];
908 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
909 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
910 numSect[0] += pda->numSector;
911 }
912 }
913 if (new_asm_h[1]) {
914 new_asm_h[1]->next = dag_h->asmList;
915 dag_h->asmList = new_asm_h[1];
916 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
917 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
918 numSect[1] += pda->numSector;
919 }
920 }
921 numParitySect = failedPDA->numSector;
922
923 /* allocate buffer space for the data & parity we have to read to
924 * recover from the failure */
925
926 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
927 * buf if not needed */
928 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
929 bufP = rdBuf;
930 if (rf_degDagDebug)
931 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
932 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
933 }
934 /* now walk through the pdas one last time and assign buffer pointers
935 * (ugh!). Again, ignore the parity. also, count nodes to find out
936 * how many bufs need to be xored together */
937 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
938 * case, 1 is for failed data */
939 if (new_asm_h[0]) {
940 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
941 pda->bufPtr = bufP;
942 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
943 }
944 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
945 }
946 if (new_asm_h[1]) {
947 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
948 pda->bufPtr = bufP;
949 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
950 }
951 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
952 }
953 if (rpBufPtr)
954 *rpBufPtr = bufP; /* the rest of the buffer is for
955 * parity */
956
957 /* the last step is to figure out how many more distinct buffers need
958 * to get xor'd to produce the missing unit. there's one for each
959 * user-data read node that overlaps the portion of the failed unit
960 * being accessed */
961
962 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
963 if (pda == failedPDA) {
964 i--;
965 foundit = 1;
966 continue;
967 }
968 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
969 overlappingPDAs[i] = 1;
970 (*nXorBufs)++;
971 }
972 }
973 if (!foundit) {
974 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
975 RF_ASSERT(0);
976 }
977 if (rf_degDagDebug) {
978 if (new_asm_h[0]) {
979 printf("First asm:\n");
980 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
981 }
982 if (new_asm_h[1]) {
983 printf("Second asm:\n");
984 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
985 }
986 }
987 }
988
989
990 /* adjusts the offset and number of sectors in the destination pda so that
991 * it covers at most the region of the SU covered by the source PDA. This
992 * is exclusively a restriction: the number of sectors indicated by the
993 * target PDA can only shrink.
994 *
995 * For example: s = sectors within SU indicated by source PDA
996 * d = sectors within SU indicated by dest PDA
997 * r = results, stored in dest PDA
998 *
999 * |--------------- one stripe unit ---------------------|
1000 * | sssssssssssssssssssssssssssssssss |
1001 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1002 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1003 *
1004 * Another example:
1005 *
1006 * |--------------- one stripe unit ---------------------|
1007 * | sssssssssssssssssssssssssssssssss |
1008 * | ddddddddddddddddddddddd |
1009 * | rrrrrrrrrrrrrrrr |
1010 *
1011 */
1012 void
1013 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1014 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1015 {
1016 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1017 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1018 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1019 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1020 * stay within SU */
1021 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1022 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1023
1024 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1025 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1026
1027 if (dobuffer)
1028 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1029 if (doraidaddr) {
1030 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1031 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1032 }
1033 }
1034
1035 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1036
1037 /*
1038 * Want the highest of these primes to be the largest one
1039 * less than the max expected number of columns (won't hurt
1040 * to be too small or too large, but won't be optimal, either)
1041 * --jimz
1042 */
1043 #define NLOWPRIMES 8
1044 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1045 /*****************************************************************************
1046 * compute the workload shift factor. (chained declustering)
1047 *
1048 * return nonzero if access should shift to secondary, otherwise,
1049 * access is to primary
1050 *****************************************************************************/
1051 int
1052 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1053 {
1054 /*
1055 * variables:
1056 * d = column of disk containing primary
1057 * f = column of failed disk
1058 * n = number of disks in array
1059 * sd = "shift distance" (number of columns that d is to the right of f)
1060 * v = numerator of redirection ratio
1061 * k = denominator of redirection ratio
1062 */
1063 RF_RowCol_t d, f, sd, n;
1064 int k, v, ret, i;
1065
1066 n = raidPtr->numCol;
1067
1068 /* assign column of primary copy to d */
1069 d = pda->col;
1070
1071 /* assign column of dead disk to f */
1072 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1073
1074 RF_ASSERT(f < n);
1075 RF_ASSERT(f != d);
1076
1077 sd = (f > d) ? (n + d - f) : (d - f);
1078 RF_ASSERT(sd < n);
1079
1080 /*
1081 * v of every k accesses should be redirected
1082 *
1083 * v/k := (n-1-sd)/(n-1)
1084 */
1085 v = (n - 1 - sd);
1086 k = (n - 1);
1087
1088 #if 1
1089 /*
1090 * XXX
1091 * Is this worth it?
1092 *
1093 * Now reduce the fraction, by repeatedly factoring
1094 * out primes (just like they teach in elementary school!)
1095 */
1096 for (i = 0; i < NLOWPRIMES; i++) {
1097 if (lowprimes[i] > v)
1098 break;
1099 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1100 v /= lowprimes[i];
1101 k /= lowprimes[i];
1102 }
1103 }
1104 #endif
1105
1106 raidPtr->hist_diskreq[d]++;
1107 if (raidPtr->hist_diskreq[d] > v) {
1108 ret = 0; /* do not redirect */
1109 } else {
1110 ret = 1; /* redirect */
1111 }
1112
1113 #if 0
1114 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1115 raidPtr->hist_diskreq[d]);
1116 #endif
1117
1118 if (raidPtr->hist_diskreq[d] >= k) {
1119 /* reset counter */
1120 raidPtr->hist_diskreq[d] = 0;
1121 }
1122 return (ret);
1123 }
1124 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1125
1126 /*
1127 * Disk selection routines
1128 */
1129
1130 /*
1131 * Selects the disk with the shortest queue from a mirror pair.
1132 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1133 * disk are counted as members of the "queue"
1134 */
1135 void
1136 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1137 {
1138 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1139 RF_RowCol_t colData, colMirror;
1140 int dataQueueLength, mirrorQueueLength, usemirror;
1141 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1142 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1143 RF_PhysDiskAddr_t *tmp_pda;
1144 RF_RaidDisk_t *disks = raidPtr->Disks;
1145 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1146
1147 /* return the [row col] of the disk with the shortest queue */
1148 colData = data_pda->col;
1149 colMirror = mirror_pda->col;
1150 dataQueue = &(dqs[colData]);
1151 mirrorQueue = &(dqs[colMirror]);
1152
1153 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1154 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1155 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1156 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1157 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1158 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1159 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1160 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1161 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1162 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1163 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1164 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1165
1166 usemirror = 0;
1167 if (RF_DEAD_DISK(disks[colMirror].status)) {
1168 usemirror = 0;
1169 } else
1170 if (RF_DEAD_DISK(disks[colData].status)) {
1171 usemirror = 1;
1172 } else
1173 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1174 /* Trust only the main disk */
1175 usemirror = 0;
1176 } else
1177 if (dataQueueLength < mirrorQueueLength) {
1178 usemirror = 0;
1179 } else
1180 if (mirrorQueueLength < dataQueueLength) {
1181 usemirror = 1;
1182 } else {
1183 /* queues are equal length. attempt
1184 * cleverness. */
1185 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1186 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1187 usemirror = 0;
1188 } else {
1189 usemirror = 1;
1190 }
1191 }
1192
1193 if (usemirror) {
1194 /* use mirror (parity) disk, swap params 0 & 4 */
1195 tmp_pda = data_pda;
1196 node->params[0].p = mirror_pda;
1197 node->params[4].p = tmp_pda;
1198 } else {
1199 /* use data disk, leave param 0 unchanged */
1200 }
1201 /* printf("dataQueueLength %d, mirrorQueueLength
1202 * %d\n",dataQueueLength, mirrorQueueLength); */
1203 }
1204 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1205 /*
1206 * Do simple partitioning. This assumes that
1207 * the data and parity disks are laid out identically.
1208 */
1209 void
1210 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1211 {
1212 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1213 RF_RowCol_t colData, colMirror;
1214 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1215 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1216 RF_PhysDiskAddr_t *tmp_pda;
1217 RF_RaidDisk_t *disks = raidPtr->Disks;
1218 int usemirror;
1219
1220 /* return the [row col] of the disk with the shortest queue */
1221 colData = data_pda->col;
1222 colMirror = mirror_pda->col;
1223
1224 usemirror = 0;
1225 if (RF_DEAD_DISK(disks[colMirror].status)) {
1226 usemirror = 0;
1227 } else
1228 if (RF_DEAD_DISK(disks[colData].status)) {
1229 usemirror = 1;
1230 } else
1231 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1232 /* Trust only the main disk */
1233 usemirror = 0;
1234 } else
1235 if (data_pda->startSector <
1236 (disks[colData].numBlocks / 2)) {
1237 usemirror = 0;
1238 } else {
1239 usemirror = 1;
1240 }
1241
1242 if (usemirror) {
1243 /* use mirror (parity) disk, swap params 0 & 4 */
1244 tmp_pda = data_pda;
1245 node->params[0].p = mirror_pda;
1246 node->params[4].p = tmp_pda;
1247 } else {
1248 /* use data disk, leave param 0 unchanged */
1249 }
1250 }
1251 #endif
1252