rf_dagutils.c revision 1.27 1 /* $NetBSD: rf_dagutils.c,v 1.27 2004/02/29 01:24:34 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.27 2004/02/29 01:24:34 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_DAGH_INC 16
173 #define RF_DAGH_INITIAL 32
174
175 static struct pool rf_daglist_pool;
176 #define RF_MAX_FREE_DAGLIST 128
177 #define RF_DAGLIST_INITIAL 32
178
179 static struct pool rf_funclist_pool;
180 #define RF_MAX_FREE_FUNCLIST 128
181 #define RF_FUNCLIST_INITIAL 32
182
183 static void rf_ShutdownDAGs(void *);
184 static void
185 rf_ShutdownDAGs(void *ignored)
186 {
187 pool_destroy(&rf_dagh_pool);
188 pool_destroy(&rf_daglist_pool);
189 pool_destroy(&rf_funclist_pool);
190 }
191
192 int
193 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
194 {
195 int rc;
196
197 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
198 "rf_dagh_pl", NULL);
199 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
200 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
201
202 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
203 "rf_daglist_pl", NULL);
204 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
205 pool_prime(&rf_daglist_pool, RF_DAGLIST_INITIAL);
206
207 pool_init(&rf_funclist_pool, sizeof(RF_FuncList_t), 0, 0, 0,
208 "rf_funcist_pl", NULL);
209 pool_sethiwat(&rf_funclist_pool, RF_MAX_FREE_FUNCLIST);
210 pool_prime(&rf_funclist_pool, RF_FUNCLIST_INITIAL);
211
212 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
213 if (rc) {
214 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
215 rf_ShutdownDAGs(NULL);
216 return (rc);
217 }
218 return (0);
219 }
220
221 RF_DagHeader_t *
222 rf_AllocDAGHeader()
223 {
224 RF_DagHeader_t *dh;
225
226 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
227 if (dh) {
228 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
229 }
230 return (dh);
231 }
232
233 void
234 rf_FreeDAGHeader(RF_DagHeader_t * dh)
235 {
236 pool_put(&rf_dagh_pool, dh);
237 }
238
239 RF_DagList_t *
240 rf_AllocDAGList()
241 {
242 RF_DagList_t *dagList;
243
244 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
245 memset(dagList, 0, sizeof(RF_DagList_t));
246
247 return (dagList);
248 }
249
250 void
251 rf_FreeDAGList(RF_DagList_t *dagList)
252 {
253 pool_put(&rf_daglist_pool, dagList);
254 }
255
256 RF_FuncList_t *
257 rf_AllocFuncList()
258 {
259 RF_FuncList_t *funcList;
260
261 funcList = pool_get(&rf_funclist_pool, PR_WAITOK);
262 memset(funcList, 0, sizeof(RF_FuncList_t));
263
264 return (funcList);
265 }
266
267 void
268 rf_FreeFuncList(RF_FuncList_t *funcList)
269 {
270 pool_put(&rf_funclist_pool, funcList);
271 }
272
273
274
275 /* allocates a buffer big enough to hold the data described by pda */
276 void *
277 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
278 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
279 {
280 char *p;
281
282 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
283 (char *), allocList);
284 return ((void *) p);
285 }
286 #if RF_DEBUG_VALIDATE_DAG
287 /******************************************************************************
288 *
289 * debug routines
290 *
291 *****************************************************************************/
292
293 char *
294 rf_NodeStatusString(RF_DagNode_t *node)
295 {
296 switch (node->status) {
297 case rf_wait:return ("wait");
298 case rf_fired:
299 return ("fired");
300 case rf_good:
301 return ("good");
302 case rf_bad:
303 return ("bad");
304 default:
305 return ("?");
306 }
307 }
308
309 void
310 rf_PrintNodeInfoString(RF_DagNode_t *node)
311 {
312 RF_PhysDiskAddr_t *pda;
313 int (*df) (RF_DagNode_t *) = node->doFunc;
314 int i, lk, unlk;
315 void *bufPtr;
316
317 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
318 || (df == rf_DiskReadMirrorIdleFunc)
319 || (df == rf_DiskReadMirrorPartitionFunc)) {
320 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
321 bufPtr = (void *) node->params[1].p;
322 lk = 0;
323 unlk = 0;
324 RF_ASSERT(!(lk && unlk));
325 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
326 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
327 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
328 return;
329 }
330 if (df == rf_DiskUnlockFunc) {
331 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
332 lk = 0;
333 unlk = 0;
334 RF_ASSERT(!(lk && unlk));
335 printf("c %d %s\n", pda->col,
336 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
337 return;
338 }
339 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
340 || (df == rf_RecoveryXorFunc)) {
341 printf("result buf 0x%lx\n", (long) node->results[0]);
342 for (i = 0; i < node->numParams - 1; i += 2) {
343 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
344 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
345 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
346 (long) bufPtr, pda->col,
347 (long) pda->startSector, (int) pda->numSector);
348 }
349 return;
350 }
351 #if RF_INCLUDE_PARITYLOGGING > 0
352 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
353 for (i = 0; i < node->numParams - 1; i += 2) {
354 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
355 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
356 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
357 pda->col, (long) pda->startSector,
358 (int) pda->numSector, (long) bufPtr);
359 }
360 return;
361 }
362 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
363
364 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
365 printf("\n");
366 return;
367 }
368 printf("?\n");
369 }
370 #ifdef DEBUG
371 static void
372 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
373 {
374 char *anttype;
375 int i;
376
377 node->visited = (unvisited) ? 0 : 1;
378 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
379 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
380 node->numSuccedents, node->numSuccFired, node->numSuccDone,
381 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
382 for (i = 0; i < node->numSuccedents; i++) {
383 printf("%d%s", node->succedents[i]->nodeNum,
384 ((i == node->numSuccedents - 1) ? "\0" : " "));
385 }
386 printf("} A{");
387 for (i = 0; i < node->numAntecedents; i++) {
388 switch (node->antType[i]) {
389 case rf_trueData:
390 anttype = "T";
391 break;
392 case rf_antiData:
393 anttype = "A";
394 break;
395 case rf_outputData:
396 anttype = "O";
397 break;
398 case rf_control:
399 anttype = "C";
400 break;
401 default:
402 anttype = "?";
403 break;
404 }
405 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
406 }
407 printf("}; ");
408 rf_PrintNodeInfoString(node);
409 for (i = 0; i < node->numSuccedents; i++) {
410 if (node->succedents[i]->visited == unvisited)
411 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
412 }
413 }
414
415 static void
416 rf_PrintDAG(RF_DagHeader_t *dag_h)
417 {
418 int unvisited, i;
419 char *status;
420
421 /* set dag status */
422 switch (dag_h->status) {
423 case rf_enable:
424 status = "enable";
425 break;
426 case rf_rollForward:
427 status = "rollForward";
428 break;
429 case rf_rollBackward:
430 status = "rollBackward";
431 break;
432 default:
433 status = "illegal!";
434 break;
435 }
436 /* find out if visited bits are currently set or clear */
437 unvisited = dag_h->succedents[0]->visited;
438
439 printf("DAG type: %s\n", dag_h->creator);
440 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
441 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
442 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
443 for (i = 0; i < dag_h->numSuccedents; i++) {
444 printf("%d%s", dag_h->succedents[i]->nodeNum,
445 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
446 }
447 printf("};\n");
448 for (i = 0; i < dag_h->numSuccedents; i++) {
449 if (dag_h->succedents[i]->visited == unvisited)
450 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
451 }
452 }
453 #endif
454 /* assigns node numbers */
455 int
456 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
457 {
458 int unvisited, i, nnum;
459 RF_DagNode_t *node;
460
461 nnum = 0;
462 unvisited = dag_h->succedents[0]->visited;
463
464 dag_h->nodeNum = nnum++;
465 for (i = 0; i < dag_h->numSuccedents; i++) {
466 node = dag_h->succedents[i];
467 if (node->visited == unvisited) {
468 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
469 }
470 }
471 return (nnum);
472 }
473
474 int
475 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
476 {
477 int i;
478
479 node->visited = (unvisited) ? 0 : 1;
480
481 node->nodeNum = num++;
482 for (i = 0; i < node->numSuccedents; i++) {
483 if (node->succedents[i]->visited == unvisited) {
484 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
485 }
486 }
487 return (num);
488 }
489 /* set the header pointers in each node to "newptr" */
490 void
491 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
492 {
493 int i;
494 for (i = 0; i < dag_h->numSuccedents; i++)
495 if (dag_h->succedents[i]->dagHdr != newptr)
496 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
497 }
498
499 void
500 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
501 {
502 int i;
503 node->dagHdr = newptr;
504 for (i = 0; i < node->numSuccedents; i++)
505 if (node->succedents[i]->dagHdr != newptr)
506 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
507 }
508
509
510 void
511 rf_PrintDAGList(RF_DagHeader_t * dag_h)
512 {
513 int i = 0;
514
515 for (; dag_h; dag_h = dag_h->next) {
516 rf_AssignNodeNums(dag_h);
517 printf("\n\nDAG %d IN LIST:\n", i++);
518 rf_PrintDAG(dag_h);
519 }
520 }
521
522 static int
523 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
524 RF_DagNode_t **nodes, int unvisited)
525 {
526 int i, retcode = 0;
527
528 /* construct an array of node pointers indexed by node num */
529 node->visited = (unvisited) ? 0 : 1;
530 nodes[node->nodeNum] = node;
531
532 if (node->next != NULL) {
533 printf("INVALID DAG: next pointer in node is not NULL\n");
534 retcode = 1;
535 }
536 if (node->status != rf_wait) {
537 printf("INVALID DAG: Node status is not wait\n");
538 retcode = 1;
539 }
540 if (node->numAntDone != 0) {
541 printf("INVALID DAG: numAntDone is not zero\n");
542 retcode = 1;
543 }
544 if (node->doFunc == rf_TerminateFunc) {
545 if (node->numSuccedents != 0) {
546 printf("INVALID DAG: Terminator node has succedents\n");
547 retcode = 1;
548 }
549 } else {
550 if (node->numSuccedents == 0) {
551 printf("INVALID DAG: Non-terminator node has no succedents\n");
552 retcode = 1;
553 }
554 }
555 for (i = 0; i < node->numSuccedents; i++) {
556 if (!node->succedents[i]) {
557 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
558 retcode = 1;
559 }
560 scount[node->succedents[i]->nodeNum]++;
561 }
562 for (i = 0; i < node->numAntecedents; i++) {
563 if (!node->antecedents[i]) {
564 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
565 retcode = 1;
566 }
567 acount[node->antecedents[i]->nodeNum]++;
568 }
569 for (i = 0; i < node->numSuccedents; i++) {
570 if (node->succedents[i]->visited == unvisited) {
571 if (rf_ValidateBranch(node->succedents[i], scount,
572 acount, nodes, unvisited)) {
573 retcode = 1;
574 }
575 }
576 }
577 return (retcode);
578 }
579
580 static void
581 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
582 {
583 int i;
584
585 RF_ASSERT(node->visited == unvisited);
586 for (i = 0; i < node->numSuccedents; i++) {
587 if (node->succedents[i] == NULL) {
588 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
589 RF_ASSERT(0);
590 }
591 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
592 }
593 }
594 /* NOTE: never call this on a big dag, because it is exponential
595 * in execution time
596 */
597 static void
598 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
599 {
600 int i, unvisited;
601
602 unvisited = dag->succedents[0]->visited;
603
604 for (i = 0; i < dag->numSuccedents; i++) {
605 if (dag->succedents[i] == NULL) {
606 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
607 RF_ASSERT(0);
608 }
609 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
610 }
611 }
612 /* validate a DAG. _at entry_ verify that:
613 * -- numNodesCompleted is zero
614 * -- node queue is null
615 * -- dag status is rf_enable
616 * -- next pointer is null on every node
617 * -- all nodes have status wait
618 * -- numAntDone is zero in all nodes
619 * -- terminator node has zero successors
620 * -- no other node besides terminator has zero successors
621 * -- no successor or antecedent pointer in a node is NULL
622 * -- number of times that each node appears as a successor of another node
623 * is equal to the antecedent count on that node
624 * -- number of times that each node appears as an antecedent of another node
625 * is equal to the succedent count on that node
626 * -- what else?
627 */
628 int
629 rf_ValidateDAG(RF_DagHeader_t *dag_h)
630 {
631 int i, nodecount;
632 int *scount, *acount;/* per-node successor and antecedent counts */
633 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
634 int retcode = 0;
635 int unvisited;
636 int commitNodeCount = 0;
637
638 if (rf_validateVisitedDebug)
639 rf_ValidateVisitedBits(dag_h);
640
641 if (dag_h->numNodesCompleted != 0) {
642 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
643 retcode = 1;
644 goto validate_dag_bad;
645 }
646 if (dag_h->status != rf_enable) {
647 printf("INVALID DAG: not enabled\n");
648 retcode = 1;
649 goto validate_dag_bad;
650 }
651 if (dag_h->numCommits != 0) {
652 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
653 retcode = 1;
654 goto validate_dag_bad;
655 }
656 if (dag_h->numSuccedents != 1) {
657 /* currently, all dags must have only one succedent */
658 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
659 retcode = 1;
660 goto validate_dag_bad;
661 }
662 nodecount = rf_AssignNodeNums(dag_h);
663
664 unvisited = dag_h->succedents[0]->visited;
665
666 RF_Malloc(scount, nodecount * sizeof(int), (int *));
667 RF_Malloc(acount, nodecount * sizeof(int), (int *));
668 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
669 (RF_DagNode_t **));
670 for (i = 0; i < dag_h->numSuccedents; i++) {
671 if ((dag_h->succedents[i]->visited == unvisited)
672 && rf_ValidateBranch(dag_h->succedents[i], scount,
673 acount, nodes, unvisited)) {
674 retcode = 1;
675 }
676 }
677 /* start at 1 to skip the header node */
678 for (i = 1; i < nodecount; i++) {
679 if (nodes[i]->commitNode)
680 commitNodeCount++;
681 if (nodes[i]->doFunc == NULL) {
682 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
683 retcode = 1;
684 goto validate_dag_out;
685 }
686 if (nodes[i]->undoFunc == NULL) {
687 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
688 retcode = 1;
689 goto validate_dag_out;
690 }
691 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
692 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
693 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
694 retcode = 1;
695 goto validate_dag_out;
696 }
697 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
698 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
699 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
700 retcode = 1;
701 goto validate_dag_out;
702 }
703 }
704
705 if (dag_h->numCommitNodes != commitNodeCount) {
706 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
707 dag_h->numCommitNodes, commitNodeCount);
708 retcode = 1;
709 goto validate_dag_out;
710 }
711 validate_dag_out:
712 RF_Free(scount, nodecount * sizeof(int));
713 RF_Free(acount, nodecount * sizeof(int));
714 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
715 if (retcode)
716 rf_PrintDAGList(dag_h);
717
718 if (rf_validateVisitedDebug)
719 rf_ValidateVisitedBits(dag_h);
720
721 return (retcode);
722
723 validate_dag_bad:
724 rf_PrintDAGList(dag_h);
725 return (retcode);
726 }
727
728 #endif /* RF_DEBUG_VALIDATE_DAG */
729
730 /******************************************************************************
731 *
732 * misc construction routines
733 *
734 *****************************************************************************/
735
736 void
737 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
738 {
739 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
740 int fcol = raidPtr->reconControl->fcol;
741 int scol = raidPtr->reconControl->spareCol;
742 RF_PhysDiskAddr_t *pda;
743
744 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
745 for (pda = asmap->physInfo; pda; pda = pda->next) {
746 if (pda->col == fcol) {
747 if (rf_dagDebug) {
748 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
749 pda->startSector)) {
750 RF_PANIC();
751 }
752 }
753 /* printf("Remapped data for large write\n"); */
754 if (ds) {
755 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
756 &pda->col, &pda->startSector, RF_REMAP);
757 } else {
758 pda->col = scol;
759 }
760 }
761 }
762 for (pda = asmap->parityInfo; pda; pda = pda->next) {
763 if (pda->col == fcol) {
764 if (rf_dagDebug) {
765 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
766 RF_PANIC();
767 }
768 }
769 }
770 if (ds) {
771 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
772 } else {
773 pda->col = scol;
774 }
775 }
776 }
777
778
779 /* this routine allocates read buffers and generates stripe maps for the
780 * regions of the array from the start of the stripe to the start of the
781 * access, and from the end of the access to the end of the stripe. It also
782 * computes and returns the number of DAG nodes needed to read all this data.
783 * Note that this routine does the wrong thing if the access is fully
784 * contained within one stripe unit, so we RF_ASSERT against this case at the
785 * start.
786 *
787 * layoutPtr - in: layout information
788 * asmap - in: access stripe map
789 * dag_h - in: header of the dag to create
790 * new_asm_h - in: ptr to array of 2 headers. to be filled in
791 * nRodNodes - out: num nodes to be generated to read unaccessed data
792 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
793 */
794 void
795 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
796 RF_RaidLayout_t *layoutPtr,
797 RF_AccessStripeMap_t *asmap,
798 RF_DagHeader_t *dag_h,
799 RF_AccessStripeMapHeader_t **new_asm_h,
800 int *nRodNodes,
801 char **sosBuffer, char **eosBuffer,
802 RF_AllocListElem_t *allocList)
803 {
804 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
805 RF_SectorNum_t sosNumSector, eosNumSector;
806
807 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
808 /* generate an access map for the region of the array from start of
809 * stripe to start of access */
810 new_asm_h[0] = new_asm_h[1] = NULL;
811 *nRodNodes = 0;
812 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
813 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
814 sosNumSector = asmap->raidAddress - sosRaidAddress;
815 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
816 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
817 new_asm_h[0]->next = dag_h->asmList;
818 dag_h->asmList = new_asm_h[0];
819 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
820
821 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
822 /* we're totally within one stripe here */
823 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
824 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
825 }
826 /* generate an access map for the region of the array from end of
827 * access to end of stripe */
828 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
829 eosRaidAddress = asmap->endRaidAddress;
830 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
831 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
832 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
833 new_asm_h[1]->next = dag_h->asmList;
834 dag_h->asmList = new_asm_h[1];
835 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
836
837 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
838 /* we're totally within one stripe here */
839 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
840 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
841 }
842 }
843
844
845
846 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
847 int
848 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
849 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
850 {
851 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
852 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
853 /* use -1 to be sure we stay within SU */
854 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
855 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
856 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
857 }
858
859
860 /* GenerateFailedAccessASMs
861 *
862 * this routine figures out what portion of the stripe needs to be read
863 * to effect the degraded read or write operation. It's primary function
864 * is to identify everything required to recover the data, and then
865 * eliminate anything that is already being accessed by the user.
866 *
867 * The main result is two new ASMs, one for the region from the start of the
868 * stripe to the start of the access, and one for the region from the end of
869 * the access to the end of the stripe. These ASMs describe everything that
870 * needs to be read to effect the degraded access. Other results are:
871 * nXorBufs -- the total number of buffers that need to be XORed together to
872 * recover the lost data,
873 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
874 * at entry, not allocated.
875 * overlappingPDAs --
876 * describes which of the non-failed PDAs in the user access
877 * overlap data that needs to be read to effect recovery.
878 * overlappingPDAs[i]==1 if and only if, neglecting the failed
879 * PDA, the ith pda in the input asm overlaps data that needs
880 * to be read for recovery.
881 */
882 /* in: asm - ASM for the actual access, one stripe only */
883 /* in: failedPDA - which component of the access has failed */
884 /* in: dag_h - header of the DAG we're going to create */
885 /* out: new_asm_h - the two new ASMs */
886 /* out: nXorBufs - the total number of xor bufs required */
887 /* out: rpBufPtr - a buffer for the parity read */
888 void
889 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
890 RF_PhysDiskAddr_t *failedPDA,
891 RF_DagHeader_t *dag_h,
892 RF_AccessStripeMapHeader_t **new_asm_h,
893 int *nXorBufs, char **rpBufPtr,
894 char *overlappingPDAs,
895 RF_AllocListElem_t *allocList)
896 {
897 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
898
899 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
900 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
901
902 RF_SectorCount_t numSect[2], numParitySect;
903 RF_PhysDiskAddr_t *pda;
904 char *rdBuf, *bufP;
905 int foundit, i;
906
907 bufP = NULL;
908 foundit = 0;
909 /* first compute the following raid addresses: start of stripe,
910 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
911 * MAX(end of access, end of failed SU), (eosStartAddr) end of
912 * stripe (i.e. start of next stripe) (eosAddr) */
913 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
914 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
915 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
916 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
917
918 /* now generate access stripe maps for each of the above regions of
919 * the stripe. Use a dummy (NULL) buf ptr for now */
920
921 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
922 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
923
924 /* walk through the PDAs and range-restrict each SU to the region of
925 * the SU touched on the failed PDA. also compute total data buffer
926 * space requirements in this step. Ignore the parity for now. */
927
928 numSect[0] = numSect[1] = 0;
929 if (new_asm_h[0]) {
930 new_asm_h[0]->next = dag_h->asmList;
931 dag_h->asmList = new_asm_h[0];
932 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
933 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
934 numSect[0] += pda->numSector;
935 }
936 }
937 if (new_asm_h[1]) {
938 new_asm_h[1]->next = dag_h->asmList;
939 dag_h->asmList = new_asm_h[1];
940 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
941 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
942 numSect[1] += pda->numSector;
943 }
944 }
945 numParitySect = failedPDA->numSector;
946
947 /* allocate buffer space for the data & parity we have to read to
948 * recover from the failure */
949
950 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
951 * buf if not needed */
952 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
953 bufP = rdBuf;
954 if (rf_degDagDebug)
955 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
956 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
957 }
958 /* now walk through the pdas one last time and assign buffer pointers
959 * (ugh!). Again, ignore the parity. also, count nodes to find out
960 * how many bufs need to be xored together */
961 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
962 * case, 1 is for failed data */
963 if (new_asm_h[0]) {
964 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
965 pda->bufPtr = bufP;
966 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
967 }
968 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
969 }
970 if (new_asm_h[1]) {
971 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
972 pda->bufPtr = bufP;
973 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
974 }
975 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
976 }
977 if (rpBufPtr)
978 *rpBufPtr = bufP; /* the rest of the buffer is for
979 * parity */
980
981 /* the last step is to figure out how many more distinct buffers need
982 * to get xor'd to produce the missing unit. there's one for each
983 * user-data read node that overlaps the portion of the failed unit
984 * being accessed */
985
986 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
987 if (pda == failedPDA) {
988 i--;
989 foundit = 1;
990 continue;
991 }
992 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
993 overlappingPDAs[i] = 1;
994 (*nXorBufs)++;
995 }
996 }
997 if (!foundit) {
998 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
999 RF_ASSERT(0);
1000 }
1001 if (rf_degDagDebug) {
1002 if (new_asm_h[0]) {
1003 printf("First asm:\n");
1004 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1005 }
1006 if (new_asm_h[1]) {
1007 printf("Second asm:\n");
1008 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1009 }
1010 }
1011 }
1012
1013
1014 /* adjusts the offset and number of sectors in the destination pda so that
1015 * it covers at most the region of the SU covered by the source PDA. This
1016 * is exclusively a restriction: the number of sectors indicated by the
1017 * target PDA can only shrink.
1018 *
1019 * For example: s = sectors within SU indicated by source PDA
1020 * d = sectors within SU indicated by dest PDA
1021 * r = results, stored in dest PDA
1022 *
1023 * |--------------- one stripe unit ---------------------|
1024 * | sssssssssssssssssssssssssssssssss |
1025 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1026 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1027 *
1028 * Another example:
1029 *
1030 * |--------------- one stripe unit ---------------------|
1031 * | sssssssssssssssssssssssssssssssss |
1032 * | ddddddddddddddddddddddd |
1033 * | rrrrrrrrrrrrrrrr |
1034 *
1035 */
1036 void
1037 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1038 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1039 {
1040 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1041 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1042 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1043 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1044 * stay within SU */
1045 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1046 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1047
1048 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1049 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1050
1051 if (dobuffer)
1052 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1053 if (doraidaddr) {
1054 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1055 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1056 }
1057 }
1058
1059 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1060
1061 /*
1062 * Want the highest of these primes to be the largest one
1063 * less than the max expected number of columns (won't hurt
1064 * to be too small or too large, but won't be optimal, either)
1065 * --jimz
1066 */
1067 #define NLOWPRIMES 8
1068 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1069 /*****************************************************************************
1070 * compute the workload shift factor. (chained declustering)
1071 *
1072 * return nonzero if access should shift to secondary, otherwise,
1073 * access is to primary
1074 *****************************************************************************/
1075 int
1076 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1077 {
1078 /*
1079 * variables:
1080 * d = column of disk containing primary
1081 * f = column of failed disk
1082 * n = number of disks in array
1083 * sd = "shift distance" (number of columns that d is to the right of f)
1084 * v = numerator of redirection ratio
1085 * k = denominator of redirection ratio
1086 */
1087 RF_RowCol_t d, f, sd, n;
1088 int k, v, ret, i;
1089
1090 n = raidPtr->numCol;
1091
1092 /* assign column of primary copy to d */
1093 d = pda->col;
1094
1095 /* assign column of dead disk to f */
1096 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1097
1098 RF_ASSERT(f < n);
1099 RF_ASSERT(f != d);
1100
1101 sd = (f > d) ? (n + d - f) : (d - f);
1102 RF_ASSERT(sd < n);
1103
1104 /*
1105 * v of every k accesses should be redirected
1106 *
1107 * v/k := (n-1-sd)/(n-1)
1108 */
1109 v = (n - 1 - sd);
1110 k = (n - 1);
1111
1112 #if 1
1113 /*
1114 * XXX
1115 * Is this worth it?
1116 *
1117 * Now reduce the fraction, by repeatedly factoring
1118 * out primes (just like they teach in elementary school!)
1119 */
1120 for (i = 0; i < NLOWPRIMES; i++) {
1121 if (lowprimes[i] > v)
1122 break;
1123 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1124 v /= lowprimes[i];
1125 k /= lowprimes[i];
1126 }
1127 }
1128 #endif
1129
1130 raidPtr->hist_diskreq[d]++;
1131 if (raidPtr->hist_diskreq[d] > v) {
1132 ret = 0; /* do not redirect */
1133 } else {
1134 ret = 1; /* redirect */
1135 }
1136
1137 #if 0
1138 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1139 raidPtr->hist_diskreq[d]);
1140 #endif
1141
1142 if (raidPtr->hist_diskreq[d] >= k) {
1143 /* reset counter */
1144 raidPtr->hist_diskreq[d] = 0;
1145 }
1146 return (ret);
1147 }
1148 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1149
1150 /*
1151 * Disk selection routines
1152 */
1153
1154 /*
1155 * Selects the disk with the shortest queue from a mirror pair.
1156 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1157 * disk are counted as members of the "queue"
1158 */
1159 void
1160 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1161 {
1162 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1163 RF_RowCol_t colData, colMirror;
1164 int dataQueueLength, mirrorQueueLength, usemirror;
1165 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1166 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1167 RF_PhysDiskAddr_t *tmp_pda;
1168 RF_RaidDisk_t *disks = raidPtr->Disks;
1169 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1170
1171 /* return the [row col] of the disk with the shortest queue */
1172 colData = data_pda->col;
1173 colMirror = mirror_pda->col;
1174 dataQueue = &(dqs[colData]);
1175 mirrorQueue = &(dqs[colMirror]);
1176
1177 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1178 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1179 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1180 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1181 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1182 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1183 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1184 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1185 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1186 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1187 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1188 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1189
1190 usemirror = 0;
1191 if (RF_DEAD_DISK(disks[colMirror].status)) {
1192 usemirror = 0;
1193 } else
1194 if (RF_DEAD_DISK(disks[colData].status)) {
1195 usemirror = 1;
1196 } else
1197 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1198 /* Trust only the main disk */
1199 usemirror = 0;
1200 } else
1201 if (dataQueueLength < mirrorQueueLength) {
1202 usemirror = 0;
1203 } else
1204 if (mirrorQueueLength < dataQueueLength) {
1205 usemirror = 1;
1206 } else {
1207 /* queues are equal length. attempt
1208 * cleverness. */
1209 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1210 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1211 usemirror = 0;
1212 } else {
1213 usemirror = 1;
1214 }
1215 }
1216
1217 if (usemirror) {
1218 /* use mirror (parity) disk, swap params 0 & 4 */
1219 tmp_pda = data_pda;
1220 node->params[0].p = mirror_pda;
1221 node->params[4].p = tmp_pda;
1222 } else {
1223 /* use data disk, leave param 0 unchanged */
1224 }
1225 /* printf("dataQueueLength %d, mirrorQueueLength
1226 * %d\n",dataQueueLength, mirrorQueueLength); */
1227 }
1228 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1229 /*
1230 * Do simple partitioning. This assumes that
1231 * the data and parity disks are laid out identically.
1232 */
1233 void
1234 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1235 {
1236 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1237 RF_RowCol_t colData, colMirror;
1238 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1239 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1240 RF_PhysDiskAddr_t *tmp_pda;
1241 RF_RaidDisk_t *disks = raidPtr->Disks;
1242 int usemirror;
1243
1244 /* return the [row col] of the disk with the shortest queue */
1245 colData = data_pda->col;
1246 colMirror = mirror_pda->col;
1247
1248 usemirror = 0;
1249 if (RF_DEAD_DISK(disks[colMirror].status)) {
1250 usemirror = 0;
1251 } else
1252 if (RF_DEAD_DISK(disks[colData].status)) {
1253 usemirror = 1;
1254 } else
1255 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1256 /* Trust only the main disk */
1257 usemirror = 0;
1258 } else
1259 if (data_pda->startSector <
1260 (disks[colData].numBlocks / 2)) {
1261 usemirror = 0;
1262 } else {
1263 usemirror = 1;
1264 }
1265
1266 if (usemirror) {
1267 /* use mirror (parity) disk, swap params 0 & 4 */
1268 tmp_pda = data_pda;
1269 node->params[0].p = mirror_pda;
1270 node->params[4].p = tmp_pda;
1271 } else {
1272 /* use data disk, leave param 0 unchanged */
1273 }
1274 }
1275 #endif
1276