rf_dagutils.c revision 1.28 1 /* $NetBSD: rf_dagutils.c,v 1.28 2004/02/29 01:47:45 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.28 2004/02/29 01:47:45 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_DAGH_INC 16
173 #define RF_DAGH_INITIAL 32
174
175 static struct pool rf_daglist_pool;
176 #define RF_MAX_FREE_DAGLIST 128
177 #define RF_DAGLIST_INITIAL 32
178
179 static struct pool rf_funclist_pool;
180 #define RF_MAX_FREE_FUNCLIST 128
181 #define RF_FUNCLIST_INITIAL 32
182
183 static void rf_ShutdownDAGs(void *);
184 static void
185 rf_ShutdownDAGs(void *ignored)
186 {
187 pool_destroy(&rf_dagh_pool);
188 pool_destroy(&rf_daglist_pool);
189 pool_destroy(&rf_funclist_pool);
190 }
191
192 int
193 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
194 {
195 int rc;
196
197 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
198 "rf_dagh_pl", NULL);
199 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
200 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
201
202 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
203 "rf_daglist_pl", NULL);
204 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
205 pool_prime(&rf_daglist_pool, RF_DAGLIST_INITIAL);
206
207 pool_init(&rf_funclist_pool, sizeof(RF_FuncList_t), 0, 0, 0,
208 "rf_funcist_pl", NULL);
209 pool_sethiwat(&rf_funclist_pool, RF_MAX_FREE_FUNCLIST);
210 pool_prime(&rf_funclist_pool, RF_FUNCLIST_INITIAL);
211
212 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
213 if (rc) {
214 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
215 rf_ShutdownDAGs(NULL);
216 return (rc);
217 }
218 return (0);
219 }
220
221 RF_DagHeader_t *
222 rf_AllocDAGHeader()
223 {
224 RF_DagHeader_t *dh;
225
226 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
227 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
228 return (dh);
229 }
230
231 void
232 rf_FreeDAGHeader(RF_DagHeader_t * dh)
233 {
234 pool_put(&rf_dagh_pool, dh);
235 }
236
237 RF_DagList_t *
238 rf_AllocDAGList()
239 {
240 RF_DagList_t *dagList;
241
242 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
243 memset(dagList, 0, sizeof(RF_DagList_t));
244
245 return (dagList);
246 }
247
248 void
249 rf_FreeDAGList(RF_DagList_t *dagList)
250 {
251 pool_put(&rf_daglist_pool, dagList);
252 }
253
254 RF_FuncList_t *
255 rf_AllocFuncList()
256 {
257 RF_FuncList_t *funcList;
258
259 funcList = pool_get(&rf_funclist_pool, PR_WAITOK);
260 memset(funcList, 0, sizeof(RF_FuncList_t));
261
262 return (funcList);
263 }
264
265 void
266 rf_FreeFuncList(RF_FuncList_t *funcList)
267 {
268 pool_put(&rf_funclist_pool, funcList);
269 }
270
271
272
273 /* allocates a buffer big enough to hold the data described by pda */
274 void *
275 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
276 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
277 {
278 char *p;
279
280 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
281 (char *), allocList);
282 return ((void *) p);
283 }
284 #if RF_DEBUG_VALIDATE_DAG
285 /******************************************************************************
286 *
287 * debug routines
288 *
289 *****************************************************************************/
290
291 char *
292 rf_NodeStatusString(RF_DagNode_t *node)
293 {
294 switch (node->status) {
295 case rf_wait:return ("wait");
296 case rf_fired:
297 return ("fired");
298 case rf_good:
299 return ("good");
300 case rf_bad:
301 return ("bad");
302 default:
303 return ("?");
304 }
305 }
306
307 void
308 rf_PrintNodeInfoString(RF_DagNode_t *node)
309 {
310 RF_PhysDiskAddr_t *pda;
311 int (*df) (RF_DagNode_t *) = node->doFunc;
312 int i, lk, unlk;
313 void *bufPtr;
314
315 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
316 || (df == rf_DiskReadMirrorIdleFunc)
317 || (df == rf_DiskReadMirrorPartitionFunc)) {
318 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
319 bufPtr = (void *) node->params[1].p;
320 lk = 0;
321 unlk = 0;
322 RF_ASSERT(!(lk && unlk));
323 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
324 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
325 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
326 return;
327 }
328 if (df == rf_DiskUnlockFunc) {
329 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
330 lk = 0;
331 unlk = 0;
332 RF_ASSERT(!(lk && unlk));
333 printf("c %d %s\n", pda->col,
334 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
335 return;
336 }
337 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
338 || (df == rf_RecoveryXorFunc)) {
339 printf("result buf 0x%lx\n", (long) node->results[0]);
340 for (i = 0; i < node->numParams - 1; i += 2) {
341 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
342 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
343 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
344 (long) bufPtr, pda->col,
345 (long) pda->startSector, (int) pda->numSector);
346 }
347 return;
348 }
349 #if RF_INCLUDE_PARITYLOGGING > 0
350 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
351 for (i = 0; i < node->numParams - 1; i += 2) {
352 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
353 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
354 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
355 pda->col, (long) pda->startSector,
356 (int) pda->numSector, (long) bufPtr);
357 }
358 return;
359 }
360 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
361
362 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
363 printf("\n");
364 return;
365 }
366 printf("?\n");
367 }
368 #ifdef DEBUG
369 static void
370 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
371 {
372 char *anttype;
373 int i;
374
375 node->visited = (unvisited) ? 0 : 1;
376 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
377 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
378 node->numSuccedents, node->numSuccFired, node->numSuccDone,
379 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
380 for (i = 0; i < node->numSuccedents; i++) {
381 printf("%d%s", node->succedents[i]->nodeNum,
382 ((i == node->numSuccedents - 1) ? "\0" : " "));
383 }
384 printf("} A{");
385 for (i = 0; i < node->numAntecedents; i++) {
386 switch (node->antType[i]) {
387 case rf_trueData:
388 anttype = "T";
389 break;
390 case rf_antiData:
391 anttype = "A";
392 break;
393 case rf_outputData:
394 anttype = "O";
395 break;
396 case rf_control:
397 anttype = "C";
398 break;
399 default:
400 anttype = "?";
401 break;
402 }
403 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
404 }
405 printf("}; ");
406 rf_PrintNodeInfoString(node);
407 for (i = 0; i < node->numSuccedents; i++) {
408 if (node->succedents[i]->visited == unvisited)
409 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
410 }
411 }
412
413 static void
414 rf_PrintDAG(RF_DagHeader_t *dag_h)
415 {
416 int unvisited, i;
417 char *status;
418
419 /* set dag status */
420 switch (dag_h->status) {
421 case rf_enable:
422 status = "enable";
423 break;
424 case rf_rollForward:
425 status = "rollForward";
426 break;
427 case rf_rollBackward:
428 status = "rollBackward";
429 break;
430 default:
431 status = "illegal!";
432 break;
433 }
434 /* find out if visited bits are currently set or clear */
435 unvisited = dag_h->succedents[0]->visited;
436
437 printf("DAG type: %s\n", dag_h->creator);
438 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
439 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
440 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
441 for (i = 0; i < dag_h->numSuccedents; i++) {
442 printf("%d%s", dag_h->succedents[i]->nodeNum,
443 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
444 }
445 printf("};\n");
446 for (i = 0; i < dag_h->numSuccedents; i++) {
447 if (dag_h->succedents[i]->visited == unvisited)
448 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
449 }
450 }
451 #endif
452 /* assigns node numbers */
453 int
454 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
455 {
456 int unvisited, i, nnum;
457 RF_DagNode_t *node;
458
459 nnum = 0;
460 unvisited = dag_h->succedents[0]->visited;
461
462 dag_h->nodeNum = nnum++;
463 for (i = 0; i < dag_h->numSuccedents; i++) {
464 node = dag_h->succedents[i];
465 if (node->visited == unvisited) {
466 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
467 }
468 }
469 return (nnum);
470 }
471
472 int
473 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
474 {
475 int i;
476
477 node->visited = (unvisited) ? 0 : 1;
478
479 node->nodeNum = num++;
480 for (i = 0; i < node->numSuccedents; i++) {
481 if (node->succedents[i]->visited == unvisited) {
482 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
483 }
484 }
485 return (num);
486 }
487 /* set the header pointers in each node to "newptr" */
488 void
489 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
490 {
491 int i;
492 for (i = 0; i < dag_h->numSuccedents; i++)
493 if (dag_h->succedents[i]->dagHdr != newptr)
494 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
495 }
496
497 void
498 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
499 {
500 int i;
501 node->dagHdr = newptr;
502 for (i = 0; i < node->numSuccedents; i++)
503 if (node->succedents[i]->dagHdr != newptr)
504 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
505 }
506
507
508 void
509 rf_PrintDAGList(RF_DagHeader_t * dag_h)
510 {
511 int i = 0;
512
513 for (; dag_h; dag_h = dag_h->next) {
514 rf_AssignNodeNums(dag_h);
515 printf("\n\nDAG %d IN LIST:\n", i++);
516 rf_PrintDAG(dag_h);
517 }
518 }
519
520 static int
521 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
522 RF_DagNode_t **nodes, int unvisited)
523 {
524 int i, retcode = 0;
525
526 /* construct an array of node pointers indexed by node num */
527 node->visited = (unvisited) ? 0 : 1;
528 nodes[node->nodeNum] = node;
529
530 if (node->next != NULL) {
531 printf("INVALID DAG: next pointer in node is not NULL\n");
532 retcode = 1;
533 }
534 if (node->status != rf_wait) {
535 printf("INVALID DAG: Node status is not wait\n");
536 retcode = 1;
537 }
538 if (node->numAntDone != 0) {
539 printf("INVALID DAG: numAntDone is not zero\n");
540 retcode = 1;
541 }
542 if (node->doFunc == rf_TerminateFunc) {
543 if (node->numSuccedents != 0) {
544 printf("INVALID DAG: Terminator node has succedents\n");
545 retcode = 1;
546 }
547 } else {
548 if (node->numSuccedents == 0) {
549 printf("INVALID DAG: Non-terminator node has no succedents\n");
550 retcode = 1;
551 }
552 }
553 for (i = 0; i < node->numSuccedents; i++) {
554 if (!node->succedents[i]) {
555 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
556 retcode = 1;
557 }
558 scount[node->succedents[i]->nodeNum]++;
559 }
560 for (i = 0; i < node->numAntecedents; i++) {
561 if (!node->antecedents[i]) {
562 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
563 retcode = 1;
564 }
565 acount[node->antecedents[i]->nodeNum]++;
566 }
567 for (i = 0; i < node->numSuccedents; i++) {
568 if (node->succedents[i]->visited == unvisited) {
569 if (rf_ValidateBranch(node->succedents[i], scount,
570 acount, nodes, unvisited)) {
571 retcode = 1;
572 }
573 }
574 }
575 return (retcode);
576 }
577
578 static void
579 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
580 {
581 int i;
582
583 RF_ASSERT(node->visited == unvisited);
584 for (i = 0; i < node->numSuccedents; i++) {
585 if (node->succedents[i] == NULL) {
586 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
587 RF_ASSERT(0);
588 }
589 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
590 }
591 }
592 /* NOTE: never call this on a big dag, because it is exponential
593 * in execution time
594 */
595 static void
596 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
597 {
598 int i, unvisited;
599
600 unvisited = dag->succedents[0]->visited;
601
602 for (i = 0; i < dag->numSuccedents; i++) {
603 if (dag->succedents[i] == NULL) {
604 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
605 RF_ASSERT(0);
606 }
607 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
608 }
609 }
610 /* validate a DAG. _at entry_ verify that:
611 * -- numNodesCompleted is zero
612 * -- node queue is null
613 * -- dag status is rf_enable
614 * -- next pointer is null on every node
615 * -- all nodes have status wait
616 * -- numAntDone is zero in all nodes
617 * -- terminator node has zero successors
618 * -- no other node besides terminator has zero successors
619 * -- no successor or antecedent pointer in a node is NULL
620 * -- number of times that each node appears as a successor of another node
621 * is equal to the antecedent count on that node
622 * -- number of times that each node appears as an antecedent of another node
623 * is equal to the succedent count on that node
624 * -- what else?
625 */
626 int
627 rf_ValidateDAG(RF_DagHeader_t *dag_h)
628 {
629 int i, nodecount;
630 int *scount, *acount;/* per-node successor and antecedent counts */
631 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
632 int retcode = 0;
633 int unvisited;
634 int commitNodeCount = 0;
635
636 if (rf_validateVisitedDebug)
637 rf_ValidateVisitedBits(dag_h);
638
639 if (dag_h->numNodesCompleted != 0) {
640 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
641 retcode = 1;
642 goto validate_dag_bad;
643 }
644 if (dag_h->status != rf_enable) {
645 printf("INVALID DAG: not enabled\n");
646 retcode = 1;
647 goto validate_dag_bad;
648 }
649 if (dag_h->numCommits != 0) {
650 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
651 retcode = 1;
652 goto validate_dag_bad;
653 }
654 if (dag_h->numSuccedents != 1) {
655 /* currently, all dags must have only one succedent */
656 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
657 retcode = 1;
658 goto validate_dag_bad;
659 }
660 nodecount = rf_AssignNodeNums(dag_h);
661
662 unvisited = dag_h->succedents[0]->visited;
663
664 RF_Malloc(scount, nodecount * sizeof(int), (int *));
665 RF_Malloc(acount, nodecount * sizeof(int), (int *));
666 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
667 (RF_DagNode_t **));
668 for (i = 0; i < dag_h->numSuccedents; i++) {
669 if ((dag_h->succedents[i]->visited == unvisited)
670 && rf_ValidateBranch(dag_h->succedents[i], scount,
671 acount, nodes, unvisited)) {
672 retcode = 1;
673 }
674 }
675 /* start at 1 to skip the header node */
676 for (i = 1; i < nodecount; i++) {
677 if (nodes[i]->commitNode)
678 commitNodeCount++;
679 if (nodes[i]->doFunc == NULL) {
680 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
681 retcode = 1;
682 goto validate_dag_out;
683 }
684 if (nodes[i]->undoFunc == NULL) {
685 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
686 retcode = 1;
687 goto validate_dag_out;
688 }
689 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
690 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
691 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
692 retcode = 1;
693 goto validate_dag_out;
694 }
695 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
696 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
697 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
698 retcode = 1;
699 goto validate_dag_out;
700 }
701 }
702
703 if (dag_h->numCommitNodes != commitNodeCount) {
704 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
705 dag_h->numCommitNodes, commitNodeCount);
706 retcode = 1;
707 goto validate_dag_out;
708 }
709 validate_dag_out:
710 RF_Free(scount, nodecount * sizeof(int));
711 RF_Free(acount, nodecount * sizeof(int));
712 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
713 if (retcode)
714 rf_PrintDAGList(dag_h);
715
716 if (rf_validateVisitedDebug)
717 rf_ValidateVisitedBits(dag_h);
718
719 return (retcode);
720
721 validate_dag_bad:
722 rf_PrintDAGList(dag_h);
723 return (retcode);
724 }
725
726 #endif /* RF_DEBUG_VALIDATE_DAG */
727
728 /******************************************************************************
729 *
730 * misc construction routines
731 *
732 *****************************************************************************/
733
734 void
735 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
736 {
737 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
738 int fcol = raidPtr->reconControl->fcol;
739 int scol = raidPtr->reconControl->spareCol;
740 RF_PhysDiskAddr_t *pda;
741
742 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
743 for (pda = asmap->physInfo; pda; pda = pda->next) {
744 if (pda->col == fcol) {
745 if (rf_dagDebug) {
746 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
747 pda->startSector)) {
748 RF_PANIC();
749 }
750 }
751 /* printf("Remapped data for large write\n"); */
752 if (ds) {
753 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
754 &pda->col, &pda->startSector, RF_REMAP);
755 } else {
756 pda->col = scol;
757 }
758 }
759 }
760 for (pda = asmap->parityInfo; pda; pda = pda->next) {
761 if (pda->col == fcol) {
762 if (rf_dagDebug) {
763 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
764 RF_PANIC();
765 }
766 }
767 }
768 if (ds) {
769 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
770 } else {
771 pda->col = scol;
772 }
773 }
774 }
775
776
777 /* this routine allocates read buffers and generates stripe maps for the
778 * regions of the array from the start of the stripe to the start of the
779 * access, and from the end of the access to the end of the stripe. It also
780 * computes and returns the number of DAG nodes needed to read all this data.
781 * Note that this routine does the wrong thing if the access is fully
782 * contained within one stripe unit, so we RF_ASSERT against this case at the
783 * start.
784 *
785 * layoutPtr - in: layout information
786 * asmap - in: access stripe map
787 * dag_h - in: header of the dag to create
788 * new_asm_h - in: ptr to array of 2 headers. to be filled in
789 * nRodNodes - out: num nodes to be generated to read unaccessed data
790 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
791 */
792 void
793 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
794 RF_RaidLayout_t *layoutPtr,
795 RF_AccessStripeMap_t *asmap,
796 RF_DagHeader_t *dag_h,
797 RF_AccessStripeMapHeader_t **new_asm_h,
798 int *nRodNodes,
799 char **sosBuffer, char **eosBuffer,
800 RF_AllocListElem_t *allocList)
801 {
802 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
803 RF_SectorNum_t sosNumSector, eosNumSector;
804
805 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
806 /* generate an access map for the region of the array from start of
807 * stripe to start of access */
808 new_asm_h[0] = new_asm_h[1] = NULL;
809 *nRodNodes = 0;
810 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
811 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
812 sosNumSector = asmap->raidAddress - sosRaidAddress;
813 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
814 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
815 new_asm_h[0]->next = dag_h->asmList;
816 dag_h->asmList = new_asm_h[0];
817 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
818
819 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
820 /* we're totally within one stripe here */
821 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
822 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
823 }
824 /* generate an access map for the region of the array from end of
825 * access to end of stripe */
826 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
827 eosRaidAddress = asmap->endRaidAddress;
828 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
829 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
830 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
831 new_asm_h[1]->next = dag_h->asmList;
832 dag_h->asmList = new_asm_h[1];
833 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
834
835 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
836 /* we're totally within one stripe here */
837 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
838 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
839 }
840 }
841
842
843
844 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
845 int
846 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
847 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
848 {
849 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
850 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
851 /* use -1 to be sure we stay within SU */
852 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
853 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
854 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
855 }
856
857
858 /* GenerateFailedAccessASMs
859 *
860 * this routine figures out what portion of the stripe needs to be read
861 * to effect the degraded read or write operation. It's primary function
862 * is to identify everything required to recover the data, and then
863 * eliminate anything that is already being accessed by the user.
864 *
865 * The main result is two new ASMs, one for the region from the start of the
866 * stripe to the start of the access, and one for the region from the end of
867 * the access to the end of the stripe. These ASMs describe everything that
868 * needs to be read to effect the degraded access. Other results are:
869 * nXorBufs -- the total number of buffers that need to be XORed together to
870 * recover the lost data,
871 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
872 * at entry, not allocated.
873 * overlappingPDAs --
874 * describes which of the non-failed PDAs in the user access
875 * overlap data that needs to be read to effect recovery.
876 * overlappingPDAs[i]==1 if and only if, neglecting the failed
877 * PDA, the ith pda in the input asm overlaps data that needs
878 * to be read for recovery.
879 */
880 /* in: asm - ASM for the actual access, one stripe only */
881 /* in: failedPDA - which component of the access has failed */
882 /* in: dag_h - header of the DAG we're going to create */
883 /* out: new_asm_h - the two new ASMs */
884 /* out: nXorBufs - the total number of xor bufs required */
885 /* out: rpBufPtr - a buffer for the parity read */
886 void
887 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
888 RF_PhysDiskAddr_t *failedPDA,
889 RF_DagHeader_t *dag_h,
890 RF_AccessStripeMapHeader_t **new_asm_h,
891 int *nXorBufs, char **rpBufPtr,
892 char *overlappingPDAs,
893 RF_AllocListElem_t *allocList)
894 {
895 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
896
897 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
898 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
899
900 RF_SectorCount_t numSect[2], numParitySect;
901 RF_PhysDiskAddr_t *pda;
902 char *rdBuf, *bufP;
903 int foundit, i;
904
905 bufP = NULL;
906 foundit = 0;
907 /* first compute the following raid addresses: start of stripe,
908 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
909 * MAX(end of access, end of failed SU), (eosStartAddr) end of
910 * stripe (i.e. start of next stripe) (eosAddr) */
911 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
912 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
913 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
914 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
915
916 /* now generate access stripe maps for each of the above regions of
917 * the stripe. Use a dummy (NULL) buf ptr for now */
918
919 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
920 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
921
922 /* walk through the PDAs and range-restrict each SU to the region of
923 * the SU touched on the failed PDA. also compute total data buffer
924 * space requirements in this step. Ignore the parity for now. */
925
926 numSect[0] = numSect[1] = 0;
927 if (new_asm_h[0]) {
928 new_asm_h[0]->next = dag_h->asmList;
929 dag_h->asmList = new_asm_h[0];
930 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
931 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
932 numSect[0] += pda->numSector;
933 }
934 }
935 if (new_asm_h[1]) {
936 new_asm_h[1]->next = dag_h->asmList;
937 dag_h->asmList = new_asm_h[1];
938 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
939 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
940 numSect[1] += pda->numSector;
941 }
942 }
943 numParitySect = failedPDA->numSector;
944
945 /* allocate buffer space for the data & parity we have to read to
946 * recover from the failure */
947
948 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
949 * buf if not needed */
950 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
951 bufP = rdBuf;
952 if (rf_degDagDebug)
953 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
954 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
955 }
956 /* now walk through the pdas one last time and assign buffer pointers
957 * (ugh!). Again, ignore the parity. also, count nodes to find out
958 * how many bufs need to be xored together */
959 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
960 * case, 1 is for failed data */
961 if (new_asm_h[0]) {
962 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
963 pda->bufPtr = bufP;
964 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
965 }
966 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
967 }
968 if (new_asm_h[1]) {
969 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
970 pda->bufPtr = bufP;
971 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
972 }
973 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
974 }
975 if (rpBufPtr)
976 *rpBufPtr = bufP; /* the rest of the buffer is for
977 * parity */
978
979 /* the last step is to figure out how many more distinct buffers need
980 * to get xor'd to produce the missing unit. there's one for each
981 * user-data read node that overlaps the portion of the failed unit
982 * being accessed */
983
984 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
985 if (pda == failedPDA) {
986 i--;
987 foundit = 1;
988 continue;
989 }
990 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
991 overlappingPDAs[i] = 1;
992 (*nXorBufs)++;
993 }
994 }
995 if (!foundit) {
996 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
997 RF_ASSERT(0);
998 }
999 if (rf_degDagDebug) {
1000 if (new_asm_h[0]) {
1001 printf("First asm:\n");
1002 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1003 }
1004 if (new_asm_h[1]) {
1005 printf("Second asm:\n");
1006 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1007 }
1008 }
1009 }
1010
1011
1012 /* adjusts the offset and number of sectors in the destination pda so that
1013 * it covers at most the region of the SU covered by the source PDA. This
1014 * is exclusively a restriction: the number of sectors indicated by the
1015 * target PDA can only shrink.
1016 *
1017 * For example: s = sectors within SU indicated by source PDA
1018 * d = sectors within SU indicated by dest PDA
1019 * r = results, stored in dest PDA
1020 *
1021 * |--------------- one stripe unit ---------------------|
1022 * | sssssssssssssssssssssssssssssssss |
1023 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1024 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1025 *
1026 * Another example:
1027 *
1028 * |--------------- one stripe unit ---------------------|
1029 * | sssssssssssssssssssssssssssssssss |
1030 * | ddddddddddddddddddddddd |
1031 * | rrrrrrrrrrrrrrrr |
1032 *
1033 */
1034 void
1035 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1036 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1037 {
1038 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1039 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1040 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1041 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1042 * stay within SU */
1043 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1044 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1045
1046 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1047 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1048
1049 if (dobuffer)
1050 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1051 if (doraidaddr) {
1052 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1053 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1054 }
1055 }
1056
1057 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1058
1059 /*
1060 * Want the highest of these primes to be the largest one
1061 * less than the max expected number of columns (won't hurt
1062 * to be too small or too large, but won't be optimal, either)
1063 * --jimz
1064 */
1065 #define NLOWPRIMES 8
1066 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1067 /*****************************************************************************
1068 * compute the workload shift factor. (chained declustering)
1069 *
1070 * return nonzero if access should shift to secondary, otherwise,
1071 * access is to primary
1072 *****************************************************************************/
1073 int
1074 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1075 {
1076 /*
1077 * variables:
1078 * d = column of disk containing primary
1079 * f = column of failed disk
1080 * n = number of disks in array
1081 * sd = "shift distance" (number of columns that d is to the right of f)
1082 * v = numerator of redirection ratio
1083 * k = denominator of redirection ratio
1084 */
1085 RF_RowCol_t d, f, sd, n;
1086 int k, v, ret, i;
1087
1088 n = raidPtr->numCol;
1089
1090 /* assign column of primary copy to d */
1091 d = pda->col;
1092
1093 /* assign column of dead disk to f */
1094 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1095
1096 RF_ASSERT(f < n);
1097 RF_ASSERT(f != d);
1098
1099 sd = (f > d) ? (n + d - f) : (d - f);
1100 RF_ASSERT(sd < n);
1101
1102 /*
1103 * v of every k accesses should be redirected
1104 *
1105 * v/k := (n-1-sd)/(n-1)
1106 */
1107 v = (n - 1 - sd);
1108 k = (n - 1);
1109
1110 #if 1
1111 /*
1112 * XXX
1113 * Is this worth it?
1114 *
1115 * Now reduce the fraction, by repeatedly factoring
1116 * out primes (just like they teach in elementary school!)
1117 */
1118 for (i = 0; i < NLOWPRIMES; i++) {
1119 if (lowprimes[i] > v)
1120 break;
1121 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1122 v /= lowprimes[i];
1123 k /= lowprimes[i];
1124 }
1125 }
1126 #endif
1127
1128 raidPtr->hist_diskreq[d]++;
1129 if (raidPtr->hist_diskreq[d] > v) {
1130 ret = 0; /* do not redirect */
1131 } else {
1132 ret = 1; /* redirect */
1133 }
1134
1135 #if 0
1136 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1137 raidPtr->hist_diskreq[d]);
1138 #endif
1139
1140 if (raidPtr->hist_diskreq[d] >= k) {
1141 /* reset counter */
1142 raidPtr->hist_diskreq[d] = 0;
1143 }
1144 return (ret);
1145 }
1146 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1147
1148 /*
1149 * Disk selection routines
1150 */
1151
1152 /*
1153 * Selects the disk with the shortest queue from a mirror pair.
1154 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1155 * disk are counted as members of the "queue"
1156 */
1157 void
1158 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1159 {
1160 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1161 RF_RowCol_t colData, colMirror;
1162 int dataQueueLength, mirrorQueueLength, usemirror;
1163 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1164 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1165 RF_PhysDiskAddr_t *tmp_pda;
1166 RF_RaidDisk_t *disks = raidPtr->Disks;
1167 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1168
1169 /* return the [row col] of the disk with the shortest queue */
1170 colData = data_pda->col;
1171 colMirror = mirror_pda->col;
1172 dataQueue = &(dqs[colData]);
1173 mirrorQueue = &(dqs[colMirror]);
1174
1175 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1176 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1177 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1178 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1179 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1180 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1181 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1182 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1183 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1184 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1185 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1186 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1187
1188 usemirror = 0;
1189 if (RF_DEAD_DISK(disks[colMirror].status)) {
1190 usemirror = 0;
1191 } else
1192 if (RF_DEAD_DISK(disks[colData].status)) {
1193 usemirror = 1;
1194 } else
1195 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1196 /* Trust only the main disk */
1197 usemirror = 0;
1198 } else
1199 if (dataQueueLength < mirrorQueueLength) {
1200 usemirror = 0;
1201 } else
1202 if (mirrorQueueLength < dataQueueLength) {
1203 usemirror = 1;
1204 } else {
1205 /* queues are equal length. attempt
1206 * cleverness. */
1207 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1208 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1209 usemirror = 0;
1210 } else {
1211 usemirror = 1;
1212 }
1213 }
1214
1215 if (usemirror) {
1216 /* use mirror (parity) disk, swap params 0 & 4 */
1217 tmp_pda = data_pda;
1218 node->params[0].p = mirror_pda;
1219 node->params[4].p = tmp_pda;
1220 } else {
1221 /* use data disk, leave param 0 unchanged */
1222 }
1223 /* printf("dataQueueLength %d, mirrorQueueLength
1224 * %d\n",dataQueueLength, mirrorQueueLength); */
1225 }
1226 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1227 /*
1228 * Do simple partitioning. This assumes that
1229 * the data and parity disks are laid out identically.
1230 */
1231 void
1232 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1233 {
1234 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1235 RF_RowCol_t colData, colMirror;
1236 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1237 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1238 RF_PhysDiskAddr_t *tmp_pda;
1239 RF_RaidDisk_t *disks = raidPtr->Disks;
1240 int usemirror;
1241
1242 /* return the [row col] of the disk with the shortest queue */
1243 colData = data_pda->col;
1244 colMirror = mirror_pda->col;
1245
1246 usemirror = 0;
1247 if (RF_DEAD_DISK(disks[colMirror].status)) {
1248 usemirror = 0;
1249 } else
1250 if (RF_DEAD_DISK(disks[colData].status)) {
1251 usemirror = 1;
1252 } else
1253 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1254 /* Trust only the main disk */
1255 usemirror = 0;
1256 } else
1257 if (data_pda->startSector <
1258 (disks[colData].numBlocks / 2)) {
1259 usemirror = 0;
1260 } else {
1261 usemirror = 1;
1262 }
1263
1264 if (usemirror) {
1265 /* use mirror (parity) disk, swap params 0 & 4 */
1266 tmp_pda = data_pda;
1267 node->params[0].p = mirror_pda;
1268 node->params[4].p = tmp_pda;
1269 } else {
1270 /* use data disk, leave param 0 unchanged */
1271 }
1272 }
1273 #endif
1274