rf_dagutils.c revision 1.29 1 /* $NetBSD: rf_dagutils.c,v 1.29 2004/02/29 04:03:50 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.29 2004/02/29 04:03:50 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_DAGH_INC 16
173 #define RF_DAGH_INITIAL 32
174
175 static struct pool rf_daglist_pool;
176 #define RF_MAX_FREE_DAGLIST 128
177 #define RF_DAGLIST_INITIAL 32
178
179 static struct pool rf_funclist_pool;
180 #define RF_MAX_FREE_FUNCLIST 128
181 #define RF_FUNCLIST_INITIAL 32
182
183 static void rf_ShutdownDAGs(void *);
184 static void
185 rf_ShutdownDAGs(void *ignored)
186 {
187 pool_destroy(&rf_dagh_pool);
188 pool_destroy(&rf_daglist_pool);
189 pool_destroy(&rf_funclist_pool);
190 }
191
192 int
193 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
194 {
195
196 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
197 "rf_dagh_pl", NULL);
198 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
199 pool_prime(&rf_dagh_pool, RF_DAGH_INITIAL);
200
201 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
202 "rf_daglist_pl", NULL);
203 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
204 pool_prime(&rf_daglist_pool, RF_DAGLIST_INITIAL);
205
206 pool_init(&rf_funclist_pool, sizeof(RF_FuncList_t), 0, 0, 0,
207 "rf_funcist_pl", NULL);
208 pool_sethiwat(&rf_funclist_pool, RF_MAX_FREE_FUNCLIST);
209 pool_prime(&rf_funclist_pool, RF_FUNCLIST_INITIAL);
210
211 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
212
213 return (0);
214 }
215
216 RF_DagHeader_t *
217 rf_AllocDAGHeader()
218 {
219 RF_DagHeader_t *dh;
220
221 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
222 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
223 return (dh);
224 }
225
226 void
227 rf_FreeDAGHeader(RF_DagHeader_t * dh)
228 {
229 pool_put(&rf_dagh_pool, dh);
230 }
231
232 RF_DagList_t *
233 rf_AllocDAGList()
234 {
235 RF_DagList_t *dagList;
236
237 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
238 memset(dagList, 0, sizeof(RF_DagList_t));
239
240 return (dagList);
241 }
242
243 void
244 rf_FreeDAGList(RF_DagList_t *dagList)
245 {
246 pool_put(&rf_daglist_pool, dagList);
247 }
248
249 RF_FuncList_t *
250 rf_AllocFuncList()
251 {
252 RF_FuncList_t *funcList;
253
254 funcList = pool_get(&rf_funclist_pool, PR_WAITOK);
255 memset(funcList, 0, sizeof(RF_FuncList_t));
256
257 return (funcList);
258 }
259
260 void
261 rf_FreeFuncList(RF_FuncList_t *funcList)
262 {
263 pool_put(&rf_funclist_pool, funcList);
264 }
265
266
267
268 /* allocates a buffer big enough to hold the data described by pda */
269 void *
270 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
271 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
272 {
273 char *p;
274
275 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
276 (char *), allocList);
277 return ((void *) p);
278 }
279 #if RF_DEBUG_VALIDATE_DAG
280 /******************************************************************************
281 *
282 * debug routines
283 *
284 *****************************************************************************/
285
286 char *
287 rf_NodeStatusString(RF_DagNode_t *node)
288 {
289 switch (node->status) {
290 case rf_wait:return ("wait");
291 case rf_fired:
292 return ("fired");
293 case rf_good:
294 return ("good");
295 case rf_bad:
296 return ("bad");
297 default:
298 return ("?");
299 }
300 }
301
302 void
303 rf_PrintNodeInfoString(RF_DagNode_t *node)
304 {
305 RF_PhysDiskAddr_t *pda;
306 int (*df) (RF_DagNode_t *) = node->doFunc;
307 int i, lk, unlk;
308 void *bufPtr;
309
310 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
311 || (df == rf_DiskReadMirrorIdleFunc)
312 || (df == rf_DiskReadMirrorPartitionFunc)) {
313 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
314 bufPtr = (void *) node->params[1].p;
315 lk = 0;
316 unlk = 0;
317 RF_ASSERT(!(lk && unlk));
318 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
319 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
320 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
321 return;
322 }
323 if (df == rf_DiskUnlockFunc) {
324 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
325 lk = 0;
326 unlk = 0;
327 RF_ASSERT(!(lk && unlk));
328 printf("c %d %s\n", pda->col,
329 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
330 return;
331 }
332 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
333 || (df == rf_RecoveryXorFunc)) {
334 printf("result buf 0x%lx\n", (long) node->results[0]);
335 for (i = 0; i < node->numParams - 1; i += 2) {
336 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
337 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
338 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
339 (long) bufPtr, pda->col,
340 (long) pda->startSector, (int) pda->numSector);
341 }
342 return;
343 }
344 #if RF_INCLUDE_PARITYLOGGING > 0
345 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
346 for (i = 0; i < node->numParams - 1; i += 2) {
347 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
348 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
349 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
350 pda->col, (long) pda->startSector,
351 (int) pda->numSector, (long) bufPtr);
352 }
353 return;
354 }
355 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
356
357 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
358 printf("\n");
359 return;
360 }
361 printf("?\n");
362 }
363 #ifdef DEBUG
364 static void
365 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
366 {
367 char *anttype;
368 int i;
369
370 node->visited = (unvisited) ? 0 : 1;
371 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
372 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
373 node->numSuccedents, node->numSuccFired, node->numSuccDone,
374 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
375 for (i = 0; i < node->numSuccedents; i++) {
376 printf("%d%s", node->succedents[i]->nodeNum,
377 ((i == node->numSuccedents - 1) ? "\0" : " "));
378 }
379 printf("} A{");
380 for (i = 0; i < node->numAntecedents; i++) {
381 switch (node->antType[i]) {
382 case rf_trueData:
383 anttype = "T";
384 break;
385 case rf_antiData:
386 anttype = "A";
387 break;
388 case rf_outputData:
389 anttype = "O";
390 break;
391 case rf_control:
392 anttype = "C";
393 break;
394 default:
395 anttype = "?";
396 break;
397 }
398 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
399 }
400 printf("}; ");
401 rf_PrintNodeInfoString(node);
402 for (i = 0; i < node->numSuccedents; i++) {
403 if (node->succedents[i]->visited == unvisited)
404 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
405 }
406 }
407
408 static void
409 rf_PrintDAG(RF_DagHeader_t *dag_h)
410 {
411 int unvisited, i;
412 char *status;
413
414 /* set dag status */
415 switch (dag_h->status) {
416 case rf_enable:
417 status = "enable";
418 break;
419 case rf_rollForward:
420 status = "rollForward";
421 break;
422 case rf_rollBackward:
423 status = "rollBackward";
424 break;
425 default:
426 status = "illegal!";
427 break;
428 }
429 /* find out if visited bits are currently set or clear */
430 unvisited = dag_h->succedents[0]->visited;
431
432 printf("DAG type: %s\n", dag_h->creator);
433 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
434 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
435 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
436 for (i = 0; i < dag_h->numSuccedents; i++) {
437 printf("%d%s", dag_h->succedents[i]->nodeNum,
438 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
439 }
440 printf("};\n");
441 for (i = 0; i < dag_h->numSuccedents; i++) {
442 if (dag_h->succedents[i]->visited == unvisited)
443 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
444 }
445 }
446 #endif
447 /* assigns node numbers */
448 int
449 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
450 {
451 int unvisited, i, nnum;
452 RF_DagNode_t *node;
453
454 nnum = 0;
455 unvisited = dag_h->succedents[0]->visited;
456
457 dag_h->nodeNum = nnum++;
458 for (i = 0; i < dag_h->numSuccedents; i++) {
459 node = dag_h->succedents[i];
460 if (node->visited == unvisited) {
461 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
462 }
463 }
464 return (nnum);
465 }
466
467 int
468 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
469 {
470 int i;
471
472 node->visited = (unvisited) ? 0 : 1;
473
474 node->nodeNum = num++;
475 for (i = 0; i < node->numSuccedents; i++) {
476 if (node->succedents[i]->visited == unvisited) {
477 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
478 }
479 }
480 return (num);
481 }
482 /* set the header pointers in each node to "newptr" */
483 void
484 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
485 {
486 int i;
487 for (i = 0; i < dag_h->numSuccedents; i++)
488 if (dag_h->succedents[i]->dagHdr != newptr)
489 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
490 }
491
492 void
493 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
494 {
495 int i;
496 node->dagHdr = newptr;
497 for (i = 0; i < node->numSuccedents; i++)
498 if (node->succedents[i]->dagHdr != newptr)
499 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
500 }
501
502
503 void
504 rf_PrintDAGList(RF_DagHeader_t * dag_h)
505 {
506 int i = 0;
507
508 for (; dag_h; dag_h = dag_h->next) {
509 rf_AssignNodeNums(dag_h);
510 printf("\n\nDAG %d IN LIST:\n", i++);
511 rf_PrintDAG(dag_h);
512 }
513 }
514
515 static int
516 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
517 RF_DagNode_t **nodes, int unvisited)
518 {
519 int i, retcode = 0;
520
521 /* construct an array of node pointers indexed by node num */
522 node->visited = (unvisited) ? 0 : 1;
523 nodes[node->nodeNum] = node;
524
525 if (node->next != NULL) {
526 printf("INVALID DAG: next pointer in node is not NULL\n");
527 retcode = 1;
528 }
529 if (node->status != rf_wait) {
530 printf("INVALID DAG: Node status is not wait\n");
531 retcode = 1;
532 }
533 if (node->numAntDone != 0) {
534 printf("INVALID DAG: numAntDone is not zero\n");
535 retcode = 1;
536 }
537 if (node->doFunc == rf_TerminateFunc) {
538 if (node->numSuccedents != 0) {
539 printf("INVALID DAG: Terminator node has succedents\n");
540 retcode = 1;
541 }
542 } else {
543 if (node->numSuccedents == 0) {
544 printf("INVALID DAG: Non-terminator node has no succedents\n");
545 retcode = 1;
546 }
547 }
548 for (i = 0; i < node->numSuccedents; i++) {
549 if (!node->succedents[i]) {
550 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
551 retcode = 1;
552 }
553 scount[node->succedents[i]->nodeNum]++;
554 }
555 for (i = 0; i < node->numAntecedents; i++) {
556 if (!node->antecedents[i]) {
557 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
558 retcode = 1;
559 }
560 acount[node->antecedents[i]->nodeNum]++;
561 }
562 for (i = 0; i < node->numSuccedents; i++) {
563 if (node->succedents[i]->visited == unvisited) {
564 if (rf_ValidateBranch(node->succedents[i], scount,
565 acount, nodes, unvisited)) {
566 retcode = 1;
567 }
568 }
569 }
570 return (retcode);
571 }
572
573 static void
574 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
575 {
576 int i;
577
578 RF_ASSERT(node->visited == unvisited);
579 for (i = 0; i < node->numSuccedents; i++) {
580 if (node->succedents[i] == NULL) {
581 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
582 RF_ASSERT(0);
583 }
584 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
585 }
586 }
587 /* NOTE: never call this on a big dag, because it is exponential
588 * in execution time
589 */
590 static void
591 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
592 {
593 int i, unvisited;
594
595 unvisited = dag->succedents[0]->visited;
596
597 for (i = 0; i < dag->numSuccedents; i++) {
598 if (dag->succedents[i] == NULL) {
599 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
600 RF_ASSERT(0);
601 }
602 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
603 }
604 }
605 /* validate a DAG. _at entry_ verify that:
606 * -- numNodesCompleted is zero
607 * -- node queue is null
608 * -- dag status is rf_enable
609 * -- next pointer is null on every node
610 * -- all nodes have status wait
611 * -- numAntDone is zero in all nodes
612 * -- terminator node has zero successors
613 * -- no other node besides terminator has zero successors
614 * -- no successor or antecedent pointer in a node is NULL
615 * -- number of times that each node appears as a successor of another node
616 * is equal to the antecedent count on that node
617 * -- number of times that each node appears as an antecedent of another node
618 * is equal to the succedent count on that node
619 * -- what else?
620 */
621 int
622 rf_ValidateDAG(RF_DagHeader_t *dag_h)
623 {
624 int i, nodecount;
625 int *scount, *acount;/* per-node successor and antecedent counts */
626 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
627 int retcode = 0;
628 int unvisited;
629 int commitNodeCount = 0;
630
631 if (rf_validateVisitedDebug)
632 rf_ValidateVisitedBits(dag_h);
633
634 if (dag_h->numNodesCompleted != 0) {
635 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
636 retcode = 1;
637 goto validate_dag_bad;
638 }
639 if (dag_h->status != rf_enable) {
640 printf("INVALID DAG: not enabled\n");
641 retcode = 1;
642 goto validate_dag_bad;
643 }
644 if (dag_h->numCommits != 0) {
645 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
646 retcode = 1;
647 goto validate_dag_bad;
648 }
649 if (dag_h->numSuccedents != 1) {
650 /* currently, all dags must have only one succedent */
651 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
652 retcode = 1;
653 goto validate_dag_bad;
654 }
655 nodecount = rf_AssignNodeNums(dag_h);
656
657 unvisited = dag_h->succedents[0]->visited;
658
659 RF_Malloc(scount, nodecount * sizeof(int), (int *));
660 RF_Malloc(acount, nodecount * sizeof(int), (int *));
661 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
662 (RF_DagNode_t **));
663 for (i = 0; i < dag_h->numSuccedents; i++) {
664 if ((dag_h->succedents[i]->visited == unvisited)
665 && rf_ValidateBranch(dag_h->succedents[i], scount,
666 acount, nodes, unvisited)) {
667 retcode = 1;
668 }
669 }
670 /* start at 1 to skip the header node */
671 for (i = 1; i < nodecount; i++) {
672 if (nodes[i]->commitNode)
673 commitNodeCount++;
674 if (nodes[i]->doFunc == NULL) {
675 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
676 retcode = 1;
677 goto validate_dag_out;
678 }
679 if (nodes[i]->undoFunc == NULL) {
680 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
681 retcode = 1;
682 goto validate_dag_out;
683 }
684 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
685 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
686 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
687 retcode = 1;
688 goto validate_dag_out;
689 }
690 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
691 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
692 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
693 retcode = 1;
694 goto validate_dag_out;
695 }
696 }
697
698 if (dag_h->numCommitNodes != commitNodeCount) {
699 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
700 dag_h->numCommitNodes, commitNodeCount);
701 retcode = 1;
702 goto validate_dag_out;
703 }
704 validate_dag_out:
705 RF_Free(scount, nodecount * sizeof(int));
706 RF_Free(acount, nodecount * sizeof(int));
707 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
708 if (retcode)
709 rf_PrintDAGList(dag_h);
710
711 if (rf_validateVisitedDebug)
712 rf_ValidateVisitedBits(dag_h);
713
714 return (retcode);
715
716 validate_dag_bad:
717 rf_PrintDAGList(dag_h);
718 return (retcode);
719 }
720
721 #endif /* RF_DEBUG_VALIDATE_DAG */
722
723 /******************************************************************************
724 *
725 * misc construction routines
726 *
727 *****************************************************************************/
728
729 void
730 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
731 {
732 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
733 int fcol = raidPtr->reconControl->fcol;
734 int scol = raidPtr->reconControl->spareCol;
735 RF_PhysDiskAddr_t *pda;
736
737 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
738 for (pda = asmap->physInfo; pda; pda = pda->next) {
739 if (pda->col == fcol) {
740 if (rf_dagDebug) {
741 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
742 pda->startSector)) {
743 RF_PANIC();
744 }
745 }
746 /* printf("Remapped data for large write\n"); */
747 if (ds) {
748 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
749 &pda->col, &pda->startSector, RF_REMAP);
750 } else {
751 pda->col = scol;
752 }
753 }
754 }
755 for (pda = asmap->parityInfo; pda; pda = pda->next) {
756 if (pda->col == fcol) {
757 if (rf_dagDebug) {
758 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
759 RF_PANIC();
760 }
761 }
762 }
763 if (ds) {
764 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
765 } else {
766 pda->col = scol;
767 }
768 }
769 }
770
771
772 /* this routine allocates read buffers and generates stripe maps for the
773 * regions of the array from the start of the stripe to the start of the
774 * access, and from the end of the access to the end of the stripe. It also
775 * computes and returns the number of DAG nodes needed to read all this data.
776 * Note that this routine does the wrong thing if the access is fully
777 * contained within one stripe unit, so we RF_ASSERT against this case at the
778 * start.
779 *
780 * layoutPtr - in: layout information
781 * asmap - in: access stripe map
782 * dag_h - in: header of the dag to create
783 * new_asm_h - in: ptr to array of 2 headers. to be filled in
784 * nRodNodes - out: num nodes to be generated to read unaccessed data
785 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
786 */
787 void
788 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
789 RF_RaidLayout_t *layoutPtr,
790 RF_AccessStripeMap_t *asmap,
791 RF_DagHeader_t *dag_h,
792 RF_AccessStripeMapHeader_t **new_asm_h,
793 int *nRodNodes,
794 char **sosBuffer, char **eosBuffer,
795 RF_AllocListElem_t *allocList)
796 {
797 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
798 RF_SectorNum_t sosNumSector, eosNumSector;
799
800 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
801 /* generate an access map for the region of the array from start of
802 * stripe to start of access */
803 new_asm_h[0] = new_asm_h[1] = NULL;
804 *nRodNodes = 0;
805 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
806 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
807 sosNumSector = asmap->raidAddress - sosRaidAddress;
808 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
809 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
810 new_asm_h[0]->next = dag_h->asmList;
811 dag_h->asmList = new_asm_h[0];
812 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
813
814 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
815 /* we're totally within one stripe here */
816 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
817 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
818 }
819 /* generate an access map for the region of the array from end of
820 * access to end of stripe */
821 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
822 eosRaidAddress = asmap->endRaidAddress;
823 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
824 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
825 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
826 new_asm_h[1]->next = dag_h->asmList;
827 dag_h->asmList = new_asm_h[1];
828 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
829
830 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
831 /* we're totally within one stripe here */
832 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
833 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
834 }
835 }
836
837
838
839 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
840 int
841 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
842 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
843 {
844 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
845 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
846 /* use -1 to be sure we stay within SU */
847 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
848 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
849 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
850 }
851
852
853 /* GenerateFailedAccessASMs
854 *
855 * this routine figures out what portion of the stripe needs to be read
856 * to effect the degraded read or write operation. It's primary function
857 * is to identify everything required to recover the data, and then
858 * eliminate anything that is already being accessed by the user.
859 *
860 * The main result is two new ASMs, one for the region from the start of the
861 * stripe to the start of the access, and one for the region from the end of
862 * the access to the end of the stripe. These ASMs describe everything that
863 * needs to be read to effect the degraded access. Other results are:
864 * nXorBufs -- the total number of buffers that need to be XORed together to
865 * recover the lost data,
866 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
867 * at entry, not allocated.
868 * overlappingPDAs --
869 * describes which of the non-failed PDAs in the user access
870 * overlap data that needs to be read to effect recovery.
871 * overlappingPDAs[i]==1 if and only if, neglecting the failed
872 * PDA, the ith pda in the input asm overlaps data that needs
873 * to be read for recovery.
874 */
875 /* in: asm - ASM for the actual access, one stripe only */
876 /* in: failedPDA - which component of the access has failed */
877 /* in: dag_h - header of the DAG we're going to create */
878 /* out: new_asm_h - the two new ASMs */
879 /* out: nXorBufs - the total number of xor bufs required */
880 /* out: rpBufPtr - a buffer for the parity read */
881 void
882 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
883 RF_PhysDiskAddr_t *failedPDA,
884 RF_DagHeader_t *dag_h,
885 RF_AccessStripeMapHeader_t **new_asm_h,
886 int *nXorBufs, char **rpBufPtr,
887 char *overlappingPDAs,
888 RF_AllocListElem_t *allocList)
889 {
890 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
891
892 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
893 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
894
895 RF_SectorCount_t numSect[2], numParitySect;
896 RF_PhysDiskAddr_t *pda;
897 char *rdBuf, *bufP;
898 int foundit, i;
899
900 bufP = NULL;
901 foundit = 0;
902 /* first compute the following raid addresses: start of stripe,
903 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
904 * MAX(end of access, end of failed SU), (eosStartAddr) end of
905 * stripe (i.e. start of next stripe) (eosAddr) */
906 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
907 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
908 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
909 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
910
911 /* now generate access stripe maps for each of the above regions of
912 * the stripe. Use a dummy (NULL) buf ptr for now */
913
914 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
915 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
916
917 /* walk through the PDAs and range-restrict each SU to the region of
918 * the SU touched on the failed PDA. also compute total data buffer
919 * space requirements in this step. Ignore the parity for now. */
920
921 numSect[0] = numSect[1] = 0;
922 if (new_asm_h[0]) {
923 new_asm_h[0]->next = dag_h->asmList;
924 dag_h->asmList = new_asm_h[0];
925 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
926 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
927 numSect[0] += pda->numSector;
928 }
929 }
930 if (new_asm_h[1]) {
931 new_asm_h[1]->next = dag_h->asmList;
932 dag_h->asmList = new_asm_h[1];
933 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
934 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
935 numSect[1] += pda->numSector;
936 }
937 }
938 numParitySect = failedPDA->numSector;
939
940 /* allocate buffer space for the data & parity we have to read to
941 * recover from the failure */
942
943 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
944 * buf if not needed */
945 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
946 bufP = rdBuf;
947 if (rf_degDagDebug)
948 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
949 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
950 }
951 /* now walk through the pdas one last time and assign buffer pointers
952 * (ugh!). Again, ignore the parity. also, count nodes to find out
953 * how many bufs need to be xored together */
954 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
955 * case, 1 is for failed data */
956 if (new_asm_h[0]) {
957 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
958 pda->bufPtr = bufP;
959 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
960 }
961 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
962 }
963 if (new_asm_h[1]) {
964 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
965 pda->bufPtr = bufP;
966 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
967 }
968 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
969 }
970 if (rpBufPtr)
971 *rpBufPtr = bufP; /* the rest of the buffer is for
972 * parity */
973
974 /* the last step is to figure out how many more distinct buffers need
975 * to get xor'd to produce the missing unit. there's one for each
976 * user-data read node that overlaps the portion of the failed unit
977 * being accessed */
978
979 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
980 if (pda == failedPDA) {
981 i--;
982 foundit = 1;
983 continue;
984 }
985 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
986 overlappingPDAs[i] = 1;
987 (*nXorBufs)++;
988 }
989 }
990 if (!foundit) {
991 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
992 RF_ASSERT(0);
993 }
994 if (rf_degDagDebug) {
995 if (new_asm_h[0]) {
996 printf("First asm:\n");
997 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
998 }
999 if (new_asm_h[1]) {
1000 printf("Second asm:\n");
1001 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1002 }
1003 }
1004 }
1005
1006
1007 /* adjusts the offset and number of sectors in the destination pda so that
1008 * it covers at most the region of the SU covered by the source PDA. This
1009 * is exclusively a restriction: the number of sectors indicated by the
1010 * target PDA can only shrink.
1011 *
1012 * For example: s = sectors within SU indicated by source PDA
1013 * d = sectors within SU indicated by dest PDA
1014 * r = results, stored in dest PDA
1015 *
1016 * |--------------- one stripe unit ---------------------|
1017 * | sssssssssssssssssssssssssssssssss |
1018 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1019 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1020 *
1021 * Another example:
1022 *
1023 * |--------------- one stripe unit ---------------------|
1024 * | sssssssssssssssssssssssssssssssss |
1025 * | ddddddddddddddddddddddd |
1026 * | rrrrrrrrrrrrrrrr |
1027 *
1028 */
1029 void
1030 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1031 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1032 {
1033 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1034 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1035 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1036 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1037 * stay within SU */
1038 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1039 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1040
1041 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1042 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1043
1044 if (dobuffer)
1045 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1046 if (doraidaddr) {
1047 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1048 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1049 }
1050 }
1051
1052 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1053
1054 /*
1055 * Want the highest of these primes to be the largest one
1056 * less than the max expected number of columns (won't hurt
1057 * to be too small or too large, but won't be optimal, either)
1058 * --jimz
1059 */
1060 #define NLOWPRIMES 8
1061 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1062 /*****************************************************************************
1063 * compute the workload shift factor. (chained declustering)
1064 *
1065 * return nonzero if access should shift to secondary, otherwise,
1066 * access is to primary
1067 *****************************************************************************/
1068 int
1069 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1070 {
1071 /*
1072 * variables:
1073 * d = column of disk containing primary
1074 * f = column of failed disk
1075 * n = number of disks in array
1076 * sd = "shift distance" (number of columns that d is to the right of f)
1077 * v = numerator of redirection ratio
1078 * k = denominator of redirection ratio
1079 */
1080 RF_RowCol_t d, f, sd, n;
1081 int k, v, ret, i;
1082
1083 n = raidPtr->numCol;
1084
1085 /* assign column of primary copy to d */
1086 d = pda->col;
1087
1088 /* assign column of dead disk to f */
1089 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1090
1091 RF_ASSERT(f < n);
1092 RF_ASSERT(f != d);
1093
1094 sd = (f > d) ? (n + d - f) : (d - f);
1095 RF_ASSERT(sd < n);
1096
1097 /*
1098 * v of every k accesses should be redirected
1099 *
1100 * v/k := (n-1-sd)/(n-1)
1101 */
1102 v = (n - 1 - sd);
1103 k = (n - 1);
1104
1105 #if 1
1106 /*
1107 * XXX
1108 * Is this worth it?
1109 *
1110 * Now reduce the fraction, by repeatedly factoring
1111 * out primes (just like they teach in elementary school!)
1112 */
1113 for (i = 0; i < NLOWPRIMES; i++) {
1114 if (lowprimes[i] > v)
1115 break;
1116 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1117 v /= lowprimes[i];
1118 k /= lowprimes[i];
1119 }
1120 }
1121 #endif
1122
1123 raidPtr->hist_diskreq[d]++;
1124 if (raidPtr->hist_diskreq[d] > v) {
1125 ret = 0; /* do not redirect */
1126 } else {
1127 ret = 1; /* redirect */
1128 }
1129
1130 #if 0
1131 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1132 raidPtr->hist_diskreq[d]);
1133 #endif
1134
1135 if (raidPtr->hist_diskreq[d] >= k) {
1136 /* reset counter */
1137 raidPtr->hist_diskreq[d] = 0;
1138 }
1139 return (ret);
1140 }
1141 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1142
1143 /*
1144 * Disk selection routines
1145 */
1146
1147 /*
1148 * Selects the disk with the shortest queue from a mirror pair.
1149 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1150 * disk are counted as members of the "queue"
1151 */
1152 void
1153 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1154 {
1155 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1156 RF_RowCol_t colData, colMirror;
1157 int dataQueueLength, mirrorQueueLength, usemirror;
1158 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1159 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1160 RF_PhysDiskAddr_t *tmp_pda;
1161 RF_RaidDisk_t *disks = raidPtr->Disks;
1162 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1163
1164 /* return the [row col] of the disk with the shortest queue */
1165 colData = data_pda->col;
1166 colMirror = mirror_pda->col;
1167 dataQueue = &(dqs[colData]);
1168 mirrorQueue = &(dqs[colMirror]);
1169
1170 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1171 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1172 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1173 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1174 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1175 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1176 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1177 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1178 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1179 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1180 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1181 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1182
1183 usemirror = 0;
1184 if (RF_DEAD_DISK(disks[colMirror].status)) {
1185 usemirror = 0;
1186 } else
1187 if (RF_DEAD_DISK(disks[colData].status)) {
1188 usemirror = 1;
1189 } else
1190 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1191 /* Trust only the main disk */
1192 usemirror = 0;
1193 } else
1194 if (dataQueueLength < mirrorQueueLength) {
1195 usemirror = 0;
1196 } else
1197 if (mirrorQueueLength < dataQueueLength) {
1198 usemirror = 1;
1199 } else {
1200 /* queues are equal length. attempt
1201 * cleverness. */
1202 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1203 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1204 usemirror = 0;
1205 } else {
1206 usemirror = 1;
1207 }
1208 }
1209
1210 if (usemirror) {
1211 /* use mirror (parity) disk, swap params 0 & 4 */
1212 tmp_pda = data_pda;
1213 node->params[0].p = mirror_pda;
1214 node->params[4].p = tmp_pda;
1215 } else {
1216 /* use data disk, leave param 0 unchanged */
1217 }
1218 /* printf("dataQueueLength %d, mirrorQueueLength
1219 * %d\n",dataQueueLength, mirrorQueueLength); */
1220 }
1221 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1222 /*
1223 * Do simple partitioning. This assumes that
1224 * the data and parity disks are laid out identically.
1225 */
1226 void
1227 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1228 {
1229 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1230 RF_RowCol_t colData, colMirror;
1231 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1232 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1233 RF_PhysDiskAddr_t *tmp_pda;
1234 RF_RaidDisk_t *disks = raidPtr->Disks;
1235 int usemirror;
1236
1237 /* return the [row col] of the disk with the shortest queue */
1238 colData = data_pda->col;
1239 colMirror = mirror_pda->col;
1240
1241 usemirror = 0;
1242 if (RF_DEAD_DISK(disks[colMirror].status)) {
1243 usemirror = 0;
1244 } else
1245 if (RF_DEAD_DISK(disks[colData].status)) {
1246 usemirror = 1;
1247 } else
1248 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1249 /* Trust only the main disk */
1250 usemirror = 0;
1251 } else
1252 if (data_pda->startSector <
1253 (disks[colData].numBlocks / 2)) {
1254 usemirror = 0;
1255 } else {
1256 usemirror = 1;
1257 }
1258
1259 if (usemirror) {
1260 /* use mirror (parity) disk, swap params 0 & 4 */
1261 tmp_pda = data_pda;
1262 node->params[0].p = mirror_pda;
1263 node->params[4].p = tmp_pda;
1264 } else {
1265 /* use data disk, leave param 0 unchanged */
1266 }
1267 }
1268 #endif
1269