rf_dagutils.c revision 1.32 1 /* $NetBSD: rf_dagutils.c,v 1.32 2004/03/06 22:59:42 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.32 2004/03/06 22:59:42 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_MIN_FREE_DAGH 32
173
174 static struct pool rf_daglist_pool;
175 #define RF_MAX_FREE_DAGLIST 128
176 #define RF_MIN_FREE_DAGLIST 32
177
178 static struct pool rf_funclist_pool;
179 #define RF_MAX_FREE_FUNCLIST 128
180 #define RF_MIN_FREE_FUNCLIST 32
181
182 static void rf_ShutdownDAGs(void *);
183 static void
184 rf_ShutdownDAGs(void *ignored)
185 {
186 pool_destroy(&rf_dagh_pool);
187 pool_destroy(&rf_daglist_pool);
188 pool_destroy(&rf_funclist_pool);
189 }
190
191 int
192 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
193 {
194
195 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
196 "rf_dagh_pl", NULL);
197 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
198 pool_prime(&rf_dagh_pool, RF_MIN_FREE_DAGH);
199 pool_setlowat(&rf_dagh_pool, RF_MIN_FREE_DAGH);
200
201 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
202 "rf_daglist_pl", NULL);
203 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
204 pool_prime(&rf_daglist_pool, RF_MIN_FREE_DAGLIST);
205 pool_setlowat(&rf_daglist_pool, RF_MIN_FREE_DAGLIST);
206
207 pool_init(&rf_funclist_pool, sizeof(RF_FuncList_t), 0, 0, 0,
208 "rf_funcist_pl", NULL);
209 pool_sethiwat(&rf_funclist_pool, RF_MAX_FREE_FUNCLIST);
210 pool_prime(&rf_funclist_pool, RF_MIN_FREE_FUNCLIST);
211 pool_setlowat(&rf_funclist_pool, RF_MIN_FREE_FUNCLIST);
212
213 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
214
215 return (0);
216 }
217
218 RF_DagHeader_t *
219 rf_AllocDAGHeader()
220 {
221 RF_DagHeader_t *dh;
222
223 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
224 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
225 return (dh);
226 }
227
228 void
229 rf_FreeDAGHeader(RF_DagHeader_t * dh)
230 {
231 pool_put(&rf_dagh_pool, dh);
232 }
233
234 RF_DagList_t *
235 rf_AllocDAGList()
236 {
237 RF_DagList_t *dagList;
238
239 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
240 memset(dagList, 0, sizeof(RF_DagList_t));
241
242 return (dagList);
243 }
244
245 void
246 rf_FreeDAGList(RF_DagList_t *dagList)
247 {
248 pool_put(&rf_daglist_pool, dagList);
249 }
250
251 RF_FuncList_t *
252 rf_AllocFuncList()
253 {
254 RF_FuncList_t *funcList;
255
256 funcList = pool_get(&rf_funclist_pool, PR_WAITOK);
257 memset(funcList, 0, sizeof(RF_FuncList_t));
258
259 return (funcList);
260 }
261
262 void
263 rf_FreeFuncList(RF_FuncList_t *funcList)
264 {
265 pool_put(&rf_funclist_pool, funcList);
266 }
267
268
269
270 /* allocates a buffer big enough to hold the data described by pda */
271 void *
272 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
273 RF_PhysDiskAddr_t *pda, RF_AllocListElem_t *allocList)
274 {
275 char *p;
276
277 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
278 (char *), allocList);
279 return ((void *) p);
280 }
281 #if RF_DEBUG_VALIDATE_DAG
282 /******************************************************************************
283 *
284 * debug routines
285 *
286 *****************************************************************************/
287
288 char *
289 rf_NodeStatusString(RF_DagNode_t *node)
290 {
291 switch (node->status) {
292 case rf_wait:return ("wait");
293 case rf_fired:
294 return ("fired");
295 case rf_good:
296 return ("good");
297 case rf_bad:
298 return ("bad");
299 default:
300 return ("?");
301 }
302 }
303
304 void
305 rf_PrintNodeInfoString(RF_DagNode_t *node)
306 {
307 RF_PhysDiskAddr_t *pda;
308 int (*df) (RF_DagNode_t *) = node->doFunc;
309 int i, lk, unlk;
310 void *bufPtr;
311
312 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
313 || (df == rf_DiskReadMirrorIdleFunc)
314 || (df == rf_DiskReadMirrorPartitionFunc)) {
315 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
316 bufPtr = (void *) node->params[1].p;
317 lk = 0;
318 unlk = 0;
319 RF_ASSERT(!(lk && unlk));
320 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
321 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
322 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
323 return;
324 }
325 if (df == rf_DiskUnlockFunc) {
326 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
327 lk = 0;
328 unlk = 0;
329 RF_ASSERT(!(lk && unlk));
330 printf("c %d %s\n", pda->col,
331 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
332 return;
333 }
334 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
335 || (df == rf_RecoveryXorFunc)) {
336 printf("result buf 0x%lx\n", (long) node->results[0]);
337 for (i = 0; i < node->numParams - 1; i += 2) {
338 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
339 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
340 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
341 (long) bufPtr, pda->col,
342 (long) pda->startSector, (int) pda->numSector);
343 }
344 return;
345 }
346 #if RF_INCLUDE_PARITYLOGGING > 0
347 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
348 for (i = 0; i < node->numParams - 1; i += 2) {
349 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
350 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
351 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
352 pda->col, (long) pda->startSector,
353 (int) pda->numSector, (long) bufPtr);
354 }
355 return;
356 }
357 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
358
359 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
360 printf("\n");
361 return;
362 }
363 printf("?\n");
364 }
365 #ifdef DEBUG
366 static void
367 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
368 {
369 char *anttype;
370 int i;
371
372 node->visited = (unvisited) ? 0 : 1;
373 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
374 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
375 node->numSuccedents, node->numSuccFired, node->numSuccDone,
376 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
377 for (i = 0; i < node->numSuccedents; i++) {
378 printf("%d%s", node->succedents[i]->nodeNum,
379 ((i == node->numSuccedents - 1) ? "\0" : " "));
380 }
381 printf("} A{");
382 for (i = 0; i < node->numAntecedents; i++) {
383 switch (node->antType[i]) {
384 case rf_trueData:
385 anttype = "T";
386 break;
387 case rf_antiData:
388 anttype = "A";
389 break;
390 case rf_outputData:
391 anttype = "O";
392 break;
393 case rf_control:
394 anttype = "C";
395 break;
396 default:
397 anttype = "?";
398 break;
399 }
400 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
401 }
402 printf("}; ");
403 rf_PrintNodeInfoString(node);
404 for (i = 0; i < node->numSuccedents; i++) {
405 if (node->succedents[i]->visited == unvisited)
406 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
407 }
408 }
409
410 static void
411 rf_PrintDAG(RF_DagHeader_t *dag_h)
412 {
413 int unvisited, i;
414 char *status;
415
416 /* set dag status */
417 switch (dag_h->status) {
418 case rf_enable:
419 status = "enable";
420 break;
421 case rf_rollForward:
422 status = "rollForward";
423 break;
424 case rf_rollBackward:
425 status = "rollBackward";
426 break;
427 default:
428 status = "illegal!";
429 break;
430 }
431 /* find out if visited bits are currently set or clear */
432 unvisited = dag_h->succedents[0]->visited;
433
434 printf("DAG type: %s\n", dag_h->creator);
435 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
436 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
437 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
438 for (i = 0; i < dag_h->numSuccedents; i++) {
439 printf("%d%s", dag_h->succedents[i]->nodeNum,
440 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
441 }
442 printf("};\n");
443 for (i = 0; i < dag_h->numSuccedents; i++) {
444 if (dag_h->succedents[i]->visited == unvisited)
445 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
446 }
447 }
448 #endif
449 /* assigns node numbers */
450 int
451 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
452 {
453 int unvisited, i, nnum;
454 RF_DagNode_t *node;
455
456 nnum = 0;
457 unvisited = dag_h->succedents[0]->visited;
458
459 dag_h->nodeNum = nnum++;
460 for (i = 0; i < dag_h->numSuccedents; i++) {
461 node = dag_h->succedents[i];
462 if (node->visited == unvisited) {
463 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
464 }
465 }
466 return (nnum);
467 }
468
469 int
470 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
471 {
472 int i;
473
474 node->visited = (unvisited) ? 0 : 1;
475
476 node->nodeNum = num++;
477 for (i = 0; i < node->numSuccedents; i++) {
478 if (node->succedents[i]->visited == unvisited) {
479 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
480 }
481 }
482 return (num);
483 }
484 /* set the header pointers in each node to "newptr" */
485 void
486 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
487 {
488 int i;
489 for (i = 0; i < dag_h->numSuccedents; i++)
490 if (dag_h->succedents[i]->dagHdr != newptr)
491 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
492 }
493
494 void
495 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
496 {
497 int i;
498 node->dagHdr = newptr;
499 for (i = 0; i < node->numSuccedents; i++)
500 if (node->succedents[i]->dagHdr != newptr)
501 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
502 }
503
504
505 void
506 rf_PrintDAGList(RF_DagHeader_t * dag_h)
507 {
508 int i = 0;
509
510 for (; dag_h; dag_h = dag_h->next) {
511 rf_AssignNodeNums(dag_h);
512 printf("\n\nDAG %d IN LIST:\n", i++);
513 rf_PrintDAG(dag_h);
514 }
515 }
516
517 static int
518 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
519 RF_DagNode_t **nodes, int unvisited)
520 {
521 int i, retcode = 0;
522
523 /* construct an array of node pointers indexed by node num */
524 node->visited = (unvisited) ? 0 : 1;
525 nodes[node->nodeNum] = node;
526
527 if (node->next != NULL) {
528 printf("INVALID DAG: next pointer in node is not NULL\n");
529 retcode = 1;
530 }
531 if (node->status != rf_wait) {
532 printf("INVALID DAG: Node status is not wait\n");
533 retcode = 1;
534 }
535 if (node->numAntDone != 0) {
536 printf("INVALID DAG: numAntDone is not zero\n");
537 retcode = 1;
538 }
539 if (node->doFunc == rf_TerminateFunc) {
540 if (node->numSuccedents != 0) {
541 printf("INVALID DAG: Terminator node has succedents\n");
542 retcode = 1;
543 }
544 } else {
545 if (node->numSuccedents == 0) {
546 printf("INVALID DAG: Non-terminator node has no succedents\n");
547 retcode = 1;
548 }
549 }
550 for (i = 0; i < node->numSuccedents; i++) {
551 if (!node->succedents[i]) {
552 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
553 retcode = 1;
554 }
555 scount[node->succedents[i]->nodeNum]++;
556 }
557 for (i = 0; i < node->numAntecedents; i++) {
558 if (!node->antecedents[i]) {
559 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
560 retcode = 1;
561 }
562 acount[node->antecedents[i]->nodeNum]++;
563 }
564 for (i = 0; i < node->numSuccedents; i++) {
565 if (node->succedents[i]->visited == unvisited) {
566 if (rf_ValidateBranch(node->succedents[i], scount,
567 acount, nodes, unvisited)) {
568 retcode = 1;
569 }
570 }
571 }
572 return (retcode);
573 }
574
575 static void
576 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
577 {
578 int i;
579
580 RF_ASSERT(node->visited == unvisited);
581 for (i = 0; i < node->numSuccedents; i++) {
582 if (node->succedents[i] == NULL) {
583 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
584 RF_ASSERT(0);
585 }
586 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
587 }
588 }
589 /* NOTE: never call this on a big dag, because it is exponential
590 * in execution time
591 */
592 static void
593 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
594 {
595 int i, unvisited;
596
597 unvisited = dag->succedents[0]->visited;
598
599 for (i = 0; i < dag->numSuccedents; i++) {
600 if (dag->succedents[i] == NULL) {
601 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
602 RF_ASSERT(0);
603 }
604 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
605 }
606 }
607 /* validate a DAG. _at entry_ verify that:
608 * -- numNodesCompleted is zero
609 * -- node queue is null
610 * -- dag status is rf_enable
611 * -- next pointer is null on every node
612 * -- all nodes have status wait
613 * -- numAntDone is zero in all nodes
614 * -- terminator node has zero successors
615 * -- no other node besides terminator has zero successors
616 * -- no successor or antecedent pointer in a node is NULL
617 * -- number of times that each node appears as a successor of another node
618 * is equal to the antecedent count on that node
619 * -- number of times that each node appears as an antecedent of another node
620 * is equal to the succedent count on that node
621 * -- what else?
622 */
623 int
624 rf_ValidateDAG(RF_DagHeader_t *dag_h)
625 {
626 int i, nodecount;
627 int *scount, *acount;/* per-node successor and antecedent counts */
628 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
629 int retcode = 0;
630 int unvisited;
631 int commitNodeCount = 0;
632
633 if (rf_validateVisitedDebug)
634 rf_ValidateVisitedBits(dag_h);
635
636 if (dag_h->numNodesCompleted != 0) {
637 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
638 retcode = 1;
639 goto validate_dag_bad;
640 }
641 if (dag_h->status != rf_enable) {
642 printf("INVALID DAG: not enabled\n");
643 retcode = 1;
644 goto validate_dag_bad;
645 }
646 if (dag_h->numCommits != 0) {
647 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
648 retcode = 1;
649 goto validate_dag_bad;
650 }
651 if (dag_h->numSuccedents != 1) {
652 /* currently, all dags must have only one succedent */
653 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
654 retcode = 1;
655 goto validate_dag_bad;
656 }
657 nodecount = rf_AssignNodeNums(dag_h);
658
659 unvisited = dag_h->succedents[0]->visited;
660
661 RF_Malloc(scount, nodecount * sizeof(int), (int *));
662 RF_Malloc(acount, nodecount * sizeof(int), (int *));
663 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
664 (RF_DagNode_t **));
665 for (i = 0; i < dag_h->numSuccedents; i++) {
666 if ((dag_h->succedents[i]->visited == unvisited)
667 && rf_ValidateBranch(dag_h->succedents[i], scount,
668 acount, nodes, unvisited)) {
669 retcode = 1;
670 }
671 }
672 /* start at 1 to skip the header node */
673 for (i = 1; i < nodecount; i++) {
674 if (nodes[i]->commitNode)
675 commitNodeCount++;
676 if (nodes[i]->doFunc == NULL) {
677 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
678 retcode = 1;
679 goto validate_dag_out;
680 }
681 if (nodes[i]->undoFunc == NULL) {
682 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
683 retcode = 1;
684 goto validate_dag_out;
685 }
686 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
687 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
688 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
689 retcode = 1;
690 goto validate_dag_out;
691 }
692 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
693 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
694 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
695 retcode = 1;
696 goto validate_dag_out;
697 }
698 }
699
700 if (dag_h->numCommitNodes != commitNodeCount) {
701 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
702 dag_h->numCommitNodes, commitNodeCount);
703 retcode = 1;
704 goto validate_dag_out;
705 }
706 validate_dag_out:
707 RF_Free(scount, nodecount * sizeof(int));
708 RF_Free(acount, nodecount * sizeof(int));
709 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
710 if (retcode)
711 rf_PrintDAGList(dag_h);
712
713 if (rf_validateVisitedDebug)
714 rf_ValidateVisitedBits(dag_h);
715
716 return (retcode);
717
718 validate_dag_bad:
719 rf_PrintDAGList(dag_h);
720 return (retcode);
721 }
722
723 #endif /* RF_DEBUG_VALIDATE_DAG */
724
725 /******************************************************************************
726 *
727 * misc construction routines
728 *
729 *****************************************************************************/
730
731 void
732 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
733 {
734 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
735 int fcol = raidPtr->reconControl->fcol;
736 int scol = raidPtr->reconControl->spareCol;
737 RF_PhysDiskAddr_t *pda;
738
739 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
740 for (pda = asmap->physInfo; pda; pda = pda->next) {
741 if (pda->col == fcol) {
742 #if RF_DEBUG_DAG
743 if (rf_dagDebug) {
744 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
745 pda->startSector)) {
746 RF_PANIC();
747 }
748 }
749 #endif
750 /* printf("Remapped data for large write\n"); */
751 if (ds) {
752 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
753 &pda->col, &pda->startSector, RF_REMAP);
754 } else {
755 pda->col = scol;
756 }
757 }
758 }
759 for (pda = asmap->parityInfo; pda; pda = pda->next) {
760 if (pda->col == fcol) {
761 #if RF_DEBUG_DAG
762 if (rf_dagDebug) {
763 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
764 RF_PANIC();
765 }
766 }
767 #endif
768 }
769 if (ds) {
770 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
771 } else {
772 pda->col = scol;
773 }
774 }
775 }
776
777
778 /* this routine allocates read buffers and generates stripe maps for the
779 * regions of the array from the start of the stripe to the start of the
780 * access, and from the end of the access to the end of the stripe. It also
781 * computes and returns the number of DAG nodes needed to read all this data.
782 * Note that this routine does the wrong thing if the access is fully
783 * contained within one stripe unit, so we RF_ASSERT against this case at the
784 * start.
785 *
786 * layoutPtr - in: layout information
787 * asmap - in: access stripe map
788 * dag_h - in: header of the dag to create
789 * new_asm_h - in: ptr to array of 2 headers. to be filled in
790 * nRodNodes - out: num nodes to be generated to read unaccessed data
791 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
792 */
793 void
794 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
795 RF_RaidLayout_t *layoutPtr,
796 RF_AccessStripeMap_t *asmap,
797 RF_DagHeader_t *dag_h,
798 RF_AccessStripeMapHeader_t **new_asm_h,
799 int *nRodNodes,
800 char **sosBuffer, char **eosBuffer,
801 RF_AllocListElem_t *allocList)
802 {
803 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
804 RF_SectorNum_t sosNumSector, eosNumSector;
805
806 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
807 /* generate an access map for the region of the array from start of
808 * stripe to start of access */
809 new_asm_h[0] = new_asm_h[1] = NULL;
810 *nRodNodes = 0;
811 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
812 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
813 sosNumSector = asmap->raidAddress - sosRaidAddress;
814 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
815 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
816 new_asm_h[0]->next = dag_h->asmList;
817 dag_h->asmList = new_asm_h[0];
818 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
819
820 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
821 /* we're totally within one stripe here */
822 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
823 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
824 }
825 /* generate an access map for the region of the array from end of
826 * access to end of stripe */
827 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
828 eosRaidAddress = asmap->endRaidAddress;
829 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
830 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
831 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
832 new_asm_h[1]->next = dag_h->asmList;
833 dag_h->asmList = new_asm_h[1];
834 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
835
836 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
837 /* we're totally within one stripe here */
838 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
839 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
840 }
841 }
842
843
844
845 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
846 int
847 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
848 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
849 {
850 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
851 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
852 /* use -1 to be sure we stay within SU */
853 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
854 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
855 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
856 }
857
858
859 /* GenerateFailedAccessASMs
860 *
861 * this routine figures out what portion of the stripe needs to be read
862 * to effect the degraded read or write operation. It's primary function
863 * is to identify everything required to recover the data, and then
864 * eliminate anything that is already being accessed by the user.
865 *
866 * The main result is two new ASMs, one for the region from the start of the
867 * stripe to the start of the access, and one for the region from the end of
868 * the access to the end of the stripe. These ASMs describe everything that
869 * needs to be read to effect the degraded access. Other results are:
870 * nXorBufs -- the total number of buffers that need to be XORed together to
871 * recover the lost data,
872 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
873 * at entry, not allocated.
874 * overlappingPDAs --
875 * describes which of the non-failed PDAs in the user access
876 * overlap data that needs to be read to effect recovery.
877 * overlappingPDAs[i]==1 if and only if, neglecting the failed
878 * PDA, the ith pda in the input asm overlaps data that needs
879 * to be read for recovery.
880 */
881 /* in: asm - ASM for the actual access, one stripe only */
882 /* in: failedPDA - which component of the access has failed */
883 /* in: dag_h - header of the DAG we're going to create */
884 /* out: new_asm_h - the two new ASMs */
885 /* out: nXorBufs - the total number of xor bufs required */
886 /* out: rpBufPtr - a buffer for the parity read */
887 void
888 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
889 RF_PhysDiskAddr_t *failedPDA,
890 RF_DagHeader_t *dag_h,
891 RF_AccessStripeMapHeader_t **new_asm_h,
892 int *nXorBufs, char **rpBufPtr,
893 char *overlappingPDAs,
894 RF_AllocListElem_t *allocList)
895 {
896 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
897
898 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
899 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
900
901 RF_SectorCount_t numSect[2], numParitySect;
902 RF_PhysDiskAddr_t *pda;
903 char *rdBuf, *bufP;
904 int foundit, i;
905
906 bufP = NULL;
907 foundit = 0;
908 /* first compute the following raid addresses: start of stripe,
909 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
910 * MAX(end of access, end of failed SU), (eosStartAddr) end of
911 * stripe (i.e. start of next stripe) (eosAddr) */
912 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
913 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
914 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
915 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
916
917 /* now generate access stripe maps for each of the above regions of
918 * the stripe. Use a dummy (NULL) buf ptr for now */
919
920 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
921 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
922
923 /* walk through the PDAs and range-restrict each SU to the region of
924 * the SU touched on the failed PDA. also compute total data buffer
925 * space requirements in this step. Ignore the parity for now. */
926
927 numSect[0] = numSect[1] = 0;
928 if (new_asm_h[0]) {
929 new_asm_h[0]->next = dag_h->asmList;
930 dag_h->asmList = new_asm_h[0];
931 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
932 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
933 numSect[0] += pda->numSector;
934 }
935 }
936 if (new_asm_h[1]) {
937 new_asm_h[1]->next = dag_h->asmList;
938 dag_h->asmList = new_asm_h[1];
939 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
940 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
941 numSect[1] += pda->numSector;
942 }
943 }
944 numParitySect = failedPDA->numSector;
945
946 /* allocate buffer space for the data & parity we have to read to
947 * recover from the failure */
948
949 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
950 * buf if not needed */
951 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
952 bufP = rdBuf;
953 #if RF_DEBUG_DAG
954 if (rf_degDagDebug)
955 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
956 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
957 #endif
958 }
959 /* now walk through the pdas one last time and assign buffer pointers
960 * (ugh!). Again, ignore the parity. also, count nodes to find out
961 * how many bufs need to be xored together */
962 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
963 * case, 1 is for failed data */
964 if (new_asm_h[0]) {
965 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
966 pda->bufPtr = bufP;
967 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
968 }
969 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
970 }
971 if (new_asm_h[1]) {
972 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
973 pda->bufPtr = bufP;
974 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
975 }
976 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
977 }
978 if (rpBufPtr)
979 *rpBufPtr = bufP; /* the rest of the buffer is for
980 * parity */
981
982 /* the last step is to figure out how many more distinct buffers need
983 * to get xor'd to produce the missing unit. there's one for each
984 * user-data read node that overlaps the portion of the failed unit
985 * being accessed */
986
987 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
988 if (pda == failedPDA) {
989 i--;
990 foundit = 1;
991 continue;
992 }
993 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
994 overlappingPDAs[i] = 1;
995 (*nXorBufs)++;
996 }
997 }
998 if (!foundit) {
999 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1000 RF_ASSERT(0);
1001 }
1002 #if RF_DEBUG_DAG
1003 if (rf_degDagDebug) {
1004 if (new_asm_h[0]) {
1005 printf("First asm:\n");
1006 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1007 }
1008 if (new_asm_h[1]) {
1009 printf("Second asm:\n");
1010 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1011 }
1012 }
1013 #endif
1014 }
1015
1016
1017 /* adjusts the offset and number of sectors in the destination pda so that
1018 * it covers at most the region of the SU covered by the source PDA. This
1019 * is exclusively a restriction: the number of sectors indicated by the
1020 * target PDA can only shrink.
1021 *
1022 * For example: s = sectors within SU indicated by source PDA
1023 * d = sectors within SU indicated by dest PDA
1024 * r = results, stored in dest PDA
1025 *
1026 * |--------------- one stripe unit ---------------------|
1027 * | sssssssssssssssssssssssssssssssss |
1028 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1029 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1030 *
1031 * Another example:
1032 *
1033 * |--------------- one stripe unit ---------------------|
1034 * | sssssssssssssssssssssssssssssssss |
1035 * | ddddddddddddddddddddddd |
1036 * | rrrrrrrrrrrrrrrr |
1037 *
1038 */
1039 void
1040 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1041 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1042 {
1043 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1044 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1045 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1046 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1047 * stay within SU */
1048 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1049 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1050
1051 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1052 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1053
1054 if (dobuffer)
1055 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1056 if (doraidaddr) {
1057 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1058 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1059 }
1060 }
1061
1062 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1063
1064 /*
1065 * Want the highest of these primes to be the largest one
1066 * less than the max expected number of columns (won't hurt
1067 * to be too small or too large, but won't be optimal, either)
1068 * --jimz
1069 */
1070 #define NLOWPRIMES 8
1071 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1072 /*****************************************************************************
1073 * compute the workload shift factor. (chained declustering)
1074 *
1075 * return nonzero if access should shift to secondary, otherwise,
1076 * access is to primary
1077 *****************************************************************************/
1078 int
1079 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1080 {
1081 /*
1082 * variables:
1083 * d = column of disk containing primary
1084 * f = column of failed disk
1085 * n = number of disks in array
1086 * sd = "shift distance" (number of columns that d is to the right of f)
1087 * v = numerator of redirection ratio
1088 * k = denominator of redirection ratio
1089 */
1090 RF_RowCol_t d, f, sd, n;
1091 int k, v, ret, i;
1092
1093 n = raidPtr->numCol;
1094
1095 /* assign column of primary copy to d */
1096 d = pda->col;
1097
1098 /* assign column of dead disk to f */
1099 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1100
1101 RF_ASSERT(f < n);
1102 RF_ASSERT(f != d);
1103
1104 sd = (f > d) ? (n + d - f) : (d - f);
1105 RF_ASSERT(sd < n);
1106
1107 /*
1108 * v of every k accesses should be redirected
1109 *
1110 * v/k := (n-1-sd)/(n-1)
1111 */
1112 v = (n - 1 - sd);
1113 k = (n - 1);
1114
1115 #if 1
1116 /*
1117 * XXX
1118 * Is this worth it?
1119 *
1120 * Now reduce the fraction, by repeatedly factoring
1121 * out primes (just like they teach in elementary school!)
1122 */
1123 for (i = 0; i < NLOWPRIMES; i++) {
1124 if (lowprimes[i] > v)
1125 break;
1126 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1127 v /= lowprimes[i];
1128 k /= lowprimes[i];
1129 }
1130 }
1131 #endif
1132
1133 raidPtr->hist_diskreq[d]++;
1134 if (raidPtr->hist_diskreq[d] > v) {
1135 ret = 0; /* do not redirect */
1136 } else {
1137 ret = 1; /* redirect */
1138 }
1139
1140 #if 0
1141 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1142 raidPtr->hist_diskreq[d]);
1143 #endif
1144
1145 if (raidPtr->hist_diskreq[d] >= k) {
1146 /* reset counter */
1147 raidPtr->hist_diskreq[d] = 0;
1148 }
1149 return (ret);
1150 }
1151 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1152
1153 /*
1154 * Disk selection routines
1155 */
1156
1157 /*
1158 * Selects the disk with the shortest queue from a mirror pair.
1159 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1160 * disk are counted as members of the "queue"
1161 */
1162 void
1163 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1164 {
1165 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1166 RF_RowCol_t colData, colMirror;
1167 int dataQueueLength, mirrorQueueLength, usemirror;
1168 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1169 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1170 RF_PhysDiskAddr_t *tmp_pda;
1171 RF_RaidDisk_t *disks = raidPtr->Disks;
1172 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1173
1174 /* return the [row col] of the disk with the shortest queue */
1175 colData = data_pda->col;
1176 colMirror = mirror_pda->col;
1177 dataQueue = &(dqs[colData]);
1178 mirrorQueue = &(dqs[colMirror]);
1179
1180 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1181 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1182 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1183 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1184 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1185 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1186 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1187 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1188 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1189 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1190 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1191 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1192
1193 usemirror = 0;
1194 if (RF_DEAD_DISK(disks[colMirror].status)) {
1195 usemirror = 0;
1196 } else
1197 if (RF_DEAD_DISK(disks[colData].status)) {
1198 usemirror = 1;
1199 } else
1200 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1201 /* Trust only the main disk */
1202 usemirror = 0;
1203 } else
1204 if (dataQueueLength < mirrorQueueLength) {
1205 usemirror = 0;
1206 } else
1207 if (mirrorQueueLength < dataQueueLength) {
1208 usemirror = 1;
1209 } else {
1210 /* queues are equal length. attempt
1211 * cleverness. */
1212 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1213 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1214 usemirror = 0;
1215 } else {
1216 usemirror = 1;
1217 }
1218 }
1219
1220 if (usemirror) {
1221 /* use mirror (parity) disk, swap params 0 & 4 */
1222 tmp_pda = data_pda;
1223 node->params[0].p = mirror_pda;
1224 node->params[4].p = tmp_pda;
1225 } else {
1226 /* use data disk, leave param 0 unchanged */
1227 }
1228 /* printf("dataQueueLength %d, mirrorQueueLength
1229 * %d\n",dataQueueLength, mirrorQueueLength); */
1230 }
1231 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1232 /*
1233 * Do simple partitioning. This assumes that
1234 * the data and parity disks are laid out identically.
1235 */
1236 void
1237 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1238 {
1239 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1240 RF_RowCol_t colData, colMirror;
1241 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1242 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1243 RF_PhysDiskAddr_t *tmp_pda;
1244 RF_RaidDisk_t *disks = raidPtr->Disks;
1245 int usemirror;
1246
1247 /* return the [row col] of the disk with the shortest queue */
1248 colData = data_pda->col;
1249 colMirror = mirror_pda->col;
1250
1251 usemirror = 0;
1252 if (RF_DEAD_DISK(disks[colMirror].status)) {
1253 usemirror = 0;
1254 } else
1255 if (RF_DEAD_DISK(disks[colData].status)) {
1256 usemirror = 1;
1257 } else
1258 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1259 /* Trust only the main disk */
1260 usemirror = 0;
1261 } else
1262 if (data_pda->startSector <
1263 (disks[colData].numBlocks / 2)) {
1264 usemirror = 0;
1265 } else {
1266 usemirror = 1;
1267 }
1268
1269 if (usemirror) {
1270 /* use mirror (parity) disk, swap params 0 & 4 */
1271 tmp_pda = data_pda;
1272 node->params[0].p = mirror_pda;
1273 node->params[4].p = tmp_pda;
1274 } else {
1275 /* use data disk, leave param 0 unchanged */
1276 }
1277 }
1278 #endif
1279