rf_dagutils.c revision 1.34 1 /* $NetBSD: rf_dagutils.c,v 1.34 2004/03/06 23:53:31 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.34 2004/03/06 23:53:31 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 static struct pool rf_dagh_pool;
171 #define RF_MAX_FREE_DAGH 128
172 #define RF_MIN_FREE_DAGH 32
173
174 static struct pool rf_daglist_pool;
175 #define RF_MAX_FREE_DAGLIST 128
176 #define RF_MIN_FREE_DAGLIST 32
177
178 static struct pool rf_funclist_pool;
179 #define RF_MAX_FREE_FUNCLIST 128
180 #define RF_MIN_FREE_FUNCLIST 32
181
182 static void rf_ShutdownDAGs(void *);
183 static void
184 rf_ShutdownDAGs(void *ignored)
185 {
186 pool_destroy(&rf_dagh_pool);
187 pool_destroy(&rf_daglist_pool);
188 pool_destroy(&rf_funclist_pool);
189 }
190
191 int
192 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
193 {
194
195 pool_init(&rf_dagh_pool, sizeof(RF_DagHeader_t), 0, 0, 0,
196 "rf_dagh_pl", NULL);
197 pool_sethiwat(&rf_dagh_pool, RF_MAX_FREE_DAGH);
198 pool_prime(&rf_dagh_pool, RF_MIN_FREE_DAGH);
199 pool_setlowat(&rf_dagh_pool, RF_MIN_FREE_DAGH);
200
201 pool_init(&rf_daglist_pool, sizeof(RF_DagList_t), 0, 0, 0,
202 "rf_daglist_pl", NULL);
203 pool_sethiwat(&rf_daglist_pool, RF_MAX_FREE_DAGLIST);
204 pool_prime(&rf_daglist_pool, RF_MIN_FREE_DAGLIST);
205 pool_setlowat(&rf_daglist_pool, RF_MIN_FREE_DAGLIST);
206
207 pool_init(&rf_funclist_pool, sizeof(RF_FuncList_t), 0, 0, 0,
208 "rf_funcist_pl", NULL);
209 pool_sethiwat(&rf_funclist_pool, RF_MAX_FREE_FUNCLIST);
210 pool_prime(&rf_funclist_pool, RF_MIN_FREE_FUNCLIST);
211 pool_setlowat(&rf_funclist_pool, RF_MIN_FREE_FUNCLIST);
212
213 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
214
215 return (0);
216 }
217
218 RF_DagHeader_t *
219 rf_AllocDAGHeader()
220 {
221 RF_DagHeader_t *dh;
222
223 dh = pool_get(&rf_dagh_pool, PR_WAITOK);
224 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
225 return (dh);
226 }
227
228 void
229 rf_FreeDAGHeader(RF_DagHeader_t * dh)
230 {
231 pool_put(&rf_dagh_pool, dh);
232 }
233
234 RF_DagList_t *
235 rf_AllocDAGList()
236 {
237 RF_DagList_t *dagList;
238
239 dagList = pool_get(&rf_daglist_pool, PR_WAITOK);
240 memset(dagList, 0, sizeof(RF_DagList_t));
241
242 return (dagList);
243 }
244
245 void
246 rf_FreeDAGList(RF_DagList_t *dagList)
247 {
248 pool_put(&rf_daglist_pool, dagList);
249 }
250
251 RF_FuncList_t *
252 rf_AllocFuncList()
253 {
254 RF_FuncList_t *funcList;
255
256 funcList = pool_get(&rf_funclist_pool, PR_WAITOK);
257 memset(funcList, 0, sizeof(RF_FuncList_t));
258
259 return (funcList);
260 }
261
262 void
263 rf_FreeFuncList(RF_FuncList_t *funcList)
264 {
265 pool_put(&rf_funclist_pool, funcList);
266 }
267
268
269
270 /* allocates a buffer big enough to hold the data described by pda */
271 void *
272 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
273 RF_AllocListElem_t *allocList)
274 {
275 char *p;
276
277 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
278 (char *), allocList);
279 return ((void *) p);
280 }
281 #if RF_DEBUG_VALIDATE_DAG
282 /******************************************************************************
283 *
284 * debug routines
285 *
286 *****************************************************************************/
287
288 char *
289 rf_NodeStatusString(RF_DagNode_t *node)
290 {
291 switch (node->status) {
292 case rf_wait:
293 return ("wait");
294 case rf_fired:
295 return ("fired");
296 case rf_good:
297 return ("good");
298 case rf_bad:
299 return ("bad");
300 default:
301 return ("?");
302 }
303 }
304
305 void
306 rf_PrintNodeInfoString(RF_DagNode_t *node)
307 {
308 RF_PhysDiskAddr_t *pda;
309 int (*df) (RF_DagNode_t *) = node->doFunc;
310 int i, lk, unlk;
311 void *bufPtr;
312
313 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
314 || (df == rf_DiskReadMirrorIdleFunc)
315 || (df == rf_DiskReadMirrorPartitionFunc)) {
316 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
317 bufPtr = (void *) node->params[1].p;
318 lk = 0;
319 unlk = 0;
320 RF_ASSERT(!(lk && unlk));
321 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
322 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
323 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
324 return;
325 }
326 if (df == rf_DiskUnlockFunc) {
327 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
328 lk = 0;
329 unlk = 0;
330 RF_ASSERT(!(lk && unlk));
331 printf("c %d %s\n", pda->col,
332 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
333 return;
334 }
335 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
336 || (df == rf_RecoveryXorFunc)) {
337 printf("result buf 0x%lx\n", (long) node->results[0]);
338 for (i = 0; i < node->numParams - 1; i += 2) {
339 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
340 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
341 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
342 (long) bufPtr, pda->col,
343 (long) pda->startSector, (int) pda->numSector);
344 }
345 return;
346 }
347 #if RF_INCLUDE_PARITYLOGGING > 0
348 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
349 for (i = 0; i < node->numParams - 1; i += 2) {
350 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
351 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
352 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
353 pda->col, (long) pda->startSector,
354 (int) pda->numSector, (long) bufPtr);
355 }
356 return;
357 }
358 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
359
360 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
361 printf("\n");
362 return;
363 }
364 printf("?\n");
365 }
366 #ifdef DEBUG
367 static void
368 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
369 {
370 char *anttype;
371 int i;
372
373 node->visited = (unvisited) ? 0 : 1;
374 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
375 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
376 node->numSuccedents, node->numSuccFired, node->numSuccDone,
377 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
378 for (i = 0; i < node->numSuccedents; i++) {
379 printf("%d%s", node->succedents[i]->nodeNum,
380 ((i == node->numSuccedents - 1) ? "\0" : " "));
381 }
382 printf("} A{");
383 for (i = 0; i < node->numAntecedents; i++) {
384 switch (node->antType[i]) {
385 case rf_trueData:
386 anttype = "T";
387 break;
388 case rf_antiData:
389 anttype = "A";
390 break;
391 case rf_outputData:
392 anttype = "O";
393 break;
394 case rf_control:
395 anttype = "C";
396 break;
397 default:
398 anttype = "?";
399 break;
400 }
401 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
402 }
403 printf("}; ");
404 rf_PrintNodeInfoString(node);
405 for (i = 0; i < node->numSuccedents; i++) {
406 if (node->succedents[i]->visited == unvisited)
407 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
408 }
409 }
410
411 static void
412 rf_PrintDAG(RF_DagHeader_t *dag_h)
413 {
414 int unvisited, i;
415 char *status;
416
417 /* set dag status */
418 switch (dag_h->status) {
419 case rf_enable:
420 status = "enable";
421 break;
422 case rf_rollForward:
423 status = "rollForward";
424 break;
425 case rf_rollBackward:
426 status = "rollBackward";
427 break;
428 default:
429 status = "illegal!";
430 break;
431 }
432 /* find out if visited bits are currently set or clear */
433 unvisited = dag_h->succedents[0]->visited;
434
435 printf("DAG type: %s\n", dag_h->creator);
436 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
437 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
438 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
439 for (i = 0; i < dag_h->numSuccedents; i++) {
440 printf("%d%s", dag_h->succedents[i]->nodeNum,
441 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
442 }
443 printf("};\n");
444 for (i = 0; i < dag_h->numSuccedents; i++) {
445 if (dag_h->succedents[i]->visited == unvisited)
446 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
447 }
448 }
449 #endif
450 /* assigns node numbers */
451 int
452 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
453 {
454 int unvisited, i, nnum;
455 RF_DagNode_t *node;
456
457 nnum = 0;
458 unvisited = dag_h->succedents[0]->visited;
459
460 dag_h->nodeNum = nnum++;
461 for (i = 0; i < dag_h->numSuccedents; i++) {
462 node = dag_h->succedents[i];
463 if (node->visited == unvisited) {
464 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
465 }
466 }
467 return (nnum);
468 }
469
470 int
471 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
472 {
473 int i;
474
475 node->visited = (unvisited) ? 0 : 1;
476
477 node->nodeNum = num++;
478 for (i = 0; i < node->numSuccedents; i++) {
479 if (node->succedents[i]->visited == unvisited) {
480 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
481 }
482 }
483 return (num);
484 }
485 /* set the header pointers in each node to "newptr" */
486 void
487 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
488 {
489 int i;
490 for (i = 0; i < dag_h->numSuccedents; i++)
491 if (dag_h->succedents[i]->dagHdr != newptr)
492 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
493 }
494
495 void
496 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
497 {
498 int i;
499 node->dagHdr = newptr;
500 for (i = 0; i < node->numSuccedents; i++)
501 if (node->succedents[i]->dagHdr != newptr)
502 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
503 }
504
505
506 void
507 rf_PrintDAGList(RF_DagHeader_t * dag_h)
508 {
509 int i = 0;
510
511 for (; dag_h; dag_h = dag_h->next) {
512 rf_AssignNodeNums(dag_h);
513 printf("\n\nDAG %d IN LIST:\n", i++);
514 rf_PrintDAG(dag_h);
515 }
516 }
517
518 static int
519 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
520 RF_DagNode_t **nodes, int unvisited)
521 {
522 int i, retcode = 0;
523
524 /* construct an array of node pointers indexed by node num */
525 node->visited = (unvisited) ? 0 : 1;
526 nodes[node->nodeNum] = node;
527
528 if (node->next != NULL) {
529 printf("INVALID DAG: next pointer in node is not NULL\n");
530 retcode = 1;
531 }
532 if (node->status != rf_wait) {
533 printf("INVALID DAG: Node status is not wait\n");
534 retcode = 1;
535 }
536 if (node->numAntDone != 0) {
537 printf("INVALID DAG: numAntDone is not zero\n");
538 retcode = 1;
539 }
540 if (node->doFunc == rf_TerminateFunc) {
541 if (node->numSuccedents != 0) {
542 printf("INVALID DAG: Terminator node has succedents\n");
543 retcode = 1;
544 }
545 } else {
546 if (node->numSuccedents == 0) {
547 printf("INVALID DAG: Non-terminator node has no succedents\n");
548 retcode = 1;
549 }
550 }
551 for (i = 0; i < node->numSuccedents; i++) {
552 if (!node->succedents[i]) {
553 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
554 retcode = 1;
555 }
556 scount[node->succedents[i]->nodeNum]++;
557 }
558 for (i = 0; i < node->numAntecedents; i++) {
559 if (!node->antecedents[i]) {
560 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
561 retcode = 1;
562 }
563 acount[node->antecedents[i]->nodeNum]++;
564 }
565 for (i = 0; i < node->numSuccedents; i++) {
566 if (node->succedents[i]->visited == unvisited) {
567 if (rf_ValidateBranch(node->succedents[i], scount,
568 acount, nodes, unvisited)) {
569 retcode = 1;
570 }
571 }
572 }
573 return (retcode);
574 }
575
576 static void
577 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
578 {
579 int i;
580
581 RF_ASSERT(node->visited == unvisited);
582 for (i = 0; i < node->numSuccedents; i++) {
583 if (node->succedents[i] == NULL) {
584 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
585 RF_ASSERT(0);
586 }
587 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
588 }
589 }
590 /* NOTE: never call this on a big dag, because it is exponential
591 * in execution time
592 */
593 static void
594 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
595 {
596 int i, unvisited;
597
598 unvisited = dag->succedents[0]->visited;
599
600 for (i = 0; i < dag->numSuccedents; i++) {
601 if (dag->succedents[i] == NULL) {
602 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
603 RF_ASSERT(0);
604 }
605 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
606 }
607 }
608 /* validate a DAG. _at entry_ verify that:
609 * -- numNodesCompleted is zero
610 * -- node queue is null
611 * -- dag status is rf_enable
612 * -- next pointer is null on every node
613 * -- all nodes have status wait
614 * -- numAntDone is zero in all nodes
615 * -- terminator node has zero successors
616 * -- no other node besides terminator has zero successors
617 * -- no successor or antecedent pointer in a node is NULL
618 * -- number of times that each node appears as a successor of another node
619 * is equal to the antecedent count on that node
620 * -- number of times that each node appears as an antecedent of another node
621 * is equal to the succedent count on that node
622 * -- what else?
623 */
624 int
625 rf_ValidateDAG(RF_DagHeader_t *dag_h)
626 {
627 int i, nodecount;
628 int *scount, *acount;/* per-node successor and antecedent counts */
629 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
630 int retcode = 0;
631 int unvisited;
632 int commitNodeCount = 0;
633
634 if (rf_validateVisitedDebug)
635 rf_ValidateVisitedBits(dag_h);
636
637 if (dag_h->numNodesCompleted != 0) {
638 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
639 retcode = 1;
640 goto validate_dag_bad;
641 }
642 if (dag_h->status != rf_enable) {
643 printf("INVALID DAG: not enabled\n");
644 retcode = 1;
645 goto validate_dag_bad;
646 }
647 if (dag_h->numCommits != 0) {
648 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
649 retcode = 1;
650 goto validate_dag_bad;
651 }
652 if (dag_h->numSuccedents != 1) {
653 /* currently, all dags must have only one succedent */
654 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
655 retcode = 1;
656 goto validate_dag_bad;
657 }
658 nodecount = rf_AssignNodeNums(dag_h);
659
660 unvisited = dag_h->succedents[0]->visited;
661
662 RF_Malloc(scount, nodecount * sizeof(int), (int *));
663 RF_Malloc(acount, nodecount * sizeof(int), (int *));
664 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
665 (RF_DagNode_t **));
666 for (i = 0; i < dag_h->numSuccedents; i++) {
667 if ((dag_h->succedents[i]->visited == unvisited)
668 && rf_ValidateBranch(dag_h->succedents[i], scount,
669 acount, nodes, unvisited)) {
670 retcode = 1;
671 }
672 }
673 /* start at 1 to skip the header node */
674 for (i = 1; i < nodecount; i++) {
675 if (nodes[i]->commitNode)
676 commitNodeCount++;
677 if (nodes[i]->doFunc == NULL) {
678 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
679 retcode = 1;
680 goto validate_dag_out;
681 }
682 if (nodes[i]->undoFunc == NULL) {
683 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
684 retcode = 1;
685 goto validate_dag_out;
686 }
687 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
688 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
689 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
690 retcode = 1;
691 goto validate_dag_out;
692 }
693 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
694 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
695 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
696 retcode = 1;
697 goto validate_dag_out;
698 }
699 }
700
701 if (dag_h->numCommitNodes != commitNodeCount) {
702 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
703 dag_h->numCommitNodes, commitNodeCount);
704 retcode = 1;
705 goto validate_dag_out;
706 }
707 validate_dag_out:
708 RF_Free(scount, nodecount * sizeof(int));
709 RF_Free(acount, nodecount * sizeof(int));
710 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
711 if (retcode)
712 rf_PrintDAGList(dag_h);
713
714 if (rf_validateVisitedDebug)
715 rf_ValidateVisitedBits(dag_h);
716
717 return (retcode);
718
719 validate_dag_bad:
720 rf_PrintDAGList(dag_h);
721 return (retcode);
722 }
723
724 #endif /* RF_DEBUG_VALIDATE_DAG */
725
726 /******************************************************************************
727 *
728 * misc construction routines
729 *
730 *****************************************************************************/
731
732 void
733 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
734 {
735 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
736 int fcol = raidPtr->reconControl->fcol;
737 int scol = raidPtr->reconControl->spareCol;
738 RF_PhysDiskAddr_t *pda;
739
740 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
741 for (pda = asmap->physInfo; pda; pda = pda->next) {
742 if (pda->col == fcol) {
743 #if RF_DEBUG_DAG
744 if (rf_dagDebug) {
745 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
746 pda->startSector)) {
747 RF_PANIC();
748 }
749 }
750 #endif
751 /* printf("Remapped data for large write\n"); */
752 if (ds) {
753 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
754 &pda->col, &pda->startSector, RF_REMAP);
755 } else {
756 pda->col = scol;
757 }
758 }
759 }
760 for (pda = asmap->parityInfo; pda; pda = pda->next) {
761 if (pda->col == fcol) {
762 #if RF_DEBUG_DAG
763 if (rf_dagDebug) {
764 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
765 RF_PANIC();
766 }
767 }
768 #endif
769 }
770 if (ds) {
771 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
772 } else {
773 pda->col = scol;
774 }
775 }
776 }
777
778
779 /* this routine allocates read buffers and generates stripe maps for the
780 * regions of the array from the start of the stripe to the start of the
781 * access, and from the end of the access to the end of the stripe. It also
782 * computes and returns the number of DAG nodes needed to read all this data.
783 * Note that this routine does the wrong thing if the access is fully
784 * contained within one stripe unit, so we RF_ASSERT against this case at the
785 * start.
786 *
787 * layoutPtr - in: layout information
788 * asmap - in: access stripe map
789 * dag_h - in: header of the dag to create
790 * new_asm_h - in: ptr to array of 2 headers. to be filled in
791 * nRodNodes - out: num nodes to be generated to read unaccessed data
792 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
793 */
794 void
795 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
796 RF_RaidLayout_t *layoutPtr,
797 RF_AccessStripeMap_t *asmap,
798 RF_DagHeader_t *dag_h,
799 RF_AccessStripeMapHeader_t **new_asm_h,
800 int *nRodNodes,
801 char **sosBuffer, char **eosBuffer,
802 RF_AllocListElem_t *allocList)
803 {
804 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
805 RF_SectorNum_t sosNumSector, eosNumSector;
806
807 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
808 /* generate an access map for the region of the array from start of
809 * stripe to start of access */
810 new_asm_h[0] = new_asm_h[1] = NULL;
811 *nRodNodes = 0;
812 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
813 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
814 sosNumSector = asmap->raidAddress - sosRaidAddress;
815 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
816 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
817 new_asm_h[0]->next = dag_h->asmList;
818 dag_h->asmList = new_asm_h[0];
819 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
820
821 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
822 /* we're totally within one stripe here */
823 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
824 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
825 }
826 /* generate an access map for the region of the array from end of
827 * access to end of stripe */
828 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
829 eosRaidAddress = asmap->endRaidAddress;
830 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
831 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
832 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
833 new_asm_h[1]->next = dag_h->asmList;
834 dag_h->asmList = new_asm_h[1];
835 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
836
837 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
838 /* we're totally within one stripe here */
839 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
840 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
841 }
842 }
843
844
845
846 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
847 int
848 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
849 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
850 {
851 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
852 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
853 /* use -1 to be sure we stay within SU */
854 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
855 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
856 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
857 }
858
859
860 /* GenerateFailedAccessASMs
861 *
862 * this routine figures out what portion of the stripe needs to be read
863 * to effect the degraded read or write operation. It's primary function
864 * is to identify everything required to recover the data, and then
865 * eliminate anything that is already being accessed by the user.
866 *
867 * The main result is two new ASMs, one for the region from the start of the
868 * stripe to the start of the access, and one for the region from the end of
869 * the access to the end of the stripe. These ASMs describe everything that
870 * needs to be read to effect the degraded access. Other results are:
871 * nXorBufs -- the total number of buffers that need to be XORed together to
872 * recover the lost data,
873 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
874 * at entry, not allocated.
875 * overlappingPDAs --
876 * describes which of the non-failed PDAs in the user access
877 * overlap data that needs to be read to effect recovery.
878 * overlappingPDAs[i]==1 if and only if, neglecting the failed
879 * PDA, the ith pda in the input asm overlaps data that needs
880 * to be read for recovery.
881 */
882 /* in: asm - ASM for the actual access, one stripe only */
883 /* in: failedPDA - which component of the access has failed */
884 /* in: dag_h - header of the DAG we're going to create */
885 /* out: new_asm_h - the two new ASMs */
886 /* out: nXorBufs - the total number of xor bufs required */
887 /* out: rpBufPtr - a buffer for the parity read */
888 void
889 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
890 RF_PhysDiskAddr_t *failedPDA,
891 RF_DagHeader_t *dag_h,
892 RF_AccessStripeMapHeader_t **new_asm_h,
893 int *nXorBufs, char **rpBufPtr,
894 char *overlappingPDAs,
895 RF_AllocListElem_t *allocList)
896 {
897 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
898
899 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
900 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
901
902 RF_SectorCount_t numSect[2], numParitySect;
903 RF_PhysDiskAddr_t *pda;
904 char *rdBuf, *bufP;
905 int foundit, i;
906
907 bufP = NULL;
908 foundit = 0;
909 /* first compute the following raid addresses: start of stripe,
910 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
911 * MAX(end of access, end of failed SU), (eosStartAddr) end of
912 * stripe (i.e. start of next stripe) (eosAddr) */
913 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
914 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
915 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
916 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
917
918 /* now generate access stripe maps for each of the above regions of
919 * the stripe. Use a dummy (NULL) buf ptr for now */
920
921 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
922 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
923
924 /* walk through the PDAs and range-restrict each SU to the region of
925 * the SU touched on the failed PDA. also compute total data buffer
926 * space requirements in this step. Ignore the parity for now. */
927
928 numSect[0] = numSect[1] = 0;
929 if (new_asm_h[0]) {
930 new_asm_h[0]->next = dag_h->asmList;
931 dag_h->asmList = new_asm_h[0];
932 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
933 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
934 numSect[0] += pda->numSector;
935 }
936 }
937 if (new_asm_h[1]) {
938 new_asm_h[1]->next = dag_h->asmList;
939 dag_h->asmList = new_asm_h[1];
940 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
941 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
942 numSect[1] += pda->numSector;
943 }
944 }
945 numParitySect = failedPDA->numSector;
946
947 /* allocate buffer space for the data & parity we have to read to
948 * recover from the failure */
949
950 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
951 * buf if not needed */
952 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
953 bufP = rdBuf;
954 #if RF_DEBUG_DAG
955 if (rf_degDagDebug)
956 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
957 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
958 #endif
959 }
960 /* now walk through the pdas one last time and assign buffer pointers
961 * (ugh!). Again, ignore the parity. also, count nodes to find out
962 * how many bufs need to be xored together */
963 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
964 * case, 1 is for failed data */
965 if (new_asm_h[0]) {
966 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
967 pda->bufPtr = bufP;
968 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
969 }
970 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
971 }
972 if (new_asm_h[1]) {
973 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
974 pda->bufPtr = bufP;
975 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
976 }
977 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
978 }
979 if (rpBufPtr)
980 *rpBufPtr = bufP; /* the rest of the buffer is for
981 * parity */
982
983 /* the last step is to figure out how many more distinct buffers need
984 * to get xor'd to produce the missing unit. there's one for each
985 * user-data read node that overlaps the portion of the failed unit
986 * being accessed */
987
988 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
989 if (pda == failedPDA) {
990 i--;
991 foundit = 1;
992 continue;
993 }
994 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
995 overlappingPDAs[i] = 1;
996 (*nXorBufs)++;
997 }
998 }
999 if (!foundit) {
1000 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1001 RF_ASSERT(0);
1002 }
1003 #if RF_DEBUG_DAG
1004 if (rf_degDagDebug) {
1005 if (new_asm_h[0]) {
1006 printf("First asm:\n");
1007 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1008 }
1009 if (new_asm_h[1]) {
1010 printf("Second asm:\n");
1011 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1012 }
1013 }
1014 #endif
1015 }
1016
1017
1018 /* adjusts the offset and number of sectors in the destination pda so that
1019 * it covers at most the region of the SU covered by the source PDA. This
1020 * is exclusively a restriction: the number of sectors indicated by the
1021 * target PDA can only shrink.
1022 *
1023 * For example: s = sectors within SU indicated by source PDA
1024 * d = sectors within SU indicated by dest PDA
1025 * r = results, stored in dest PDA
1026 *
1027 * |--------------- one stripe unit ---------------------|
1028 * | sssssssssssssssssssssssssssssssss |
1029 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1030 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1031 *
1032 * Another example:
1033 *
1034 * |--------------- one stripe unit ---------------------|
1035 * | sssssssssssssssssssssssssssssssss |
1036 * | ddddddddddddddddddddddd |
1037 * | rrrrrrrrrrrrrrrr |
1038 *
1039 */
1040 void
1041 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1042 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1043 {
1044 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1045 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1046 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1047 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1048 * stay within SU */
1049 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1050 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1051
1052 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1053 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1054
1055 if (dobuffer)
1056 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1057 if (doraidaddr) {
1058 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1059 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1060 }
1061 }
1062
1063 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1064
1065 /*
1066 * Want the highest of these primes to be the largest one
1067 * less than the max expected number of columns (won't hurt
1068 * to be too small or too large, but won't be optimal, either)
1069 * --jimz
1070 */
1071 #define NLOWPRIMES 8
1072 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1073 /*****************************************************************************
1074 * compute the workload shift factor. (chained declustering)
1075 *
1076 * return nonzero if access should shift to secondary, otherwise,
1077 * access is to primary
1078 *****************************************************************************/
1079 int
1080 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1081 {
1082 /*
1083 * variables:
1084 * d = column of disk containing primary
1085 * f = column of failed disk
1086 * n = number of disks in array
1087 * sd = "shift distance" (number of columns that d is to the right of f)
1088 * v = numerator of redirection ratio
1089 * k = denominator of redirection ratio
1090 */
1091 RF_RowCol_t d, f, sd, n;
1092 int k, v, ret, i;
1093
1094 n = raidPtr->numCol;
1095
1096 /* assign column of primary copy to d */
1097 d = pda->col;
1098
1099 /* assign column of dead disk to f */
1100 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1101
1102 RF_ASSERT(f < n);
1103 RF_ASSERT(f != d);
1104
1105 sd = (f > d) ? (n + d - f) : (d - f);
1106 RF_ASSERT(sd < n);
1107
1108 /*
1109 * v of every k accesses should be redirected
1110 *
1111 * v/k := (n-1-sd)/(n-1)
1112 */
1113 v = (n - 1 - sd);
1114 k = (n - 1);
1115
1116 #if 1
1117 /*
1118 * XXX
1119 * Is this worth it?
1120 *
1121 * Now reduce the fraction, by repeatedly factoring
1122 * out primes (just like they teach in elementary school!)
1123 */
1124 for (i = 0; i < NLOWPRIMES; i++) {
1125 if (lowprimes[i] > v)
1126 break;
1127 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1128 v /= lowprimes[i];
1129 k /= lowprimes[i];
1130 }
1131 }
1132 #endif
1133
1134 raidPtr->hist_diskreq[d]++;
1135 if (raidPtr->hist_diskreq[d] > v) {
1136 ret = 0; /* do not redirect */
1137 } else {
1138 ret = 1; /* redirect */
1139 }
1140
1141 #if 0
1142 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1143 raidPtr->hist_diskreq[d]);
1144 #endif
1145
1146 if (raidPtr->hist_diskreq[d] >= k) {
1147 /* reset counter */
1148 raidPtr->hist_diskreq[d] = 0;
1149 }
1150 return (ret);
1151 }
1152 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1153
1154 /*
1155 * Disk selection routines
1156 */
1157
1158 /*
1159 * Selects the disk with the shortest queue from a mirror pair.
1160 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1161 * disk are counted as members of the "queue"
1162 */
1163 void
1164 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1165 {
1166 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1167 RF_RowCol_t colData, colMirror;
1168 int dataQueueLength, mirrorQueueLength, usemirror;
1169 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1170 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1171 RF_PhysDiskAddr_t *tmp_pda;
1172 RF_RaidDisk_t *disks = raidPtr->Disks;
1173 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1174
1175 /* return the [row col] of the disk with the shortest queue */
1176 colData = data_pda->col;
1177 colMirror = mirror_pda->col;
1178 dataQueue = &(dqs[colData]);
1179 mirrorQueue = &(dqs[colMirror]);
1180
1181 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1182 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1183 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1184 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1185 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1186 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1187 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1188 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1189 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1190 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1191 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1192 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1193
1194 usemirror = 0;
1195 if (RF_DEAD_DISK(disks[colMirror].status)) {
1196 usemirror = 0;
1197 } else
1198 if (RF_DEAD_DISK(disks[colData].status)) {
1199 usemirror = 1;
1200 } else
1201 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1202 /* Trust only the main disk */
1203 usemirror = 0;
1204 } else
1205 if (dataQueueLength < mirrorQueueLength) {
1206 usemirror = 0;
1207 } else
1208 if (mirrorQueueLength < dataQueueLength) {
1209 usemirror = 1;
1210 } else {
1211 /* queues are equal length. attempt
1212 * cleverness. */
1213 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1214 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1215 usemirror = 0;
1216 } else {
1217 usemirror = 1;
1218 }
1219 }
1220
1221 if (usemirror) {
1222 /* use mirror (parity) disk, swap params 0 & 4 */
1223 tmp_pda = data_pda;
1224 node->params[0].p = mirror_pda;
1225 node->params[4].p = tmp_pda;
1226 } else {
1227 /* use data disk, leave param 0 unchanged */
1228 }
1229 /* printf("dataQueueLength %d, mirrorQueueLength
1230 * %d\n",dataQueueLength, mirrorQueueLength); */
1231 }
1232 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1233 /*
1234 * Do simple partitioning. This assumes that
1235 * the data and parity disks are laid out identically.
1236 */
1237 void
1238 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1239 {
1240 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1241 RF_RowCol_t colData, colMirror;
1242 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1243 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1244 RF_PhysDiskAddr_t *tmp_pda;
1245 RF_RaidDisk_t *disks = raidPtr->Disks;
1246 int usemirror;
1247
1248 /* return the [row col] of the disk with the shortest queue */
1249 colData = data_pda->col;
1250 colMirror = mirror_pda->col;
1251
1252 usemirror = 0;
1253 if (RF_DEAD_DISK(disks[colMirror].status)) {
1254 usemirror = 0;
1255 } else
1256 if (RF_DEAD_DISK(disks[colData].status)) {
1257 usemirror = 1;
1258 } else
1259 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1260 /* Trust only the main disk */
1261 usemirror = 0;
1262 } else
1263 if (data_pda->startSector <
1264 (disks[colData].numBlocks / 2)) {
1265 usemirror = 0;
1266 } else {
1267 usemirror = 1;
1268 }
1269
1270 if (usemirror) {
1271 /* use mirror (parity) disk, swap params 0 & 4 */
1272 tmp_pda = data_pda;
1273 node->params[0].p = mirror_pda;
1274 node->params[4].p = tmp_pda;
1275 } else {
1276 /* use data disk, leave param 0 unchanged */
1277 }
1278 }
1279 #endif
1280