rf_dagutils.c revision 1.36 1 /* $NetBSD: rf_dagutils.c,v 1.36 2004/03/07 21:57:44 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.36 2004/03/07 21:57:44 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 node->numSuccedents = nSucc;
101 node->name = name;
102 node->dagHdr = hdr;
103 node->visited = 0;
104
105 /* allocate all the pointers with one call to malloc */
106 nptrs = nSucc + nAnte + nResult + nSucc;
107
108 if (nptrs <= RF_DAG_PTRCACHESIZE) {
109 /*
110 * The dag_ptrs field of the node is basically some scribble
111 * space to be used here. We could get rid of it, and always
112 * allocate the range of pointers, but that's expensive. So,
113 * we pick a "common case" size for the pointer cache. Hopefully,
114 * we'll find that:
115 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
116 * only a little bit (least efficient case)
117 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
118 * (wasted memory)
119 */
120 ptrs = (void **) node->dag_ptrs;
121 } else {
122 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
123 (void **), alist);
124 }
125 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
126 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
127 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
128 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
129
130 if (nParam) {
131 if (nParam <= RF_DAG_PARAMCACHESIZE) {
132 node->params = (RF_DagParam_t *) node->dag_params;
133 } else {
134 RF_MallocAndAdd(node->params,
135 nParam * sizeof(RF_DagParam_t),
136 (RF_DagParam_t *), alist);
137 }
138 } else {
139 node->params = NULL;
140 }
141 }
142
143
144
145 /******************************************************************************
146 *
147 * allocation and deallocation routines
148 *
149 *****************************************************************************/
150
151 void
152 rf_FreeDAG(RF_DagHeader_t *dag_h)
153 {
154 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
155 RF_DagHeader_t *nextDag;
156
157 while (dag_h) {
158 nextDag = dag_h->next;
159 rf_FreeAllocList(dag_h->allocList);
160 for (asmap = dag_h->asmList; asmap;) {
161 t_asmap = asmap;
162 asmap = asmap->next;
163 rf_FreeAccessStripeMap(t_asmap);
164 }
165 rf_FreeDAGHeader(dag_h);
166 dag_h = nextDag;
167 }
168 }
169
170 #define RF_MAX_FREE_DAGH 128
171 #define RF_MIN_FREE_DAGH 32
172
173 #define RF_MAX_FREE_DAGLIST 128
174 #define RF_MIN_FREE_DAGLIST 32
175
176 #define RF_MAX_FREE_FUNCLIST 128
177 #define RF_MIN_FREE_FUNCLIST 32
178
179 static void rf_ShutdownDAGs(void *);
180 static void
181 rf_ShutdownDAGs(void *ignored)
182 {
183 pool_destroy(&rf_pools.dagh);
184 pool_destroy(&rf_pools.daglist);
185 pool_destroy(&rf_pools.funclist);
186 }
187
188 int
189 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
190 {
191
192 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
193 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
194 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
195 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
196 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
197 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
198 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
199
200 return (0);
201 }
202
203 RF_DagHeader_t *
204 rf_AllocDAGHeader()
205 {
206 RF_DagHeader_t *dh;
207
208 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
209 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
210 return (dh);
211 }
212
213 void
214 rf_FreeDAGHeader(RF_DagHeader_t * dh)
215 {
216 pool_put(&rf_pools.dagh, dh);
217 }
218
219 RF_DagList_t *
220 rf_AllocDAGList()
221 {
222 RF_DagList_t *dagList;
223
224 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
225 memset(dagList, 0, sizeof(RF_DagList_t));
226
227 return (dagList);
228 }
229
230 void
231 rf_FreeDAGList(RF_DagList_t *dagList)
232 {
233 pool_put(&rf_pools.daglist, dagList);
234 }
235
236 RF_FuncList_t *
237 rf_AllocFuncList()
238 {
239 RF_FuncList_t *funcList;
240
241 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
242 memset(funcList, 0, sizeof(RF_FuncList_t));
243
244 return (funcList);
245 }
246
247 void
248 rf_FreeFuncList(RF_FuncList_t *funcList)
249 {
250 pool_put(&rf_pools.funclist, funcList);
251 }
252
253
254
255 /* allocates a buffer big enough to hold the data described by pda */
256 void *
257 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
258 RF_AllocListElem_t *allocList)
259 {
260 char *p;
261
262 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
263 (char *), allocList);
264 return ((void *) p);
265 }
266 #if RF_DEBUG_VALIDATE_DAG
267 /******************************************************************************
268 *
269 * debug routines
270 *
271 *****************************************************************************/
272
273 char *
274 rf_NodeStatusString(RF_DagNode_t *node)
275 {
276 switch (node->status) {
277 case rf_wait:
278 return ("wait");
279 case rf_fired:
280 return ("fired");
281 case rf_good:
282 return ("good");
283 case rf_bad:
284 return ("bad");
285 default:
286 return ("?");
287 }
288 }
289
290 void
291 rf_PrintNodeInfoString(RF_DagNode_t *node)
292 {
293 RF_PhysDiskAddr_t *pda;
294 int (*df) (RF_DagNode_t *) = node->doFunc;
295 int i, lk, unlk;
296 void *bufPtr;
297
298 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
299 || (df == rf_DiskReadMirrorIdleFunc)
300 || (df == rf_DiskReadMirrorPartitionFunc)) {
301 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
302 bufPtr = (void *) node->params[1].p;
303 lk = 0;
304 unlk = 0;
305 RF_ASSERT(!(lk && unlk));
306 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
307 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
308 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
309 return;
310 }
311 if (df == rf_DiskUnlockFunc) {
312 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
313 lk = 0;
314 unlk = 0;
315 RF_ASSERT(!(lk && unlk));
316 printf("c %d %s\n", pda->col,
317 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
318 return;
319 }
320 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
321 || (df == rf_RecoveryXorFunc)) {
322 printf("result buf 0x%lx\n", (long) node->results[0]);
323 for (i = 0; i < node->numParams - 1; i += 2) {
324 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
325 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
326 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
327 (long) bufPtr, pda->col,
328 (long) pda->startSector, (int) pda->numSector);
329 }
330 return;
331 }
332 #if RF_INCLUDE_PARITYLOGGING > 0
333 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
334 for (i = 0; i < node->numParams - 1; i += 2) {
335 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
336 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
337 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
338 pda->col, (long) pda->startSector,
339 (int) pda->numSector, (long) bufPtr);
340 }
341 return;
342 }
343 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
344
345 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
346 printf("\n");
347 return;
348 }
349 printf("?\n");
350 }
351 #ifdef DEBUG
352 static void
353 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
354 {
355 char *anttype;
356 int i;
357
358 node->visited = (unvisited) ? 0 : 1;
359 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
360 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
361 node->numSuccedents, node->numSuccFired, node->numSuccDone,
362 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
363 for (i = 0; i < node->numSuccedents; i++) {
364 printf("%d%s", node->succedents[i]->nodeNum,
365 ((i == node->numSuccedents - 1) ? "\0" : " "));
366 }
367 printf("} A{");
368 for (i = 0; i < node->numAntecedents; i++) {
369 switch (node->antType[i]) {
370 case rf_trueData:
371 anttype = "T";
372 break;
373 case rf_antiData:
374 anttype = "A";
375 break;
376 case rf_outputData:
377 anttype = "O";
378 break;
379 case rf_control:
380 anttype = "C";
381 break;
382 default:
383 anttype = "?";
384 break;
385 }
386 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
387 }
388 printf("}; ");
389 rf_PrintNodeInfoString(node);
390 for (i = 0; i < node->numSuccedents; i++) {
391 if (node->succedents[i]->visited == unvisited)
392 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
393 }
394 }
395
396 static void
397 rf_PrintDAG(RF_DagHeader_t *dag_h)
398 {
399 int unvisited, i;
400 char *status;
401
402 /* set dag status */
403 switch (dag_h->status) {
404 case rf_enable:
405 status = "enable";
406 break;
407 case rf_rollForward:
408 status = "rollForward";
409 break;
410 case rf_rollBackward:
411 status = "rollBackward";
412 break;
413 default:
414 status = "illegal!";
415 break;
416 }
417 /* find out if visited bits are currently set or clear */
418 unvisited = dag_h->succedents[0]->visited;
419
420 printf("DAG type: %s\n", dag_h->creator);
421 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
422 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
423 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
424 for (i = 0; i < dag_h->numSuccedents; i++) {
425 printf("%d%s", dag_h->succedents[i]->nodeNum,
426 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
427 }
428 printf("};\n");
429 for (i = 0; i < dag_h->numSuccedents; i++) {
430 if (dag_h->succedents[i]->visited == unvisited)
431 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
432 }
433 }
434 #endif
435 /* assigns node numbers */
436 int
437 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
438 {
439 int unvisited, i, nnum;
440 RF_DagNode_t *node;
441
442 nnum = 0;
443 unvisited = dag_h->succedents[0]->visited;
444
445 dag_h->nodeNum = nnum++;
446 for (i = 0; i < dag_h->numSuccedents; i++) {
447 node = dag_h->succedents[i];
448 if (node->visited == unvisited) {
449 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
450 }
451 }
452 return (nnum);
453 }
454
455 int
456 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
457 {
458 int i;
459
460 node->visited = (unvisited) ? 0 : 1;
461
462 node->nodeNum = num++;
463 for (i = 0; i < node->numSuccedents; i++) {
464 if (node->succedents[i]->visited == unvisited) {
465 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
466 }
467 }
468 return (num);
469 }
470 /* set the header pointers in each node to "newptr" */
471 void
472 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
473 {
474 int i;
475 for (i = 0; i < dag_h->numSuccedents; i++)
476 if (dag_h->succedents[i]->dagHdr != newptr)
477 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
478 }
479
480 void
481 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
482 {
483 int i;
484 node->dagHdr = newptr;
485 for (i = 0; i < node->numSuccedents; i++)
486 if (node->succedents[i]->dagHdr != newptr)
487 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
488 }
489
490
491 void
492 rf_PrintDAGList(RF_DagHeader_t * dag_h)
493 {
494 int i = 0;
495
496 for (; dag_h; dag_h = dag_h->next) {
497 rf_AssignNodeNums(dag_h);
498 printf("\n\nDAG %d IN LIST:\n", i++);
499 rf_PrintDAG(dag_h);
500 }
501 }
502
503 static int
504 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
505 RF_DagNode_t **nodes, int unvisited)
506 {
507 int i, retcode = 0;
508
509 /* construct an array of node pointers indexed by node num */
510 node->visited = (unvisited) ? 0 : 1;
511 nodes[node->nodeNum] = node;
512
513 if (node->next != NULL) {
514 printf("INVALID DAG: next pointer in node is not NULL\n");
515 retcode = 1;
516 }
517 if (node->status != rf_wait) {
518 printf("INVALID DAG: Node status is not wait\n");
519 retcode = 1;
520 }
521 if (node->numAntDone != 0) {
522 printf("INVALID DAG: numAntDone is not zero\n");
523 retcode = 1;
524 }
525 if (node->doFunc == rf_TerminateFunc) {
526 if (node->numSuccedents != 0) {
527 printf("INVALID DAG: Terminator node has succedents\n");
528 retcode = 1;
529 }
530 } else {
531 if (node->numSuccedents == 0) {
532 printf("INVALID DAG: Non-terminator node has no succedents\n");
533 retcode = 1;
534 }
535 }
536 for (i = 0; i < node->numSuccedents; i++) {
537 if (!node->succedents[i]) {
538 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
539 retcode = 1;
540 }
541 scount[node->succedents[i]->nodeNum]++;
542 }
543 for (i = 0; i < node->numAntecedents; i++) {
544 if (!node->antecedents[i]) {
545 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
546 retcode = 1;
547 }
548 acount[node->antecedents[i]->nodeNum]++;
549 }
550 for (i = 0; i < node->numSuccedents; i++) {
551 if (node->succedents[i]->visited == unvisited) {
552 if (rf_ValidateBranch(node->succedents[i], scount,
553 acount, nodes, unvisited)) {
554 retcode = 1;
555 }
556 }
557 }
558 return (retcode);
559 }
560
561 static void
562 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
563 {
564 int i;
565
566 RF_ASSERT(node->visited == unvisited);
567 for (i = 0; i < node->numSuccedents; i++) {
568 if (node->succedents[i] == NULL) {
569 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
570 RF_ASSERT(0);
571 }
572 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
573 }
574 }
575 /* NOTE: never call this on a big dag, because it is exponential
576 * in execution time
577 */
578 static void
579 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
580 {
581 int i, unvisited;
582
583 unvisited = dag->succedents[0]->visited;
584
585 for (i = 0; i < dag->numSuccedents; i++) {
586 if (dag->succedents[i] == NULL) {
587 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
588 RF_ASSERT(0);
589 }
590 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
591 }
592 }
593 /* validate a DAG. _at entry_ verify that:
594 * -- numNodesCompleted is zero
595 * -- node queue is null
596 * -- dag status is rf_enable
597 * -- next pointer is null on every node
598 * -- all nodes have status wait
599 * -- numAntDone is zero in all nodes
600 * -- terminator node has zero successors
601 * -- no other node besides terminator has zero successors
602 * -- no successor or antecedent pointer in a node is NULL
603 * -- number of times that each node appears as a successor of another node
604 * is equal to the antecedent count on that node
605 * -- number of times that each node appears as an antecedent of another node
606 * is equal to the succedent count on that node
607 * -- what else?
608 */
609 int
610 rf_ValidateDAG(RF_DagHeader_t *dag_h)
611 {
612 int i, nodecount;
613 int *scount, *acount;/* per-node successor and antecedent counts */
614 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
615 int retcode = 0;
616 int unvisited;
617 int commitNodeCount = 0;
618
619 if (rf_validateVisitedDebug)
620 rf_ValidateVisitedBits(dag_h);
621
622 if (dag_h->numNodesCompleted != 0) {
623 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
624 retcode = 1;
625 goto validate_dag_bad;
626 }
627 if (dag_h->status != rf_enable) {
628 printf("INVALID DAG: not enabled\n");
629 retcode = 1;
630 goto validate_dag_bad;
631 }
632 if (dag_h->numCommits != 0) {
633 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
634 retcode = 1;
635 goto validate_dag_bad;
636 }
637 if (dag_h->numSuccedents != 1) {
638 /* currently, all dags must have only one succedent */
639 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
640 retcode = 1;
641 goto validate_dag_bad;
642 }
643 nodecount = rf_AssignNodeNums(dag_h);
644
645 unvisited = dag_h->succedents[0]->visited;
646
647 RF_Malloc(scount, nodecount * sizeof(int), (int *));
648 RF_Malloc(acount, nodecount * sizeof(int), (int *));
649 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
650 (RF_DagNode_t **));
651 for (i = 0; i < dag_h->numSuccedents; i++) {
652 if ((dag_h->succedents[i]->visited == unvisited)
653 && rf_ValidateBranch(dag_h->succedents[i], scount,
654 acount, nodes, unvisited)) {
655 retcode = 1;
656 }
657 }
658 /* start at 1 to skip the header node */
659 for (i = 1; i < nodecount; i++) {
660 if (nodes[i]->commitNode)
661 commitNodeCount++;
662 if (nodes[i]->doFunc == NULL) {
663 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
664 retcode = 1;
665 goto validate_dag_out;
666 }
667 if (nodes[i]->undoFunc == NULL) {
668 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
669 retcode = 1;
670 goto validate_dag_out;
671 }
672 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
673 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
674 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
675 retcode = 1;
676 goto validate_dag_out;
677 }
678 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
679 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
680 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
681 retcode = 1;
682 goto validate_dag_out;
683 }
684 }
685
686 if (dag_h->numCommitNodes != commitNodeCount) {
687 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
688 dag_h->numCommitNodes, commitNodeCount);
689 retcode = 1;
690 goto validate_dag_out;
691 }
692 validate_dag_out:
693 RF_Free(scount, nodecount * sizeof(int));
694 RF_Free(acount, nodecount * sizeof(int));
695 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
696 if (retcode)
697 rf_PrintDAGList(dag_h);
698
699 if (rf_validateVisitedDebug)
700 rf_ValidateVisitedBits(dag_h);
701
702 return (retcode);
703
704 validate_dag_bad:
705 rf_PrintDAGList(dag_h);
706 return (retcode);
707 }
708
709 #endif /* RF_DEBUG_VALIDATE_DAG */
710
711 /******************************************************************************
712 *
713 * misc construction routines
714 *
715 *****************************************************************************/
716
717 void
718 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
719 {
720 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
721 int fcol = raidPtr->reconControl->fcol;
722 int scol = raidPtr->reconControl->spareCol;
723 RF_PhysDiskAddr_t *pda;
724
725 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
726 for (pda = asmap->physInfo; pda; pda = pda->next) {
727 if (pda->col == fcol) {
728 #if RF_DEBUG_DAG
729 if (rf_dagDebug) {
730 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
731 pda->startSector)) {
732 RF_PANIC();
733 }
734 }
735 #endif
736 /* printf("Remapped data for large write\n"); */
737 if (ds) {
738 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
739 &pda->col, &pda->startSector, RF_REMAP);
740 } else {
741 pda->col = scol;
742 }
743 }
744 }
745 for (pda = asmap->parityInfo; pda; pda = pda->next) {
746 if (pda->col == fcol) {
747 #if RF_DEBUG_DAG
748 if (rf_dagDebug) {
749 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
750 RF_PANIC();
751 }
752 }
753 #endif
754 }
755 if (ds) {
756 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
757 } else {
758 pda->col = scol;
759 }
760 }
761 }
762
763
764 /* this routine allocates read buffers and generates stripe maps for the
765 * regions of the array from the start of the stripe to the start of the
766 * access, and from the end of the access to the end of the stripe. It also
767 * computes and returns the number of DAG nodes needed to read all this data.
768 * Note that this routine does the wrong thing if the access is fully
769 * contained within one stripe unit, so we RF_ASSERT against this case at the
770 * start.
771 *
772 * layoutPtr - in: layout information
773 * asmap - in: access stripe map
774 * dag_h - in: header of the dag to create
775 * new_asm_h - in: ptr to array of 2 headers. to be filled in
776 * nRodNodes - out: num nodes to be generated to read unaccessed data
777 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
778 */
779 void
780 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
781 RF_RaidLayout_t *layoutPtr,
782 RF_AccessStripeMap_t *asmap,
783 RF_DagHeader_t *dag_h,
784 RF_AccessStripeMapHeader_t **new_asm_h,
785 int *nRodNodes,
786 char **sosBuffer, char **eosBuffer,
787 RF_AllocListElem_t *allocList)
788 {
789 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
790 RF_SectorNum_t sosNumSector, eosNumSector;
791
792 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
793 /* generate an access map for the region of the array from start of
794 * stripe to start of access */
795 new_asm_h[0] = new_asm_h[1] = NULL;
796 *nRodNodes = 0;
797 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
798 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
799 sosNumSector = asmap->raidAddress - sosRaidAddress;
800 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
801 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
802 new_asm_h[0]->next = dag_h->asmList;
803 dag_h->asmList = new_asm_h[0];
804 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
805
806 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
807 /* we're totally within one stripe here */
808 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
809 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
810 }
811 /* generate an access map for the region of the array from end of
812 * access to end of stripe */
813 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
814 eosRaidAddress = asmap->endRaidAddress;
815 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
816 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
817 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
818 new_asm_h[1]->next = dag_h->asmList;
819 dag_h->asmList = new_asm_h[1];
820 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
821
822 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
823 /* we're totally within one stripe here */
824 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
825 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
826 }
827 }
828
829
830
831 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
832 int
833 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
834 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
835 {
836 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
837 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
838 /* use -1 to be sure we stay within SU */
839 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
840 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
841 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
842 }
843
844
845 /* GenerateFailedAccessASMs
846 *
847 * this routine figures out what portion of the stripe needs to be read
848 * to effect the degraded read or write operation. It's primary function
849 * is to identify everything required to recover the data, and then
850 * eliminate anything that is already being accessed by the user.
851 *
852 * The main result is two new ASMs, one for the region from the start of the
853 * stripe to the start of the access, and one for the region from the end of
854 * the access to the end of the stripe. These ASMs describe everything that
855 * needs to be read to effect the degraded access. Other results are:
856 * nXorBufs -- the total number of buffers that need to be XORed together to
857 * recover the lost data,
858 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
859 * at entry, not allocated.
860 * overlappingPDAs --
861 * describes which of the non-failed PDAs in the user access
862 * overlap data that needs to be read to effect recovery.
863 * overlappingPDAs[i]==1 if and only if, neglecting the failed
864 * PDA, the ith pda in the input asm overlaps data that needs
865 * to be read for recovery.
866 */
867 /* in: asm - ASM for the actual access, one stripe only */
868 /* in: failedPDA - which component of the access has failed */
869 /* in: dag_h - header of the DAG we're going to create */
870 /* out: new_asm_h - the two new ASMs */
871 /* out: nXorBufs - the total number of xor bufs required */
872 /* out: rpBufPtr - a buffer for the parity read */
873 void
874 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
875 RF_PhysDiskAddr_t *failedPDA,
876 RF_DagHeader_t *dag_h,
877 RF_AccessStripeMapHeader_t **new_asm_h,
878 int *nXorBufs, char **rpBufPtr,
879 char *overlappingPDAs,
880 RF_AllocListElem_t *allocList)
881 {
882 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
883
884 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
885 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
886 RF_PhysDiskAddr_t *pda;
887 int foundit, i;
888
889 foundit = 0;
890 /* first compute the following raid addresses: start of stripe,
891 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
892 * MAX(end of access, end of failed SU), (eosStartAddr) end of
893 * stripe (i.e. start of next stripe) (eosAddr) */
894 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
895 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
896 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
897 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
898
899 /* now generate access stripe maps for each of the above regions of
900 * the stripe. Use a dummy (NULL) buf ptr for now */
901
902 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
903 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
904
905 /* walk through the PDAs and range-restrict each SU to the region of
906 * the SU touched on the failed PDA. also compute total data buffer
907 * space requirements in this step. Ignore the parity for now. */
908 /* Also count nodes to find out how many bufs need to be xored together */
909 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
910 * case, 1 is for failed data */
911
912 if (new_asm_h[0]) {
913 new_asm_h[0]->next = dag_h->asmList;
914 dag_h->asmList = new_asm_h[0];
915 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
916 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
917 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
918 }
919 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
920 }
921 if (new_asm_h[1]) {
922 new_asm_h[1]->next = dag_h->asmList;
923 dag_h->asmList = new_asm_h[1];
924 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
925 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
926 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
927 }
928 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
929 }
930
931 /* allocate a buffer for parity */
932 if (rpBufPtr)
933 *rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
934
935 /* the last step is to figure out how many more distinct buffers need
936 * to get xor'd to produce the missing unit. there's one for each
937 * user-data read node that overlaps the portion of the failed unit
938 * being accessed */
939
940 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
941 if (pda == failedPDA) {
942 i--;
943 foundit = 1;
944 continue;
945 }
946 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
947 overlappingPDAs[i] = 1;
948 (*nXorBufs)++;
949 }
950 }
951 if (!foundit) {
952 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
953 RF_ASSERT(0);
954 }
955 #if RF_DEBUG_DAG
956 if (rf_degDagDebug) {
957 if (new_asm_h[0]) {
958 printf("First asm:\n");
959 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
960 }
961 if (new_asm_h[1]) {
962 printf("Second asm:\n");
963 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
964 }
965 }
966 #endif
967 }
968
969
970 /* adjusts the offset and number of sectors in the destination pda so that
971 * it covers at most the region of the SU covered by the source PDA. This
972 * is exclusively a restriction: the number of sectors indicated by the
973 * target PDA can only shrink.
974 *
975 * For example: s = sectors within SU indicated by source PDA
976 * d = sectors within SU indicated by dest PDA
977 * r = results, stored in dest PDA
978 *
979 * |--------------- one stripe unit ---------------------|
980 * | sssssssssssssssssssssssssssssssss |
981 * | ddddddddddddddddddddddddddddddddddddddddddddd |
982 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
983 *
984 * Another example:
985 *
986 * |--------------- one stripe unit ---------------------|
987 * | sssssssssssssssssssssssssssssssss |
988 * | ddddddddddddddddddddddd |
989 * | rrrrrrrrrrrrrrrr |
990 *
991 */
992 void
993 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
994 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
995 {
996 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
997 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
998 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
999 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1000 * stay within SU */
1001 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1002 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1003
1004 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1005 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1006
1007 if (dobuffer)
1008 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1009 if (doraidaddr) {
1010 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1011 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1012 }
1013 }
1014
1015 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1016
1017 /*
1018 * Want the highest of these primes to be the largest one
1019 * less than the max expected number of columns (won't hurt
1020 * to be too small or too large, but won't be optimal, either)
1021 * --jimz
1022 */
1023 #define NLOWPRIMES 8
1024 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1025 /*****************************************************************************
1026 * compute the workload shift factor. (chained declustering)
1027 *
1028 * return nonzero if access should shift to secondary, otherwise,
1029 * access is to primary
1030 *****************************************************************************/
1031 int
1032 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1033 {
1034 /*
1035 * variables:
1036 * d = column of disk containing primary
1037 * f = column of failed disk
1038 * n = number of disks in array
1039 * sd = "shift distance" (number of columns that d is to the right of f)
1040 * v = numerator of redirection ratio
1041 * k = denominator of redirection ratio
1042 */
1043 RF_RowCol_t d, f, sd, n;
1044 int k, v, ret, i;
1045
1046 n = raidPtr->numCol;
1047
1048 /* assign column of primary copy to d */
1049 d = pda->col;
1050
1051 /* assign column of dead disk to f */
1052 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1053
1054 RF_ASSERT(f < n);
1055 RF_ASSERT(f != d);
1056
1057 sd = (f > d) ? (n + d - f) : (d - f);
1058 RF_ASSERT(sd < n);
1059
1060 /*
1061 * v of every k accesses should be redirected
1062 *
1063 * v/k := (n-1-sd)/(n-1)
1064 */
1065 v = (n - 1 - sd);
1066 k = (n - 1);
1067
1068 #if 1
1069 /*
1070 * XXX
1071 * Is this worth it?
1072 *
1073 * Now reduce the fraction, by repeatedly factoring
1074 * out primes (just like they teach in elementary school!)
1075 */
1076 for (i = 0; i < NLOWPRIMES; i++) {
1077 if (lowprimes[i] > v)
1078 break;
1079 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1080 v /= lowprimes[i];
1081 k /= lowprimes[i];
1082 }
1083 }
1084 #endif
1085
1086 raidPtr->hist_diskreq[d]++;
1087 if (raidPtr->hist_diskreq[d] > v) {
1088 ret = 0; /* do not redirect */
1089 } else {
1090 ret = 1; /* redirect */
1091 }
1092
1093 #if 0
1094 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1095 raidPtr->hist_diskreq[d]);
1096 #endif
1097
1098 if (raidPtr->hist_diskreq[d] >= k) {
1099 /* reset counter */
1100 raidPtr->hist_diskreq[d] = 0;
1101 }
1102 return (ret);
1103 }
1104 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1105
1106 /*
1107 * Disk selection routines
1108 */
1109
1110 /*
1111 * Selects the disk with the shortest queue from a mirror pair.
1112 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1113 * disk are counted as members of the "queue"
1114 */
1115 void
1116 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1117 {
1118 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1119 RF_RowCol_t colData, colMirror;
1120 int dataQueueLength, mirrorQueueLength, usemirror;
1121 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1122 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1123 RF_PhysDiskAddr_t *tmp_pda;
1124 RF_RaidDisk_t *disks = raidPtr->Disks;
1125 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1126
1127 /* return the [row col] of the disk with the shortest queue */
1128 colData = data_pda->col;
1129 colMirror = mirror_pda->col;
1130 dataQueue = &(dqs[colData]);
1131 mirrorQueue = &(dqs[colMirror]);
1132
1133 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1134 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1135 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1136 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1137 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1138 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1139 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1140 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1141 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1142 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1143 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1144 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1145
1146 usemirror = 0;
1147 if (RF_DEAD_DISK(disks[colMirror].status)) {
1148 usemirror = 0;
1149 } else
1150 if (RF_DEAD_DISK(disks[colData].status)) {
1151 usemirror = 1;
1152 } else
1153 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1154 /* Trust only the main disk */
1155 usemirror = 0;
1156 } else
1157 if (dataQueueLength < mirrorQueueLength) {
1158 usemirror = 0;
1159 } else
1160 if (mirrorQueueLength < dataQueueLength) {
1161 usemirror = 1;
1162 } else {
1163 /* queues are equal length. attempt
1164 * cleverness. */
1165 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1166 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1167 usemirror = 0;
1168 } else {
1169 usemirror = 1;
1170 }
1171 }
1172
1173 if (usemirror) {
1174 /* use mirror (parity) disk, swap params 0 & 4 */
1175 tmp_pda = data_pda;
1176 node->params[0].p = mirror_pda;
1177 node->params[4].p = tmp_pda;
1178 } else {
1179 /* use data disk, leave param 0 unchanged */
1180 }
1181 /* printf("dataQueueLength %d, mirrorQueueLength
1182 * %d\n",dataQueueLength, mirrorQueueLength); */
1183 }
1184 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1185 /*
1186 * Do simple partitioning. This assumes that
1187 * the data and parity disks are laid out identically.
1188 */
1189 void
1190 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1191 {
1192 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1193 RF_RowCol_t colData, colMirror;
1194 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1195 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1196 RF_PhysDiskAddr_t *tmp_pda;
1197 RF_RaidDisk_t *disks = raidPtr->Disks;
1198 int usemirror;
1199
1200 /* return the [row col] of the disk with the shortest queue */
1201 colData = data_pda->col;
1202 colMirror = mirror_pda->col;
1203
1204 usemirror = 0;
1205 if (RF_DEAD_DISK(disks[colMirror].status)) {
1206 usemirror = 0;
1207 } else
1208 if (RF_DEAD_DISK(disks[colData].status)) {
1209 usemirror = 1;
1210 } else
1211 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1212 /* Trust only the main disk */
1213 usemirror = 0;
1214 } else
1215 if (data_pda->startSector <
1216 (disks[colData].numBlocks / 2)) {
1217 usemirror = 0;
1218 } else {
1219 usemirror = 1;
1220 }
1221
1222 if (usemirror) {
1223 /* use mirror (parity) disk, swap params 0 & 4 */
1224 tmp_pda = data_pda;
1225 node->params[0].p = mirror_pda;
1226 node->params[4].p = tmp_pda;
1227 } else {
1228 /* use data disk, leave param 0 unchanged */
1229 }
1230 }
1231 #endif
1232