rf_dagutils.c revision 1.38 1 /* $NetBSD: rf_dagutils.c,v 1.38 2004/03/18 16:40:05 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.38 2004/03/18 16:40:05 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 /* node->list_next = NULL */ /* Don't touch this here!
101 It may already be
102 in use by the caller! */
103 node->numSuccedents = nSucc;
104 node->name = name;
105 node->dagHdr = hdr;
106 node->visited = 0;
107
108 /* allocate all the pointers with one call to malloc */
109 nptrs = nSucc + nAnte + nResult + nSucc;
110
111 if (nptrs <= RF_DAG_PTRCACHESIZE) {
112 /*
113 * The dag_ptrs field of the node is basically some scribble
114 * space to be used here. We could get rid of it, and always
115 * allocate the range of pointers, but that's expensive. So,
116 * we pick a "common case" size for the pointer cache. Hopefully,
117 * we'll find that:
118 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
119 * only a little bit (least efficient case)
120 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
121 * (wasted memory)
122 */
123 ptrs = (void **) node->dag_ptrs;
124 } else {
125 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
126 (void **), alist);
127 }
128 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
129 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
130 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
131 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
132
133 if (nParam) {
134 if (nParam <= RF_DAG_PARAMCACHESIZE) {
135 node->params = (RF_DagParam_t *) node->dag_params;
136 } else {
137 RF_MallocAndAdd(node->params,
138 nParam * sizeof(RF_DagParam_t),
139 (RF_DagParam_t *), alist);
140 }
141 } else {
142 node->params = NULL;
143 }
144 }
145
146
147
148 /******************************************************************************
149 *
150 * allocation and deallocation routines
151 *
152 *****************************************************************************/
153
154 void
155 rf_FreeDAG(RF_DagHeader_t *dag_h)
156 {
157 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
158 RF_DagNode_t *tmpnode;
159 RF_DagHeader_t *nextDag;
160
161 while (dag_h) {
162 nextDag = dag_h->next;
163 rf_FreeAllocList(dag_h->allocList);
164 for (asmap = dag_h->asmList; asmap;) {
165 t_asmap = asmap;
166 asmap = asmap->next;
167 rf_FreeAccessStripeMap(t_asmap);
168 }
169 while(dag_h->nodes) {
170 tmpnode = dag_h->nodes;
171 dag_h->nodes = dag_h->nodes->list_next;
172 rf_FreeDAGNode(tmpnode);
173 }
174 rf_FreeDAGHeader(dag_h);
175 dag_h = nextDag;
176 }
177 }
178
179 #define RF_MAX_FREE_DAGH 128
180 #define RF_MIN_FREE_DAGH 32
181
182 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
183 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
184
185 #define RF_MAX_FREE_DAGLIST 128
186 #define RF_MIN_FREE_DAGLIST 32
187
188 #define RF_MAX_FREE_FUNCLIST 128
189 #define RF_MIN_FREE_FUNCLIST 32
190
191 static void rf_ShutdownDAGs(void *);
192 static void
193 rf_ShutdownDAGs(void *ignored)
194 {
195 pool_destroy(&rf_pools.dagh);
196 pool_destroy(&rf_pools.dagnode);
197 pool_destroy(&rf_pools.daglist);
198 pool_destroy(&rf_pools.funclist);
199 }
200
201 int
202 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
203 {
204
205 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
206 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
207 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
208 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
209 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
210 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
211 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
212 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
213 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
214
215 return (0);
216 }
217
218 RF_DagHeader_t *
219 rf_AllocDAGHeader()
220 {
221 RF_DagHeader_t *dh;
222
223 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
224 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
225 return (dh);
226 }
227
228 void
229 rf_FreeDAGHeader(RF_DagHeader_t * dh)
230 {
231 pool_put(&rf_pools.dagh, dh);
232 }
233
234 RF_DagNode_t *
235 rf_AllocDAGNode()
236 {
237 RF_DagNode_t *node;
238
239 node = pool_get(&rf_pools.dagnode, PR_WAITOK);
240 memset(node, 0, sizeof(RF_DagNode_t));
241 return (node);
242 }
243
244 void
245 rf_FreeDAGNode(RF_DagNode_t *node)
246 {
247 pool_put(&rf_pools.dagnode, node);
248 }
249
250 RF_DagList_t *
251 rf_AllocDAGList()
252 {
253 RF_DagList_t *dagList;
254
255 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
256 memset(dagList, 0, sizeof(RF_DagList_t));
257
258 return (dagList);
259 }
260
261 void
262 rf_FreeDAGList(RF_DagList_t *dagList)
263 {
264 pool_put(&rf_pools.daglist, dagList);
265 }
266
267 RF_FuncList_t *
268 rf_AllocFuncList()
269 {
270 RF_FuncList_t *funcList;
271
272 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
273 memset(funcList, 0, sizeof(RF_FuncList_t));
274
275 return (funcList);
276 }
277
278 void
279 rf_FreeFuncList(RF_FuncList_t *funcList)
280 {
281 pool_put(&rf_pools.funclist, funcList);
282 }
283
284
285
286 /* allocates a buffer big enough to hold the data described by pda */
287 void *
288 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
289 RF_AllocListElem_t *allocList)
290 {
291 char *p;
292
293 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
294 (char *), allocList);
295 return ((void *) p);
296 }
297 #if RF_DEBUG_VALIDATE_DAG
298 /******************************************************************************
299 *
300 * debug routines
301 *
302 *****************************************************************************/
303
304 char *
305 rf_NodeStatusString(RF_DagNode_t *node)
306 {
307 switch (node->status) {
308 case rf_wait:
309 return ("wait");
310 case rf_fired:
311 return ("fired");
312 case rf_good:
313 return ("good");
314 case rf_bad:
315 return ("bad");
316 default:
317 return ("?");
318 }
319 }
320
321 void
322 rf_PrintNodeInfoString(RF_DagNode_t *node)
323 {
324 RF_PhysDiskAddr_t *pda;
325 int (*df) (RF_DagNode_t *) = node->doFunc;
326 int i, lk, unlk;
327 void *bufPtr;
328
329 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
330 || (df == rf_DiskReadMirrorIdleFunc)
331 || (df == rf_DiskReadMirrorPartitionFunc)) {
332 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
333 bufPtr = (void *) node->params[1].p;
334 lk = 0;
335 unlk = 0;
336 RF_ASSERT(!(lk && unlk));
337 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
338 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
339 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
340 return;
341 }
342 if (df == rf_DiskUnlockFunc) {
343 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
344 lk = 0;
345 unlk = 0;
346 RF_ASSERT(!(lk && unlk));
347 printf("c %d %s\n", pda->col,
348 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
349 return;
350 }
351 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
352 || (df == rf_RecoveryXorFunc)) {
353 printf("result buf 0x%lx\n", (long) node->results[0]);
354 for (i = 0; i < node->numParams - 1; i += 2) {
355 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
356 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
357 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
358 (long) bufPtr, pda->col,
359 (long) pda->startSector, (int) pda->numSector);
360 }
361 return;
362 }
363 #if RF_INCLUDE_PARITYLOGGING > 0
364 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
365 for (i = 0; i < node->numParams - 1; i += 2) {
366 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
367 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
368 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
369 pda->col, (long) pda->startSector,
370 (int) pda->numSector, (long) bufPtr);
371 }
372 return;
373 }
374 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
375
376 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
377 printf("\n");
378 return;
379 }
380 printf("?\n");
381 }
382 #ifdef DEBUG
383 static void
384 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
385 {
386 char *anttype;
387 int i;
388
389 node->visited = (unvisited) ? 0 : 1;
390 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
391 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
392 node->numSuccedents, node->numSuccFired, node->numSuccDone,
393 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
394 for (i = 0; i < node->numSuccedents; i++) {
395 printf("%d%s", node->succedents[i]->nodeNum,
396 ((i == node->numSuccedents - 1) ? "\0" : " "));
397 }
398 printf("} A{");
399 for (i = 0; i < node->numAntecedents; i++) {
400 switch (node->antType[i]) {
401 case rf_trueData:
402 anttype = "T";
403 break;
404 case rf_antiData:
405 anttype = "A";
406 break;
407 case rf_outputData:
408 anttype = "O";
409 break;
410 case rf_control:
411 anttype = "C";
412 break;
413 default:
414 anttype = "?";
415 break;
416 }
417 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
418 }
419 printf("}; ");
420 rf_PrintNodeInfoString(node);
421 for (i = 0; i < node->numSuccedents; i++) {
422 if (node->succedents[i]->visited == unvisited)
423 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
424 }
425 }
426
427 static void
428 rf_PrintDAG(RF_DagHeader_t *dag_h)
429 {
430 int unvisited, i;
431 char *status;
432
433 /* set dag status */
434 switch (dag_h->status) {
435 case rf_enable:
436 status = "enable";
437 break;
438 case rf_rollForward:
439 status = "rollForward";
440 break;
441 case rf_rollBackward:
442 status = "rollBackward";
443 break;
444 default:
445 status = "illegal!";
446 break;
447 }
448 /* find out if visited bits are currently set or clear */
449 unvisited = dag_h->succedents[0]->visited;
450
451 printf("DAG type: %s\n", dag_h->creator);
452 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
453 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
454 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
455 for (i = 0; i < dag_h->numSuccedents; i++) {
456 printf("%d%s", dag_h->succedents[i]->nodeNum,
457 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
458 }
459 printf("};\n");
460 for (i = 0; i < dag_h->numSuccedents; i++) {
461 if (dag_h->succedents[i]->visited == unvisited)
462 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
463 }
464 }
465 #endif
466 /* assigns node numbers */
467 int
468 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
469 {
470 int unvisited, i, nnum;
471 RF_DagNode_t *node;
472
473 nnum = 0;
474 unvisited = dag_h->succedents[0]->visited;
475
476 dag_h->nodeNum = nnum++;
477 for (i = 0; i < dag_h->numSuccedents; i++) {
478 node = dag_h->succedents[i];
479 if (node->visited == unvisited) {
480 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
481 }
482 }
483 return (nnum);
484 }
485
486 int
487 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
488 {
489 int i;
490
491 node->visited = (unvisited) ? 0 : 1;
492
493 node->nodeNum = num++;
494 for (i = 0; i < node->numSuccedents; i++) {
495 if (node->succedents[i]->visited == unvisited) {
496 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
497 }
498 }
499 return (num);
500 }
501 /* set the header pointers in each node to "newptr" */
502 void
503 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
504 {
505 int i;
506 for (i = 0; i < dag_h->numSuccedents; i++)
507 if (dag_h->succedents[i]->dagHdr != newptr)
508 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
509 }
510
511 void
512 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
513 {
514 int i;
515 node->dagHdr = newptr;
516 for (i = 0; i < node->numSuccedents; i++)
517 if (node->succedents[i]->dagHdr != newptr)
518 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
519 }
520
521
522 void
523 rf_PrintDAGList(RF_DagHeader_t * dag_h)
524 {
525 int i = 0;
526
527 for (; dag_h; dag_h = dag_h->next) {
528 rf_AssignNodeNums(dag_h);
529 printf("\n\nDAG %d IN LIST:\n", i++);
530 rf_PrintDAG(dag_h);
531 }
532 }
533
534 static int
535 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
536 RF_DagNode_t **nodes, int unvisited)
537 {
538 int i, retcode = 0;
539
540 /* construct an array of node pointers indexed by node num */
541 node->visited = (unvisited) ? 0 : 1;
542 nodes[node->nodeNum] = node;
543
544 if (node->next != NULL) {
545 printf("INVALID DAG: next pointer in node is not NULL\n");
546 retcode = 1;
547 }
548 if (node->status != rf_wait) {
549 printf("INVALID DAG: Node status is not wait\n");
550 retcode = 1;
551 }
552 if (node->numAntDone != 0) {
553 printf("INVALID DAG: numAntDone is not zero\n");
554 retcode = 1;
555 }
556 if (node->doFunc == rf_TerminateFunc) {
557 if (node->numSuccedents != 0) {
558 printf("INVALID DAG: Terminator node has succedents\n");
559 retcode = 1;
560 }
561 } else {
562 if (node->numSuccedents == 0) {
563 printf("INVALID DAG: Non-terminator node has no succedents\n");
564 retcode = 1;
565 }
566 }
567 for (i = 0; i < node->numSuccedents; i++) {
568 if (!node->succedents[i]) {
569 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
570 retcode = 1;
571 }
572 scount[node->succedents[i]->nodeNum]++;
573 }
574 for (i = 0; i < node->numAntecedents; i++) {
575 if (!node->antecedents[i]) {
576 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
577 retcode = 1;
578 }
579 acount[node->antecedents[i]->nodeNum]++;
580 }
581 for (i = 0; i < node->numSuccedents; i++) {
582 if (node->succedents[i]->visited == unvisited) {
583 if (rf_ValidateBranch(node->succedents[i], scount,
584 acount, nodes, unvisited)) {
585 retcode = 1;
586 }
587 }
588 }
589 return (retcode);
590 }
591
592 static void
593 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
594 {
595 int i;
596
597 RF_ASSERT(node->visited == unvisited);
598 for (i = 0; i < node->numSuccedents; i++) {
599 if (node->succedents[i] == NULL) {
600 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
601 RF_ASSERT(0);
602 }
603 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
604 }
605 }
606 /* NOTE: never call this on a big dag, because it is exponential
607 * in execution time
608 */
609 static void
610 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
611 {
612 int i, unvisited;
613
614 unvisited = dag->succedents[0]->visited;
615
616 for (i = 0; i < dag->numSuccedents; i++) {
617 if (dag->succedents[i] == NULL) {
618 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
619 RF_ASSERT(0);
620 }
621 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
622 }
623 }
624 /* validate a DAG. _at entry_ verify that:
625 * -- numNodesCompleted is zero
626 * -- node queue is null
627 * -- dag status is rf_enable
628 * -- next pointer is null on every node
629 * -- all nodes have status wait
630 * -- numAntDone is zero in all nodes
631 * -- terminator node has zero successors
632 * -- no other node besides terminator has zero successors
633 * -- no successor or antecedent pointer in a node is NULL
634 * -- number of times that each node appears as a successor of another node
635 * is equal to the antecedent count on that node
636 * -- number of times that each node appears as an antecedent of another node
637 * is equal to the succedent count on that node
638 * -- what else?
639 */
640 int
641 rf_ValidateDAG(RF_DagHeader_t *dag_h)
642 {
643 int i, nodecount;
644 int *scount, *acount;/* per-node successor and antecedent counts */
645 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
646 int retcode = 0;
647 int unvisited;
648 int commitNodeCount = 0;
649
650 if (rf_validateVisitedDebug)
651 rf_ValidateVisitedBits(dag_h);
652
653 if (dag_h->numNodesCompleted != 0) {
654 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
655 retcode = 1;
656 goto validate_dag_bad;
657 }
658 if (dag_h->status != rf_enable) {
659 printf("INVALID DAG: not enabled\n");
660 retcode = 1;
661 goto validate_dag_bad;
662 }
663 if (dag_h->numCommits != 0) {
664 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
665 retcode = 1;
666 goto validate_dag_bad;
667 }
668 if (dag_h->numSuccedents != 1) {
669 /* currently, all dags must have only one succedent */
670 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
671 retcode = 1;
672 goto validate_dag_bad;
673 }
674 nodecount = rf_AssignNodeNums(dag_h);
675
676 unvisited = dag_h->succedents[0]->visited;
677
678 RF_Malloc(scount, nodecount * sizeof(int), (int *));
679 RF_Malloc(acount, nodecount * sizeof(int), (int *));
680 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
681 (RF_DagNode_t **));
682 for (i = 0; i < dag_h->numSuccedents; i++) {
683 if ((dag_h->succedents[i]->visited == unvisited)
684 && rf_ValidateBranch(dag_h->succedents[i], scount,
685 acount, nodes, unvisited)) {
686 retcode = 1;
687 }
688 }
689 /* start at 1 to skip the header node */
690 for (i = 1; i < nodecount; i++) {
691 if (nodes[i]->commitNode)
692 commitNodeCount++;
693 if (nodes[i]->doFunc == NULL) {
694 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
695 retcode = 1;
696 goto validate_dag_out;
697 }
698 if (nodes[i]->undoFunc == NULL) {
699 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
700 retcode = 1;
701 goto validate_dag_out;
702 }
703 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
704 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
705 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
706 retcode = 1;
707 goto validate_dag_out;
708 }
709 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
710 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
711 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
712 retcode = 1;
713 goto validate_dag_out;
714 }
715 }
716
717 if (dag_h->numCommitNodes != commitNodeCount) {
718 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
719 dag_h->numCommitNodes, commitNodeCount);
720 retcode = 1;
721 goto validate_dag_out;
722 }
723 validate_dag_out:
724 RF_Free(scount, nodecount * sizeof(int));
725 RF_Free(acount, nodecount * sizeof(int));
726 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
727 if (retcode)
728 rf_PrintDAGList(dag_h);
729
730 if (rf_validateVisitedDebug)
731 rf_ValidateVisitedBits(dag_h);
732
733 return (retcode);
734
735 validate_dag_bad:
736 rf_PrintDAGList(dag_h);
737 return (retcode);
738 }
739
740 #endif /* RF_DEBUG_VALIDATE_DAG */
741
742 /******************************************************************************
743 *
744 * misc construction routines
745 *
746 *****************************************************************************/
747
748 void
749 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
750 {
751 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
752 int fcol = raidPtr->reconControl->fcol;
753 int scol = raidPtr->reconControl->spareCol;
754 RF_PhysDiskAddr_t *pda;
755
756 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
757 for (pda = asmap->physInfo; pda; pda = pda->next) {
758 if (pda->col == fcol) {
759 #if RF_DEBUG_DAG
760 if (rf_dagDebug) {
761 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
762 pda->startSector)) {
763 RF_PANIC();
764 }
765 }
766 #endif
767 /* printf("Remapped data for large write\n"); */
768 if (ds) {
769 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
770 &pda->col, &pda->startSector, RF_REMAP);
771 } else {
772 pda->col = scol;
773 }
774 }
775 }
776 for (pda = asmap->parityInfo; pda; pda = pda->next) {
777 if (pda->col == fcol) {
778 #if RF_DEBUG_DAG
779 if (rf_dagDebug) {
780 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
781 RF_PANIC();
782 }
783 }
784 #endif
785 }
786 if (ds) {
787 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
788 } else {
789 pda->col = scol;
790 }
791 }
792 }
793
794
795 /* this routine allocates read buffers and generates stripe maps for the
796 * regions of the array from the start of the stripe to the start of the
797 * access, and from the end of the access to the end of the stripe. It also
798 * computes and returns the number of DAG nodes needed to read all this data.
799 * Note that this routine does the wrong thing if the access is fully
800 * contained within one stripe unit, so we RF_ASSERT against this case at the
801 * start.
802 *
803 * layoutPtr - in: layout information
804 * asmap - in: access stripe map
805 * dag_h - in: header of the dag to create
806 * new_asm_h - in: ptr to array of 2 headers. to be filled in
807 * nRodNodes - out: num nodes to be generated to read unaccessed data
808 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
809 */
810 void
811 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
812 RF_RaidLayout_t *layoutPtr,
813 RF_AccessStripeMap_t *asmap,
814 RF_DagHeader_t *dag_h,
815 RF_AccessStripeMapHeader_t **new_asm_h,
816 int *nRodNodes,
817 char **sosBuffer, char **eosBuffer,
818 RF_AllocListElem_t *allocList)
819 {
820 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
821 RF_SectorNum_t sosNumSector, eosNumSector;
822
823 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
824 /* generate an access map for the region of the array from start of
825 * stripe to start of access */
826 new_asm_h[0] = new_asm_h[1] = NULL;
827 *nRodNodes = 0;
828 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
829 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
830 sosNumSector = asmap->raidAddress - sosRaidAddress;
831 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
832 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
833 new_asm_h[0]->next = dag_h->asmList;
834 dag_h->asmList = new_asm_h[0];
835 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
836
837 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
838 /* we're totally within one stripe here */
839 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
840 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
841 }
842 /* generate an access map for the region of the array from end of
843 * access to end of stripe */
844 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
845 eosRaidAddress = asmap->endRaidAddress;
846 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
847 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
848 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
849 new_asm_h[1]->next = dag_h->asmList;
850 dag_h->asmList = new_asm_h[1];
851 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
852
853 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
854 /* we're totally within one stripe here */
855 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
856 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
857 }
858 }
859
860
861
862 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
863 int
864 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
865 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
866 {
867 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
868 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
869 /* use -1 to be sure we stay within SU */
870 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
871 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
872 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
873 }
874
875
876 /* GenerateFailedAccessASMs
877 *
878 * this routine figures out what portion of the stripe needs to be read
879 * to effect the degraded read or write operation. It's primary function
880 * is to identify everything required to recover the data, and then
881 * eliminate anything that is already being accessed by the user.
882 *
883 * The main result is two new ASMs, one for the region from the start of the
884 * stripe to the start of the access, and one for the region from the end of
885 * the access to the end of the stripe. These ASMs describe everything that
886 * needs to be read to effect the degraded access. Other results are:
887 * nXorBufs -- the total number of buffers that need to be XORed together to
888 * recover the lost data,
889 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
890 * at entry, not allocated.
891 * overlappingPDAs --
892 * describes which of the non-failed PDAs in the user access
893 * overlap data that needs to be read to effect recovery.
894 * overlappingPDAs[i]==1 if and only if, neglecting the failed
895 * PDA, the ith pda in the input asm overlaps data that needs
896 * to be read for recovery.
897 */
898 /* in: asm - ASM for the actual access, one stripe only */
899 /* in: failedPDA - which component of the access has failed */
900 /* in: dag_h - header of the DAG we're going to create */
901 /* out: new_asm_h - the two new ASMs */
902 /* out: nXorBufs - the total number of xor bufs required */
903 /* out: rpBufPtr - a buffer for the parity read */
904 void
905 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
906 RF_PhysDiskAddr_t *failedPDA,
907 RF_DagHeader_t *dag_h,
908 RF_AccessStripeMapHeader_t **new_asm_h,
909 int *nXorBufs, char **rpBufPtr,
910 char *overlappingPDAs,
911 RF_AllocListElem_t *allocList)
912 {
913 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
914
915 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
916 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
917 RF_PhysDiskAddr_t *pda;
918 int foundit, i;
919
920 foundit = 0;
921 /* first compute the following raid addresses: start of stripe,
922 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
923 * MAX(end of access, end of failed SU), (eosStartAddr) end of
924 * stripe (i.e. start of next stripe) (eosAddr) */
925 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
926 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
927 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
928 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
929
930 /* now generate access stripe maps for each of the above regions of
931 * the stripe. Use a dummy (NULL) buf ptr for now */
932
933 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
934 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
935
936 /* walk through the PDAs and range-restrict each SU to the region of
937 * the SU touched on the failed PDA. also compute total data buffer
938 * space requirements in this step. Ignore the parity for now. */
939 /* Also count nodes to find out how many bufs need to be xored together */
940 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
941 * case, 1 is for failed data */
942
943 if (new_asm_h[0]) {
944 new_asm_h[0]->next = dag_h->asmList;
945 dag_h->asmList = new_asm_h[0];
946 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
947 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
948 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
949 }
950 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
951 }
952 if (new_asm_h[1]) {
953 new_asm_h[1]->next = dag_h->asmList;
954 dag_h->asmList = new_asm_h[1];
955 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
956 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
957 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
958 }
959 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
960 }
961
962 /* allocate a buffer for parity */
963 if (rpBufPtr)
964 *rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
965
966 /* the last step is to figure out how many more distinct buffers need
967 * to get xor'd to produce the missing unit. there's one for each
968 * user-data read node that overlaps the portion of the failed unit
969 * being accessed */
970
971 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
972 if (pda == failedPDA) {
973 i--;
974 foundit = 1;
975 continue;
976 }
977 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
978 overlappingPDAs[i] = 1;
979 (*nXorBufs)++;
980 }
981 }
982 if (!foundit) {
983 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
984 RF_ASSERT(0);
985 }
986 #if RF_DEBUG_DAG
987 if (rf_degDagDebug) {
988 if (new_asm_h[0]) {
989 printf("First asm:\n");
990 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
991 }
992 if (new_asm_h[1]) {
993 printf("Second asm:\n");
994 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
995 }
996 }
997 #endif
998 }
999
1000
1001 /* adjusts the offset and number of sectors in the destination pda so that
1002 * it covers at most the region of the SU covered by the source PDA. This
1003 * is exclusively a restriction: the number of sectors indicated by the
1004 * target PDA can only shrink.
1005 *
1006 * For example: s = sectors within SU indicated by source PDA
1007 * d = sectors within SU indicated by dest PDA
1008 * r = results, stored in dest PDA
1009 *
1010 * |--------------- one stripe unit ---------------------|
1011 * | sssssssssssssssssssssssssssssssss |
1012 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1013 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1014 *
1015 * Another example:
1016 *
1017 * |--------------- one stripe unit ---------------------|
1018 * | sssssssssssssssssssssssssssssssss |
1019 * | ddddddddddddddddddddddd |
1020 * | rrrrrrrrrrrrrrrr |
1021 *
1022 */
1023 void
1024 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1025 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1026 {
1027 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1028 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1029 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1030 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1031 * stay within SU */
1032 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1033 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1034
1035 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1036 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1037
1038 if (dobuffer)
1039 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1040 if (doraidaddr) {
1041 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1042 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1043 }
1044 }
1045
1046 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1047
1048 /*
1049 * Want the highest of these primes to be the largest one
1050 * less than the max expected number of columns (won't hurt
1051 * to be too small or too large, but won't be optimal, either)
1052 * --jimz
1053 */
1054 #define NLOWPRIMES 8
1055 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1056 /*****************************************************************************
1057 * compute the workload shift factor. (chained declustering)
1058 *
1059 * return nonzero if access should shift to secondary, otherwise,
1060 * access is to primary
1061 *****************************************************************************/
1062 int
1063 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1064 {
1065 /*
1066 * variables:
1067 * d = column of disk containing primary
1068 * f = column of failed disk
1069 * n = number of disks in array
1070 * sd = "shift distance" (number of columns that d is to the right of f)
1071 * v = numerator of redirection ratio
1072 * k = denominator of redirection ratio
1073 */
1074 RF_RowCol_t d, f, sd, n;
1075 int k, v, ret, i;
1076
1077 n = raidPtr->numCol;
1078
1079 /* assign column of primary copy to d */
1080 d = pda->col;
1081
1082 /* assign column of dead disk to f */
1083 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1084
1085 RF_ASSERT(f < n);
1086 RF_ASSERT(f != d);
1087
1088 sd = (f > d) ? (n + d - f) : (d - f);
1089 RF_ASSERT(sd < n);
1090
1091 /*
1092 * v of every k accesses should be redirected
1093 *
1094 * v/k := (n-1-sd)/(n-1)
1095 */
1096 v = (n - 1 - sd);
1097 k = (n - 1);
1098
1099 #if 1
1100 /*
1101 * XXX
1102 * Is this worth it?
1103 *
1104 * Now reduce the fraction, by repeatedly factoring
1105 * out primes (just like they teach in elementary school!)
1106 */
1107 for (i = 0; i < NLOWPRIMES; i++) {
1108 if (lowprimes[i] > v)
1109 break;
1110 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1111 v /= lowprimes[i];
1112 k /= lowprimes[i];
1113 }
1114 }
1115 #endif
1116
1117 raidPtr->hist_diskreq[d]++;
1118 if (raidPtr->hist_diskreq[d] > v) {
1119 ret = 0; /* do not redirect */
1120 } else {
1121 ret = 1; /* redirect */
1122 }
1123
1124 #if 0
1125 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1126 raidPtr->hist_diskreq[d]);
1127 #endif
1128
1129 if (raidPtr->hist_diskreq[d] >= k) {
1130 /* reset counter */
1131 raidPtr->hist_diskreq[d] = 0;
1132 }
1133 return (ret);
1134 }
1135 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1136
1137 /*
1138 * Disk selection routines
1139 */
1140
1141 /*
1142 * Selects the disk with the shortest queue from a mirror pair.
1143 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1144 * disk are counted as members of the "queue"
1145 */
1146 void
1147 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1148 {
1149 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1150 RF_RowCol_t colData, colMirror;
1151 int dataQueueLength, mirrorQueueLength, usemirror;
1152 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1153 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1154 RF_PhysDiskAddr_t *tmp_pda;
1155 RF_RaidDisk_t *disks = raidPtr->Disks;
1156 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1157
1158 /* return the [row col] of the disk with the shortest queue */
1159 colData = data_pda->col;
1160 colMirror = mirror_pda->col;
1161 dataQueue = &(dqs[colData]);
1162 mirrorQueue = &(dqs[colMirror]);
1163
1164 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1165 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1166 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1167 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1168 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1169 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1170 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1171 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1172 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1173 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1174 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1175 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1176
1177 usemirror = 0;
1178 if (RF_DEAD_DISK(disks[colMirror].status)) {
1179 usemirror = 0;
1180 } else
1181 if (RF_DEAD_DISK(disks[colData].status)) {
1182 usemirror = 1;
1183 } else
1184 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1185 /* Trust only the main disk */
1186 usemirror = 0;
1187 } else
1188 if (dataQueueLength < mirrorQueueLength) {
1189 usemirror = 0;
1190 } else
1191 if (mirrorQueueLength < dataQueueLength) {
1192 usemirror = 1;
1193 } else {
1194 /* queues are equal length. attempt
1195 * cleverness. */
1196 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1197 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1198 usemirror = 0;
1199 } else {
1200 usemirror = 1;
1201 }
1202 }
1203
1204 if (usemirror) {
1205 /* use mirror (parity) disk, swap params 0 & 4 */
1206 tmp_pda = data_pda;
1207 node->params[0].p = mirror_pda;
1208 node->params[4].p = tmp_pda;
1209 } else {
1210 /* use data disk, leave param 0 unchanged */
1211 }
1212 /* printf("dataQueueLength %d, mirrorQueueLength
1213 * %d\n",dataQueueLength, mirrorQueueLength); */
1214 }
1215 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1216 /*
1217 * Do simple partitioning. This assumes that
1218 * the data and parity disks are laid out identically.
1219 */
1220 void
1221 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1222 {
1223 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1224 RF_RowCol_t colData, colMirror;
1225 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1226 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1227 RF_PhysDiskAddr_t *tmp_pda;
1228 RF_RaidDisk_t *disks = raidPtr->Disks;
1229 int usemirror;
1230
1231 /* return the [row col] of the disk with the shortest queue */
1232 colData = data_pda->col;
1233 colMirror = mirror_pda->col;
1234
1235 usemirror = 0;
1236 if (RF_DEAD_DISK(disks[colMirror].status)) {
1237 usemirror = 0;
1238 } else
1239 if (RF_DEAD_DISK(disks[colData].status)) {
1240 usemirror = 1;
1241 } else
1242 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1243 /* Trust only the main disk */
1244 usemirror = 0;
1245 } else
1246 if (data_pda->startSector <
1247 (disks[colData].numBlocks / 2)) {
1248 usemirror = 0;
1249 } else {
1250 usemirror = 1;
1251 }
1252
1253 if (usemirror) {
1254 /* use mirror (parity) disk, swap params 0 & 4 */
1255 tmp_pda = data_pda;
1256 node->params[0].p = mirror_pda;
1257 node->params[4].p = tmp_pda;
1258 } else {
1259 /* use data disk, leave param 0 unchanged */
1260 }
1261 }
1262 #endif
1263