rf_dagutils.c revision 1.39 1 /* $NetBSD: rf_dagutils.c,v 1.39 2004/03/19 15:16:18 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.39 2004/03/19 15:16:18 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
79 int (*doFunc) (RF_DagNode_t *node),
80 int (*undoFunc) (RF_DagNode_t *node),
81 int (*wakeFunc) (RF_DagNode_t *node, int status),
82 int nSucc, int nAnte, int nParam, int nResult,
83 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
84 {
85 void **ptrs;
86 int nptrs;
87
88 if (nAnte > RF_MAX_ANTECEDENTS)
89 RF_PANIC();
90 node->status = initstatus;
91 node->commitNode = commit;
92 node->doFunc = doFunc;
93 node->undoFunc = undoFunc;
94 node->wakeFunc = wakeFunc;
95 node->numParams = nParam;
96 node->numResults = nResult;
97 node->numAntecedents = nAnte;
98 node->numAntDone = 0;
99 node->next = NULL;
100 /* node->list_next = NULL */ /* Don't touch this here!
101 It may already be
102 in use by the caller! */
103 node->numSuccedents = nSucc;
104 node->name = name;
105 node->dagHdr = hdr;
106 node->visited = 0;
107
108 /* allocate all the pointers with one call to malloc */
109 nptrs = nSucc + nAnte + nResult + nSucc;
110
111 if (nptrs <= RF_DAG_PTRCACHESIZE) {
112 /*
113 * The dag_ptrs field of the node is basically some scribble
114 * space to be used here. We could get rid of it, and always
115 * allocate the range of pointers, but that's expensive. So,
116 * we pick a "common case" size for the pointer cache. Hopefully,
117 * we'll find that:
118 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
119 * only a little bit (least efficient case)
120 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
121 * (wasted memory)
122 */
123 ptrs = (void **) node->dag_ptrs;
124 } else {
125 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
126 (void **), alist);
127 }
128 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
129 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
130 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
131 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
132
133 if (nParam) {
134 if (nParam <= RF_DAG_PARAMCACHESIZE) {
135 node->params = (RF_DagParam_t *) node->dag_params;
136 } else {
137 RF_MallocAndAdd(node->params,
138 nParam * sizeof(RF_DagParam_t),
139 (RF_DagParam_t *), alist);
140 }
141 } else {
142 node->params = NULL;
143 }
144 }
145
146
147
148 /******************************************************************************
149 *
150 * allocation and deallocation routines
151 *
152 *****************************************************************************/
153
154 void
155 rf_FreeDAG(RF_DagHeader_t *dag_h)
156 {
157 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
158 RF_PhysDiskAddr_t *pda;
159 RF_DagNode_t *tmpnode;
160 RF_DagHeader_t *nextDag;
161
162 while (dag_h) {
163 nextDag = dag_h->next;
164 rf_FreeAllocList(dag_h->allocList);
165 for (asmap = dag_h->asmList; asmap;) {
166 t_asmap = asmap;
167 asmap = asmap->next;
168 rf_FreeAccessStripeMap(t_asmap);
169 }
170 while (dag_h->pda_cleanup_list) {
171 pda = dag_h->pda_cleanup_list;
172 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
173 rf_FreePhysDiskAddr(pda);
174 }
175 while (dag_h->nodes) {
176 tmpnode = dag_h->nodes;
177 dag_h->nodes = dag_h->nodes->list_next;
178 rf_FreeDAGNode(tmpnode);
179 }
180 rf_FreeDAGHeader(dag_h);
181 dag_h = nextDag;
182 }
183 }
184
185 #define RF_MAX_FREE_DAGH 128
186 #define RF_MIN_FREE_DAGH 32
187
188 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
189 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
190
191 #define RF_MAX_FREE_DAGLIST 128
192 #define RF_MIN_FREE_DAGLIST 32
193
194 #define RF_MAX_FREE_FUNCLIST 128
195 #define RF_MIN_FREE_FUNCLIST 32
196
197 static void rf_ShutdownDAGs(void *);
198 static void
199 rf_ShutdownDAGs(void *ignored)
200 {
201 pool_destroy(&rf_pools.dagh);
202 pool_destroy(&rf_pools.dagnode);
203 pool_destroy(&rf_pools.daglist);
204 pool_destroy(&rf_pools.funclist);
205 }
206
207 int
208 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
209 {
210
211 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
212 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
213 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
214 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
215 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
216 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
217 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
218 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
219 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
220
221 return (0);
222 }
223
224 RF_DagHeader_t *
225 rf_AllocDAGHeader()
226 {
227 RF_DagHeader_t *dh;
228
229 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
230 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
231 return (dh);
232 }
233
234 void
235 rf_FreeDAGHeader(RF_DagHeader_t * dh)
236 {
237 pool_put(&rf_pools.dagh, dh);
238 }
239
240 RF_DagNode_t *
241 rf_AllocDAGNode()
242 {
243 RF_DagNode_t *node;
244
245 node = pool_get(&rf_pools.dagnode, PR_WAITOK);
246 memset(node, 0, sizeof(RF_DagNode_t));
247 return (node);
248 }
249
250 void
251 rf_FreeDAGNode(RF_DagNode_t *node)
252 {
253 pool_put(&rf_pools.dagnode, node);
254 }
255
256 RF_DagList_t *
257 rf_AllocDAGList()
258 {
259 RF_DagList_t *dagList;
260
261 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
262 memset(dagList, 0, sizeof(RF_DagList_t));
263
264 return (dagList);
265 }
266
267 void
268 rf_FreeDAGList(RF_DagList_t *dagList)
269 {
270 pool_put(&rf_pools.daglist, dagList);
271 }
272
273 RF_FuncList_t *
274 rf_AllocFuncList()
275 {
276 RF_FuncList_t *funcList;
277
278 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
279 memset(funcList, 0, sizeof(RF_FuncList_t));
280
281 return (funcList);
282 }
283
284 void
285 rf_FreeFuncList(RF_FuncList_t *funcList)
286 {
287 pool_put(&rf_pools.funclist, funcList);
288 }
289
290
291
292 /* allocates a buffer big enough to hold the data described by pda */
293 void *
294 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
295 RF_AllocListElem_t *allocList)
296 {
297 char *p;
298
299 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
300 (char *), allocList);
301 return ((void *) p);
302 }
303 #if RF_DEBUG_VALIDATE_DAG
304 /******************************************************************************
305 *
306 * debug routines
307 *
308 *****************************************************************************/
309
310 char *
311 rf_NodeStatusString(RF_DagNode_t *node)
312 {
313 switch (node->status) {
314 case rf_wait:
315 return ("wait");
316 case rf_fired:
317 return ("fired");
318 case rf_good:
319 return ("good");
320 case rf_bad:
321 return ("bad");
322 default:
323 return ("?");
324 }
325 }
326
327 void
328 rf_PrintNodeInfoString(RF_DagNode_t *node)
329 {
330 RF_PhysDiskAddr_t *pda;
331 int (*df) (RF_DagNode_t *) = node->doFunc;
332 int i, lk, unlk;
333 void *bufPtr;
334
335 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
336 || (df == rf_DiskReadMirrorIdleFunc)
337 || (df == rf_DiskReadMirrorPartitionFunc)) {
338 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
339 bufPtr = (void *) node->params[1].p;
340 lk = 0;
341 unlk = 0;
342 RF_ASSERT(!(lk && unlk));
343 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
344 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
345 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
346 return;
347 }
348 if (df == rf_DiskUnlockFunc) {
349 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
350 lk = 0;
351 unlk = 0;
352 RF_ASSERT(!(lk && unlk));
353 printf("c %d %s\n", pda->col,
354 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
355 return;
356 }
357 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
358 || (df == rf_RecoveryXorFunc)) {
359 printf("result buf 0x%lx\n", (long) node->results[0]);
360 for (i = 0; i < node->numParams - 1; i += 2) {
361 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
362 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
363 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
364 (long) bufPtr, pda->col,
365 (long) pda->startSector, (int) pda->numSector);
366 }
367 return;
368 }
369 #if RF_INCLUDE_PARITYLOGGING > 0
370 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
371 for (i = 0; i < node->numParams - 1; i += 2) {
372 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
373 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
374 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
375 pda->col, (long) pda->startSector,
376 (int) pda->numSector, (long) bufPtr);
377 }
378 return;
379 }
380 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
381
382 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
383 printf("\n");
384 return;
385 }
386 printf("?\n");
387 }
388 #ifdef DEBUG
389 static void
390 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
391 {
392 char *anttype;
393 int i;
394
395 node->visited = (unvisited) ? 0 : 1;
396 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
397 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
398 node->numSuccedents, node->numSuccFired, node->numSuccDone,
399 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
400 for (i = 0; i < node->numSuccedents; i++) {
401 printf("%d%s", node->succedents[i]->nodeNum,
402 ((i == node->numSuccedents - 1) ? "\0" : " "));
403 }
404 printf("} A{");
405 for (i = 0; i < node->numAntecedents; i++) {
406 switch (node->antType[i]) {
407 case rf_trueData:
408 anttype = "T";
409 break;
410 case rf_antiData:
411 anttype = "A";
412 break;
413 case rf_outputData:
414 anttype = "O";
415 break;
416 case rf_control:
417 anttype = "C";
418 break;
419 default:
420 anttype = "?";
421 break;
422 }
423 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
424 }
425 printf("}; ");
426 rf_PrintNodeInfoString(node);
427 for (i = 0; i < node->numSuccedents; i++) {
428 if (node->succedents[i]->visited == unvisited)
429 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
430 }
431 }
432
433 static void
434 rf_PrintDAG(RF_DagHeader_t *dag_h)
435 {
436 int unvisited, i;
437 char *status;
438
439 /* set dag status */
440 switch (dag_h->status) {
441 case rf_enable:
442 status = "enable";
443 break;
444 case rf_rollForward:
445 status = "rollForward";
446 break;
447 case rf_rollBackward:
448 status = "rollBackward";
449 break;
450 default:
451 status = "illegal!";
452 break;
453 }
454 /* find out if visited bits are currently set or clear */
455 unvisited = dag_h->succedents[0]->visited;
456
457 printf("DAG type: %s\n", dag_h->creator);
458 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
459 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
460 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
461 for (i = 0; i < dag_h->numSuccedents; i++) {
462 printf("%d%s", dag_h->succedents[i]->nodeNum,
463 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
464 }
465 printf("};\n");
466 for (i = 0; i < dag_h->numSuccedents; i++) {
467 if (dag_h->succedents[i]->visited == unvisited)
468 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
469 }
470 }
471 #endif
472 /* assigns node numbers */
473 int
474 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
475 {
476 int unvisited, i, nnum;
477 RF_DagNode_t *node;
478
479 nnum = 0;
480 unvisited = dag_h->succedents[0]->visited;
481
482 dag_h->nodeNum = nnum++;
483 for (i = 0; i < dag_h->numSuccedents; i++) {
484 node = dag_h->succedents[i];
485 if (node->visited == unvisited) {
486 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
487 }
488 }
489 return (nnum);
490 }
491
492 int
493 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
494 {
495 int i;
496
497 node->visited = (unvisited) ? 0 : 1;
498
499 node->nodeNum = num++;
500 for (i = 0; i < node->numSuccedents; i++) {
501 if (node->succedents[i]->visited == unvisited) {
502 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
503 }
504 }
505 return (num);
506 }
507 /* set the header pointers in each node to "newptr" */
508 void
509 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
510 {
511 int i;
512 for (i = 0; i < dag_h->numSuccedents; i++)
513 if (dag_h->succedents[i]->dagHdr != newptr)
514 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
515 }
516
517 void
518 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
519 {
520 int i;
521 node->dagHdr = newptr;
522 for (i = 0; i < node->numSuccedents; i++)
523 if (node->succedents[i]->dagHdr != newptr)
524 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
525 }
526
527
528 void
529 rf_PrintDAGList(RF_DagHeader_t * dag_h)
530 {
531 int i = 0;
532
533 for (; dag_h; dag_h = dag_h->next) {
534 rf_AssignNodeNums(dag_h);
535 printf("\n\nDAG %d IN LIST:\n", i++);
536 rf_PrintDAG(dag_h);
537 }
538 }
539
540 static int
541 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
542 RF_DagNode_t **nodes, int unvisited)
543 {
544 int i, retcode = 0;
545
546 /* construct an array of node pointers indexed by node num */
547 node->visited = (unvisited) ? 0 : 1;
548 nodes[node->nodeNum] = node;
549
550 if (node->next != NULL) {
551 printf("INVALID DAG: next pointer in node is not NULL\n");
552 retcode = 1;
553 }
554 if (node->status != rf_wait) {
555 printf("INVALID DAG: Node status is not wait\n");
556 retcode = 1;
557 }
558 if (node->numAntDone != 0) {
559 printf("INVALID DAG: numAntDone is not zero\n");
560 retcode = 1;
561 }
562 if (node->doFunc == rf_TerminateFunc) {
563 if (node->numSuccedents != 0) {
564 printf("INVALID DAG: Terminator node has succedents\n");
565 retcode = 1;
566 }
567 } else {
568 if (node->numSuccedents == 0) {
569 printf("INVALID DAG: Non-terminator node has no succedents\n");
570 retcode = 1;
571 }
572 }
573 for (i = 0; i < node->numSuccedents; i++) {
574 if (!node->succedents[i]) {
575 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
576 retcode = 1;
577 }
578 scount[node->succedents[i]->nodeNum]++;
579 }
580 for (i = 0; i < node->numAntecedents; i++) {
581 if (!node->antecedents[i]) {
582 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
583 retcode = 1;
584 }
585 acount[node->antecedents[i]->nodeNum]++;
586 }
587 for (i = 0; i < node->numSuccedents; i++) {
588 if (node->succedents[i]->visited == unvisited) {
589 if (rf_ValidateBranch(node->succedents[i], scount,
590 acount, nodes, unvisited)) {
591 retcode = 1;
592 }
593 }
594 }
595 return (retcode);
596 }
597
598 static void
599 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
600 {
601 int i;
602
603 RF_ASSERT(node->visited == unvisited);
604 for (i = 0; i < node->numSuccedents; i++) {
605 if (node->succedents[i] == NULL) {
606 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
607 RF_ASSERT(0);
608 }
609 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
610 }
611 }
612 /* NOTE: never call this on a big dag, because it is exponential
613 * in execution time
614 */
615 static void
616 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
617 {
618 int i, unvisited;
619
620 unvisited = dag->succedents[0]->visited;
621
622 for (i = 0; i < dag->numSuccedents; i++) {
623 if (dag->succedents[i] == NULL) {
624 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
625 RF_ASSERT(0);
626 }
627 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
628 }
629 }
630 /* validate a DAG. _at entry_ verify that:
631 * -- numNodesCompleted is zero
632 * -- node queue is null
633 * -- dag status is rf_enable
634 * -- next pointer is null on every node
635 * -- all nodes have status wait
636 * -- numAntDone is zero in all nodes
637 * -- terminator node has zero successors
638 * -- no other node besides terminator has zero successors
639 * -- no successor or antecedent pointer in a node is NULL
640 * -- number of times that each node appears as a successor of another node
641 * is equal to the antecedent count on that node
642 * -- number of times that each node appears as an antecedent of another node
643 * is equal to the succedent count on that node
644 * -- what else?
645 */
646 int
647 rf_ValidateDAG(RF_DagHeader_t *dag_h)
648 {
649 int i, nodecount;
650 int *scount, *acount;/* per-node successor and antecedent counts */
651 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
652 int retcode = 0;
653 int unvisited;
654 int commitNodeCount = 0;
655
656 if (rf_validateVisitedDebug)
657 rf_ValidateVisitedBits(dag_h);
658
659 if (dag_h->numNodesCompleted != 0) {
660 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
661 retcode = 1;
662 goto validate_dag_bad;
663 }
664 if (dag_h->status != rf_enable) {
665 printf("INVALID DAG: not enabled\n");
666 retcode = 1;
667 goto validate_dag_bad;
668 }
669 if (dag_h->numCommits != 0) {
670 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
671 retcode = 1;
672 goto validate_dag_bad;
673 }
674 if (dag_h->numSuccedents != 1) {
675 /* currently, all dags must have only one succedent */
676 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
677 retcode = 1;
678 goto validate_dag_bad;
679 }
680 nodecount = rf_AssignNodeNums(dag_h);
681
682 unvisited = dag_h->succedents[0]->visited;
683
684 RF_Malloc(scount, nodecount * sizeof(int), (int *));
685 RF_Malloc(acount, nodecount * sizeof(int), (int *));
686 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
687 (RF_DagNode_t **));
688 for (i = 0; i < dag_h->numSuccedents; i++) {
689 if ((dag_h->succedents[i]->visited == unvisited)
690 && rf_ValidateBranch(dag_h->succedents[i], scount,
691 acount, nodes, unvisited)) {
692 retcode = 1;
693 }
694 }
695 /* start at 1 to skip the header node */
696 for (i = 1; i < nodecount; i++) {
697 if (nodes[i]->commitNode)
698 commitNodeCount++;
699 if (nodes[i]->doFunc == NULL) {
700 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
701 retcode = 1;
702 goto validate_dag_out;
703 }
704 if (nodes[i]->undoFunc == NULL) {
705 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
706 retcode = 1;
707 goto validate_dag_out;
708 }
709 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
710 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
711 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
712 retcode = 1;
713 goto validate_dag_out;
714 }
715 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
716 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
717 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
718 retcode = 1;
719 goto validate_dag_out;
720 }
721 }
722
723 if (dag_h->numCommitNodes != commitNodeCount) {
724 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
725 dag_h->numCommitNodes, commitNodeCount);
726 retcode = 1;
727 goto validate_dag_out;
728 }
729 validate_dag_out:
730 RF_Free(scount, nodecount * sizeof(int));
731 RF_Free(acount, nodecount * sizeof(int));
732 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
733 if (retcode)
734 rf_PrintDAGList(dag_h);
735
736 if (rf_validateVisitedDebug)
737 rf_ValidateVisitedBits(dag_h);
738
739 return (retcode);
740
741 validate_dag_bad:
742 rf_PrintDAGList(dag_h);
743 return (retcode);
744 }
745
746 #endif /* RF_DEBUG_VALIDATE_DAG */
747
748 /******************************************************************************
749 *
750 * misc construction routines
751 *
752 *****************************************************************************/
753
754 void
755 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
756 {
757 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
758 int fcol = raidPtr->reconControl->fcol;
759 int scol = raidPtr->reconControl->spareCol;
760 RF_PhysDiskAddr_t *pda;
761
762 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
763 for (pda = asmap->physInfo; pda; pda = pda->next) {
764 if (pda->col == fcol) {
765 #if RF_DEBUG_DAG
766 if (rf_dagDebug) {
767 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
768 pda->startSector)) {
769 RF_PANIC();
770 }
771 }
772 #endif
773 /* printf("Remapped data for large write\n"); */
774 if (ds) {
775 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
776 &pda->col, &pda->startSector, RF_REMAP);
777 } else {
778 pda->col = scol;
779 }
780 }
781 }
782 for (pda = asmap->parityInfo; pda; pda = pda->next) {
783 if (pda->col == fcol) {
784 #if RF_DEBUG_DAG
785 if (rf_dagDebug) {
786 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
787 RF_PANIC();
788 }
789 }
790 #endif
791 }
792 if (ds) {
793 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
794 } else {
795 pda->col = scol;
796 }
797 }
798 }
799
800
801 /* this routine allocates read buffers and generates stripe maps for the
802 * regions of the array from the start of the stripe to the start of the
803 * access, and from the end of the access to the end of the stripe. It also
804 * computes and returns the number of DAG nodes needed to read all this data.
805 * Note that this routine does the wrong thing if the access is fully
806 * contained within one stripe unit, so we RF_ASSERT against this case at the
807 * start.
808 *
809 * layoutPtr - in: layout information
810 * asmap - in: access stripe map
811 * dag_h - in: header of the dag to create
812 * new_asm_h - in: ptr to array of 2 headers. to be filled in
813 * nRodNodes - out: num nodes to be generated to read unaccessed data
814 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
815 */
816 void
817 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
818 RF_RaidLayout_t *layoutPtr,
819 RF_AccessStripeMap_t *asmap,
820 RF_DagHeader_t *dag_h,
821 RF_AccessStripeMapHeader_t **new_asm_h,
822 int *nRodNodes,
823 char **sosBuffer, char **eosBuffer,
824 RF_AllocListElem_t *allocList)
825 {
826 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
827 RF_SectorNum_t sosNumSector, eosNumSector;
828
829 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
830 /* generate an access map for the region of the array from start of
831 * stripe to start of access */
832 new_asm_h[0] = new_asm_h[1] = NULL;
833 *nRodNodes = 0;
834 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
835 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
836 sosNumSector = asmap->raidAddress - sosRaidAddress;
837 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
838 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
839 new_asm_h[0]->next = dag_h->asmList;
840 dag_h->asmList = new_asm_h[0];
841 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
842
843 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
844 /* we're totally within one stripe here */
845 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
846 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
847 }
848 /* generate an access map for the region of the array from end of
849 * access to end of stripe */
850 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
851 eosRaidAddress = asmap->endRaidAddress;
852 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
853 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
854 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
855 new_asm_h[1]->next = dag_h->asmList;
856 dag_h->asmList = new_asm_h[1];
857 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
858
859 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
860 /* we're totally within one stripe here */
861 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
862 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
863 }
864 }
865
866
867
868 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
869 int
870 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
871 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
872 {
873 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
874 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
875 /* use -1 to be sure we stay within SU */
876 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
877 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
878 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
879 }
880
881
882 /* GenerateFailedAccessASMs
883 *
884 * this routine figures out what portion of the stripe needs to be read
885 * to effect the degraded read or write operation. It's primary function
886 * is to identify everything required to recover the data, and then
887 * eliminate anything that is already being accessed by the user.
888 *
889 * The main result is two new ASMs, one for the region from the start of the
890 * stripe to the start of the access, and one for the region from the end of
891 * the access to the end of the stripe. These ASMs describe everything that
892 * needs to be read to effect the degraded access. Other results are:
893 * nXorBufs -- the total number of buffers that need to be XORed together to
894 * recover the lost data,
895 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
896 * at entry, not allocated.
897 * overlappingPDAs --
898 * describes which of the non-failed PDAs in the user access
899 * overlap data that needs to be read to effect recovery.
900 * overlappingPDAs[i]==1 if and only if, neglecting the failed
901 * PDA, the ith pda in the input asm overlaps data that needs
902 * to be read for recovery.
903 */
904 /* in: asm - ASM for the actual access, one stripe only */
905 /* in: failedPDA - which component of the access has failed */
906 /* in: dag_h - header of the DAG we're going to create */
907 /* out: new_asm_h - the two new ASMs */
908 /* out: nXorBufs - the total number of xor bufs required */
909 /* out: rpBufPtr - a buffer for the parity read */
910 void
911 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
912 RF_PhysDiskAddr_t *failedPDA,
913 RF_DagHeader_t *dag_h,
914 RF_AccessStripeMapHeader_t **new_asm_h,
915 int *nXorBufs, char **rpBufPtr,
916 char *overlappingPDAs,
917 RF_AllocListElem_t *allocList)
918 {
919 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
920
921 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
922 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
923 RF_PhysDiskAddr_t *pda;
924 int foundit, i;
925
926 foundit = 0;
927 /* first compute the following raid addresses: start of stripe,
928 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
929 * MAX(end of access, end of failed SU), (eosStartAddr) end of
930 * stripe (i.e. start of next stripe) (eosAddr) */
931 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
932 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
933 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
934 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
935
936 /* now generate access stripe maps for each of the above regions of
937 * the stripe. Use a dummy (NULL) buf ptr for now */
938
939 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
940 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
941
942 /* walk through the PDAs and range-restrict each SU to the region of
943 * the SU touched on the failed PDA. also compute total data buffer
944 * space requirements in this step. Ignore the parity for now. */
945 /* Also count nodes to find out how many bufs need to be xored together */
946 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
947 * case, 1 is for failed data */
948
949 if (new_asm_h[0]) {
950 new_asm_h[0]->next = dag_h->asmList;
951 dag_h->asmList = new_asm_h[0];
952 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
953 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
954 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
955 }
956 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
957 }
958 if (new_asm_h[1]) {
959 new_asm_h[1]->next = dag_h->asmList;
960 dag_h->asmList = new_asm_h[1];
961 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
962 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
963 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
964 }
965 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
966 }
967
968 /* allocate a buffer for parity */
969 if (rpBufPtr)
970 *rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
971
972 /* the last step is to figure out how many more distinct buffers need
973 * to get xor'd to produce the missing unit. there's one for each
974 * user-data read node that overlaps the portion of the failed unit
975 * being accessed */
976
977 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
978 if (pda == failedPDA) {
979 i--;
980 foundit = 1;
981 continue;
982 }
983 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
984 overlappingPDAs[i] = 1;
985 (*nXorBufs)++;
986 }
987 }
988 if (!foundit) {
989 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
990 RF_ASSERT(0);
991 }
992 #if RF_DEBUG_DAG
993 if (rf_degDagDebug) {
994 if (new_asm_h[0]) {
995 printf("First asm:\n");
996 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
997 }
998 if (new_asm_h[1]) {
999 printf("Second asm:\n");
1000 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1001 }
1002 }
1003 #endif
1004 }
1005
1006
1007 /* adjusts the offset and number of sectors in the destination pda so that
1008 * it covers at most the region of the SU covered by the source PDA. This
1009 * is exclusively a restriction: the number of sectors indicated by the
1010 * target PDA can only shrink.
1011 *
1012 * For example: s = sectors within SU indicated by source PDA
1013 * d = sectors within SU indicated by dest PDA
1014 * r = results, stored in dest PDA
1015 *
1016 * |--------------- one stripe unit ---------------------|
1017 * | sssssssssssssssssssssssssssssssss |
1018 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1019 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1020 *
1021 * Another example:
1022 *
1023 * |--------------- one stripe unit ---------------------|
1024 * | sssssssssssssssssssssssssssssssss |
1025 * | ddddddddddddddddddddddd |
1026 * | rrrrrrrrrrrrrrrr |
1027 *
1028 */
1029 void
1030 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1031 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1032 {
1033 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1034 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1035 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1036 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1037 * stay within SU */
1038 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1039 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1040
1041 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1042 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1043
1044 if (dobuffer)
1045 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1046 if (doraidaddr) {
1047 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1048 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1049 }
1050 }
1051
1052 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1053
1054 /*
1055 * Want the highest of these primes to be the largest one
1056 * less than the max expected number of columns (won't hurt
1057 * to be too small or too large, but won't be optimal, either)
1058 * --jimz
1059 */
1060 #define NLOWPRIMES 8
1061 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1062 /*****************************************************************************
1063 * compute the workload shift factor. (chained declustering)
1064 *
1065 * return nonzero if access should shift to secondary, otherwise,
1066 * access is to primary
1067 *****************************************************************************/
1068 int
1069 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1070 {
1071 /*
1072 * variables:
1073 * d = column of disk containing primary
1074 * f = column of failed disk
1075 * n = number of disks in array
1076 * sd = "shift distance" (number of columns that d is to the right of f)
1077 * v = numerator of redirection ratio
1078 * k = denominator of redirection ratio
1079 */
1080 RF_RowCol_t d, f, sd, n;
1081 int k, v, ret, i;
1082
1083 n = raidPtr->numCol;
1084
1085 /* assign column of primary copy to d */
1086 d = pda->col;
1087
1088 /* assign column of dead disk to f */
1089 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1090
1091 RF_ASSERT(f < n);
1092 RF_ASSERT(f != d);
1093
1094 sd = (f > d) ? (n + d - f) : (d - f);
1095 RF_ASSERT(sd < n);
1096
1097 /*
1098 * v of every k accesses should be redirected
1099 *
1100 * v/k := (n-1-sd)/(n-1)
1101 */
1102 v = (n - 1 - sd);
1103 k = (n - 1);
1104
1105 #if 1
1106 /*
1107 * XXX
1108 * Is this worth it?
1109 *
1110 * Now reduce the fraction, by repeatedly factoring
1111 * out primes (just like they teach in elementary school!)
1112 */
1113 for (i = 0; i < NLOWPRIMES; i++) {
1114 if (lowprimes[i] > v)
1115 break;
1116 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1117 v /= lowprimes[i];
1118 k /= lowprimes[i];
1119 }
1120 }
1121 #endif
1122
1123 raidPtr->hist_diskreq[d]++;
1124 if (raidPtr->hist_diskreq[d] > v) {
1125 ret = 0; /* do not redirect */
1126 } else {
1127 ret = 1; /* redirect */
1128 }
1129
1130 #if 0
1131 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1132 raidPtr->hist_diskreq[d]);
1133 #endif
1134
1135 if (raidPtr->hist_diskreq[d] >= k) {
1136 /* reset counter */
1137 raidPtr->hist_diskreq[d] = 0;
1138 }
1139 return (ret);
1140 }
1141 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1142
1143 /*
1144 * Disk selection routines
1145 */
1146
1147 /*
1148 * Selects the disk with the shortest queue from a mirror pair.
1149 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1150 * disk are counted as members of the "queue"
1151 */
1152 void
1153 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1154 {
1155 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1156 RF_RowCol_t colData, colMirror;
1157 int dataQueueLength, mirrorQueueLength, usemirror;
1158 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1159 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1160 RF_PhysDiskAddr_t *tmp_pda;
1161 RF_RaidDisk_t *disks = raidPtr->Disks;
1162 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1163
1164 /* return the [row col] of the disk with the shortest queue */
1165 colData = data_pda->col;
1166 colMirror = mirror_pda->col;
1167 dataQueue = &(dqs[colData]);
1168 mirrorQueue = &(dqs[colMirror]);
1169
1170 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1171 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1172 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1173 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1174 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1175 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1176 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1177 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1178 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1179 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1180 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1181 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1182
1183 usemirror = 0;
1184 if (RF_DEAD_DISK(disks[colMirror].status)) {
1185 usemirror = 0;
1186 } else
1187 if (RF_DEAD_DISK(disks[colData].status)) {
1188 usemirror = 1;
1189 } else
1190 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1191 /* Trust only the main disk */
1192 usemirror = 0;
1193 } else
1194 if (dataQueueLength < mirrorQueueLength) {
1195 usemirror = 0;
1196 } else
1197 if (mirrorQueueLength < dataQueueLength) {
1198 usemirror = 1;
1199 } else {
1200 /* queues are equal length. attempt
1201 * cleverness. */
1202 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1203 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1204 usemirror = 0;
1205 } else {
1206 usemirror = 1;
1207 }
1208 }
1209
1210 if (usemirror) {
1211 /* use mirror (parity) disk, swap params 0 & 4 */
1212 tmp_pda = data_pda;
1213 node->params[0].p = mirror_pda;
1214 node->params[4].p = tmp_pda;
1215 } else {
1216 /* use data disk, leave param 0 unchanged */
1217 }
1218 /* printf("dataQueueLength %d, mirrorQueueLength
1219 * %d\n",dataQueueLength, mirrorQueueLength); */
1220 }
1221 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1222 /*
1223 * Do simple partitioning. This assumes that
1224 * the data and parity disks are laid out identically.
1225 */
1226 void
1227 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1228 {
1229 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1230 RF_RowCol_t colData, colMirror;
1231 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1232 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1233 RF_PhysDiskAddr_t *tmp_pda;
1234 RF_RaidDisk_t *disks = raidPtr->Disks;
1235 int usemirror;
1236
1237 /* return the [row col] of the disk with the shortest queue */
1238 colData = data_pda->col;
1239 colMirror = mirror_pda->col;
1240
1241 usemirror = 0;
1242 if (RF_DEAD_DISK(disks[colMirror].status)) {
1243 usemirror = 0;
1244 } else
1245 if (RF_DEAD_DISK(disks[colData].status)) {
1246 usemirror = 1;
1247 } else
1248 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1249 /* Trust only the main disk */
1250 usemirror = 0;
1251 } else
1252 if (data_pda->startSector <
1253 (disks[colData].numBlocks / 2)) {
1254 usemirror = 0;
1255 } else {
1256 usemirror = 1;
1257 }
1258
1259 if (usemirror) {
1260 /* use mirror (parity) disk, swap params 0 & 4 */
1261 tmp_pda = data_pda;
1262 node->params[0].p = mirror_pda;
1263 node->params[4].p = tmp_pda;
1264 } else {
1265 /* use data disk, leave param 0 unchanged */
1266 }
1267 }
1268 #endif
1269