Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.40
      1 /*	$NetBSD: rf_dagutils.c,v 1.40 2004/03/19 17:01:26 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.40 2004/03/19 17:01:26 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_map.h"
     48 #include "rf_shutdown.h"
     49 
     50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51 
     52 const RF_RedFuncs_t rf_xorFuncs = {
     53 	rf_RegularXorFunc, "Reg Xr",
     54 	rf_SimpleXorFunc, "Simple Xr"};
     55 
     56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57 	rf_RecoveryXorFunc, "Recovery Xr",
     58 	rf_RecoveryXorFunc, "Recovery Xr"};
     59 
     60 #if RF_DEBUG_VALIDATE_DAG
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64 			     RF_DagNode_t **, int);
     65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67 #endif /* RF_DEBUG_VALIDATE_DAG */
     68 
     69 
     70 /* The maximum number of nodes in a DAG is bounded by
     71 
     72 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     73 	(1 * 2 * layoutPtr->numParityCol) + 3
     74 
     75 which is:  2*RF_MAXCOL+1*2+1*2*2+3
     76 
     77 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     78 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     79 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     80 have a few kicking around.
     81 */
     82 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     83 
     84 
     85 /******************************************************************************
     86  *
     87  * InitNode - initialize a dag node
     88  *
     89  * the size of the propList array is always the same as that of the
     90  * successors array.
     91  *
     92  *****************************************************************************/
     93 void
     94 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     95     int (*doFunc) (RF_DagNode_t *node),
     96     int (*undoFunc) (RF_DagNode_t *node),
     97     int (*wakeFunc) (RF_DagNode_t *node, int status),
     98     int nSucc, int nAnte, int nParam, int nResult,
     99     RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
    100 {
    101 	void  **ptrs;
    102 	int     nptrs;
    103 
    104 	if (nAnte > RF_MAX_ANTECEDENTS)
    105 		RF_PANIC();
    106 	node->status = initstatus;
    107 	node->commitNode = commit;
    108 	node->doFunc = doFunc;
    109 	node->undoFunc = undoFunc;
    110 	node->wakeFunc = wakeFunc;
    111 	node->numParams = nParam;
    112 	node->numResults = nResult;
    113 	node->numAntecedents = nAnte;
    114 	node->numAntDone = 0;
    115 	node->next = NULL;
    116 	/* node->list_next = NULL */  /* Don't touch this here!
    117 	                                 It may already be
    118 					 in use by the caller! */
    119 	node->numSuccedents = nSucc;
    120 	node->name = name;
    121 	node->dagHdr = hdr;
    122 	node->big_dag_ptrs = NULL;
    123 	node->big_dag_params = NULL;
    124 	node->visited = 0;
    125 
    126 	/* allocate all the pointers with one call to malloc */
    127 	nptrs = nSucc + nAnte + nResult + nSucc;
    128 
    129 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    130 		/*
    131 	         * The dag_ptrs field of the node is basically some scribble
    132 	         * space to be used here. We could get rid of it, and always
    133 	         * allocate the range of pointers, but that's expensive. So,
    134 	         * we pick a "common case" size for the pointer cache. Hopefully,
    135 	         * we'll find that:
    136 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    137 	         *     only a little bit (least efficient case)
    138 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    139 	         *     (wasted memory)
    140 	         */
    141 		ptrs = (void **) node->dag_ptrs;
    142 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    143 		node->big_dag_ptrs = rf_AllocDAGPCache();
    144 		ptrs = (void **) node->big_dag_ptrs;
    145 	} else {
    146 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    147 				(void **), alist);
    148 	}
    149 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    150 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    151 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    152 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    153 
    154 	if (nParam) {
    155 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    156 			node->params = (RF_DagParam_t *) node->dag_params;
    157 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    158 			node->big_dag_params = rf_AllocDAGPCache();
    159 			node->params = node->big_dag_params;
    160 		} else {
    161 			RF_MallocAndAdd(node->params,
    162 					nParam * sizeof(RF_DagParam_t),
    163 					(RF_DagParam_t *), alist);
    164 		}
    165 	} else {
    166 		node->params = NULL;
    167 	}
    168 }
    169 
    170 
    171 
    172 /******************************************************************************
    173  *
    174  * allocation and deallocation routines
    175  *
    176  *****************************************************************************/
    177 
    178 void
    179 rf_FreeDAG(RF_DagHeader_t *dag_h)
    180 {
    181 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    182 	RF_PhysDiskAddr_t *pda;
    183 	RF_DagNode_t *tmpnode;
    184 	RF_DagHeader_t *nextDag;
    185 
    186 	while (dag_h) {
    187 		nextDag = dag_h->next;
    188 		rf_FreeAllocList(dag_h->allocList);
    189 		for (asmap = dag_h->asmList; asmap;) {
    190 			t_asmap = asmap;
    191 			asmap = asmap->next;
    192 			rf_FreeAccessStripeMap(t_asmap);
    193 		}
    194 		while (dag_h->pda_cleanup_list) {
    195 			pda = dag_h->pda_cleanup_list;
    196 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    197 			rf_FreePhysDiskAddr(pda);
    198 		}
    199 		while (dag_h->nodes) {
    200 			tmpnode = dag_h->nodes;
    201 			dag_h->nodes = dag_h->nodes->list_next;
    202 			rf_FreeDAGNode(tmpnode);
    203 		}
    204 		rf_FreeDAGHeader(dag_h);
    205 		dag_h = nextDag;
    206 	}
    207 }
    208 
    209 #define RF_MAX_FREE_DAGH 128
    210 #define RF_MIN_FREE_DAGH  32
    211 
    212 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    213 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    214 
    215 #define RF_MAX_FREE_DAGLIST 128
    216 #define RF_MIN_FREE_DAGLIST  32
    217 
    218 #define RF_MAX_FREE_DAGPCACHE 128
    219 #define RF_MIN_FREE_DAGPCACHE   8
    220 
    221 #define RF_MAX_FREE_FUNCLIST 128
    222 #define RF_MIN_FREE_FUNCLIST  32
    223 
    224 static void rf_ShutdownDAGs(void *);
    225 static void
    226 rf_ShutdownDAGs(void *ignored)
    227 {
    228 	pool_destroy(&rf_pools.dagh);
    229 	pool_destroy(&rf_pools.dagnode);
    230 	pool_destroy(&rf_pools.daglist);
    231 	pool_destroy(&rf_pools.dagpcache);
    232 	pool_destroy(&rf_pools.funclist);
    233 }
    234 
    235 int
    236 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    237 {
    238 
    239 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    240 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    241 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    242 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    243 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    244 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    245 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    246 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    247 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    248 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    249 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    250 
    251 	return (0);
    252 }
    253 
    254 RF_DagHeader_t *
    255 rf_AllocDAGHeader()
    256 {
    257 	RF_DagHeader_t *dh;
    258 
    259 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    260 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    261 	return (dh);
    262 }
    263 
    264 void
    265 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    266 {
    267 	pool_put(&rf_pools.dagh, dh);
    268 }
    269 
    270 RF_DagNode_t *
    271 rf_AllocDAGNode()
    272 {
    273 	RF_DagNode_t *node;
    274 
    275 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    276 	memset(node, 0, sizeof(RF_DagNode_t));
    277 	return (node);
    278 }
    279 
    280 void
    281 rf_FreeDAGNode(RF_DagNode_t *node)
    282 {
    283 	if (node->big_dag_ptrs) {
    284 		rf_FreeDAGPCache(node->big_dag_ptrs);
    285 	}
    286 	if (node->big_dag_params) {
    287 		rf_FreeDAGPCache(node->big_dag_params);
    288 	}
    289 	pool_put(&rf_pools.dagnode, node);
    290 }
    291 
    292 RF_DagList_t *
    293 rf_AllocDAGList()
    294 {
    295 	RF_DagList_t *dagList;
    296 
    297 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    298 	memset(dagList, 0, sizeof(RF_DagList_t));
    299 
    300 	return (dagList);
    301 }
    302 
    303 void
    304 rf_FreeDAGList(RF_DagList_t *dagList)
    305 {
    306 	pool_put(&rf_pools.daglist, dagList);
    307 }
    308 
    309 void *
    310 rf_AllocDAGPCache()
    311 {
    312 	void *p;
    313 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    314 	memset(p, 0, RF_DAGPCACHE_SIZE);
    315 
    316 	return (p);
    317 }
    318 
    319 void
    320 rf_FreeDAGPCache(void *p)
    321 {
    322 	pool_put(&rf_pools.dagpcache, p);
    323 }
    324 
    325 RF_FuncList_t *
    326 rf_AllocFuncList()
    327 {
    328 	RF_FuncList_t *funcList;
    329 
    330 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    331 	memset(funcList, 0, sizeof(RF_FuncList_t));
    332 
    333 	return (funcList);
    334 }
    335 
    336 void
    337 rf_FreeFuncList(RF_FuncList_t *funcList)
    338 {
    339 	pool_put(&rf_pools.funclist, funcList);
    340 }
    341 
    342 
    343 
    344 /* allocates a buffer big enough to hold the data described by pda */
    345 void   *
    346 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    347 	       RF_AllocListElem_t *allocList)
    348 {
    349 	char   *p;
    350 
    351 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    352 	    (char *), allocList);
    353 	return ((void *) p);
    354 }
    355 #if RF_DEBUG_VALIDATE_DAG
    356 /******************************************************************************
    357  *
    358  * debug routines
    359  *
    360  *****************************************************************************/
    361 
    362 char   *
    363 rf_NodeStatusString(RF_DagNode_t *node)
    364 {
    365 	switch (node->status) {
    366 	case rf_wait:
    367 		return ("wait");
    368 	case rf_fired:
    369 		return ("fired");
    370 	case rf_good:
    371 		return ("good");
    372 	case rf_bad:
    373 		return ("bad");
    374 	default:
    375 		return ("?");
    376 	}
    377 }
    378 
    379 void
    380 rf_PrintNodeInfoString(RF_DagNode_t *node)
    381 {
    382 	RF_PhysDiskAddr_t *pda;
    383 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    384 	int     i, lk, unlk;
    385 	void   *bufPtr;
    386 
    387 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    388 	    || (df == rf_DiskReadMirrorIdleFunc)
    389 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    390 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    391 		bufPtr = (void *) node->params[1].p;
    392 		lk = 0;
    393 		unlk = 0;
    394 		RF_ASSERT(!(lk && unlk));
    395 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    396 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    397 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    398 		return;
    399 	}
    400 	if (df == rf_DiskUnlockFunc) {
    401 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    402 		lk = 0;
    403 		unlk = 0;
    404 		RF_ASSERT(!(lk && unlk));
    405 		printf("c %d %s\n", pda->col,
    406 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    407 		return;
    408 	}
    409 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    410 	    || (df == rf_RecoveryXorFunc)) {
    411 		printf("result buf 0x%lx\n", (long) node->results[0]);
    412 		for (i = 0; i < node->numParams - 1; i += 2) {
    413 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    414 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    415 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    416 			    (long) bufPtr, pda->col,
    417 			    (long) pda->startSector, (int) pda->numSector);
    418 		}
    419 		return;
    420 	}
    421 #if RF_INCLUDE_PARITYLOGGING > 0
    422 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    423 		for (i = 0; i < node->numParams - 1; i += 2) {
    424 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    425 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    426 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    427 			    pda->col, (long) pda->startSector,
    428 			    (int) pda->numSector, (long) bufPtr);
    429 		}
    430 		return;
    431 	}
    432 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    433 
    434 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    435 		printf("\n");
    436 		return;
    437 	}
    438 	printf("?\n");
    439 }
    440 #ifdef DEBUG
    441 static void
    442 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    443 {
    444 	char   *anttype;
    445 	int     i;
    446 
    447 	node->visited = (unvisited) ? 0 : 1;
    448 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    449 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    450 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    451 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    452 	for (i = 0; i < node->numSuccedents; i++) {
    453 		printf("%d%s", node->succedents[i]->nodeNum,
    454 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    455 	}
    456 	printf("} A{");
    457 	for (i = 0; i < node->numAntecedents; i++) {
    458 		switch (node->antType[i]) {
    459 		case rf_trueData:
    460 			anttype = "T";
    461 			break;
    462 		case rf_antiData:
    463 			anttype = "A";
    464 			break;
    465 		case rf_outputData:
    466 			anttype = "O";
    467 			break;
    468 		case rf_control:
    469 			anttype = "C";
    470 			break;
    471 		default:
    472 			anttype = "?";
    473 			break;
    474 		}
    475 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    476 	}
    477 	printf("}; ");
    478 	rf_PrintNodeInfoString(node);
    479 	for (i = 0; i < node->numSuccedents; i++) {
    480 		if (node->succedents[i]->visited == unvisited)
    481 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    482 	}
    483 }
    484 
    485 static void
    486 rf_PrintDAG(RF_DagHeader_t *dag_h)
    487 {
    488 	int     unvisited, i;
    489 	char   *status;
    490 
    491 	/* set dag status */
    492 	switch (dag_h->status) {
    493 	case rf_enable:
    494 		status = "enable";
    495 		break;
    496 	case rf_rollForward:
    497 		status = "rollForward";
    498 		break;
    499 	case rf_rollBackward:
    500 		status = "rollBackward";
    501 		break;
    502 	default:
    503 		status = "illegal!";
    504 		break;
    505 	}
    506 	/* find out if visited bits are currently set or clear */
    507 	unvisited = dag_h->succedents[0]->visited;
    508 
    509 	printf("DAG type:  %s\n", dag_h->creator);
    510 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    511 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    512 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    513 	for (i = 0; i < dag_h->numSuccedents; i++) {
    514 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    515 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    516 	}
    517 	printf("};\n");
    518 	for (i = 0; i < dag_h->numSuccedents; i++) {
    519 		if (dag_h->succedents[i]->visited == unvisited)
    520 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    521 	}
    522 }
    523 #endif
    524 /* assigns node numbers */
    525 int
    526 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    527 {
    528 	int     unvisited, i, nnum;
    529 	RF_DagNode_t *node;
    530 
    531 	nnum = 0;
    532 	unvisited = dag_h->succedents[0]->visited;
    533 
    534 	dag_h->nodeNum = nnum++;
    535 	for (i = 0; i < dag_h->numSuccedents; i++) {
    536 		node = dag_h->succedents[i];
    537 		if (node->visited == unvisited) {
    538 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    539 		}
    540 	}
    541 	return (nnum);
    542 }
    543 
    544 int
    545 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    546 {
    547 	int     i;
    548 
    549 	node->visited = (unvisited) ? 0 : 1;
    550 
    551 	node->nodeNum = num++;
    552 	for (i = 0; i < node->numSuccedents; i++) {
    553 		if (node->succedents[i]->visited == unvisited) {
    554 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    555 		}
    556 	}
    557 	return (num);
    558 }
    559 /* set the header pointers in each node to "newptr" */
    560 void
    561 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    562 {
    563 	int     i;
    564 	for (i = 0; i < dag_h->numSuccedents; i++)
    565 		if (dag_h->succedents[i]->dagHdr != newptr)
    566 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    567 }
    568 
    569 void
    570 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    571 {
    572 	int     i;
    573 	node->dagHdr = newptr;
    574 	for (i = 0; i < node->numSuccedents; i++)
    575 		if (node->succedents[i]->dagHdr != newptr)
    576 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    577 }
    578 
    579 
    580 void
    581 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    582 {
    583 	int     i = 0;
    584 
    585 	for (; dag_h; dag_h = dag_h->next) {
    586 		rf_AssignNodeNums(dag_h);
    587 		printf("\n\nDAG %d IN LIST:\n", i++);
    588 		rf_PrintDAG(dag_h);
    589 	}
    590 }
    591 
    592 static int
    593 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    594 		  RF_DagNode_t **nodes, int unvisited)
    595 {
    596 	int     i, retcode = 0;
    597 
    598 	/* construct an array of node pointers indexed by node num */
    599 	node->visited = (unvisited) ? 0 : 1;
    600 	nodes[node->nodeNum] = node;
    601 
    602 	if (node->next != NULL) {
    603 		printf("INVALID DAG: next pointer in node is not NULL\n");
    604 		retcode = 1;
    605 	}
    606 	if (node->status != rf_wait) {
    607 		printf("INVALID DAG: Node status is not wait\n");
    608 		retcode = 1;
    609 	}
    610 	if (node->numAntDone != 0) {
    611 		printf("INVALID DAG: numAntDone is not zero\n");
    612 		retcode = 1;
    613 	}
    614 	if (node->doFunc == rf_TerminateFunc) {
    615 		if (node->numSuccedents != 0) {
    616 			printf("INVALID DAG: Terminator node has succedents\n");
    617 			retcode = 1;
    618 		}
    619 	} else {
    620 		if (node->numSuccedents == 0) {
    621 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    622 			retcode = 1;
    623 		}
    624 	}
    625 	for (i = 0; i < node->numSuccedents; i++) {
    626 		if (!node->succedents[i]) {
    627 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    628 			retcode = 1;
    629 		}
    630 		scount[node->succedents[i]->nodeNum]++;
    631 	}
    632 	for (i = 0; i < node->numAntecedents; i++) {
    633 		if (!node->antecedents[i]) {
    634 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    635 			retcode = 1;
    636 		}
    637 		acount[node->antecedents[i]->nodeNum]++;
    638 	}
    639 	for (i = 0; i < node->numSuccedents; i++) {
    640 		if (node->succedents[i]->visited == unvisited) {
    641 			if (rf_ValidateBranch(node->succedents[i], scount,
    642 				acount, nodes, unvisited)) {
    643 				retcode = 1;
    644 			}
    645 		}
    646 	}
    647 	return (retcode);
    648 }
    649 
    650 static void
    651 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    652 {
    653 	int     i;
    654 
    655 	RF_ASSERT(node->visited == unvisited);
    656 	for (i = 0; i < node->numSuccedents; i++) {
    657 		if (node->succedents[i] == NULL) {
    658 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    659 			RF_ASSERT(0);
    660 		}
    661 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    662 	}
    663 }
    664 /* NOTE:  never call this on a big dag, because it is exponential
    665  * in execution time
    666  */
    667 static void
    668 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    669 {
    670 	int     i, unvisited;
    671 
    672 	unvisited = dag->succedents[0]->visited;
    673 
    674 	for (i = 0; i < dag->numSuccedents; i++) {
    675 		if (dag->succedents[i] == NULL) {
    676 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    677 			RF_ASSERT(0);
    678 		}
    679 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    680 	}
    681 }
    682 /* validate a DAG.  _at entry_ verify that:
    683  *   -- numNodesCompleted is zero
    684  *   -- node queue is null
    685  *   -- dag status is rf_enable
    686  *   -- next pointer is null on every node
    687  *   -- all nodes have status wait
    688  *   -- numAntDone is zero in all nodes
    689  *   -- terminator node has zero successors
    690  *   -- no other node besides terminator has zero successors
    691  *   -- no successor or antecedent pointer in a node is NULL
    692  *   -- number of times that each node appears as a successor of another node
    693  *      is equal to the antecedent count on that node
    694  *   -- number of times that each node appears as an antecedent of another node
    695  *      is equal to the succedent count on that node
    696  *   -- what else?
    697  */
    698 int
    699 rf_ValidateDAG(RF_DagHeader_t *dag_h)
    700 {
    701 	int     i, nodecount;
    702 	int    *scount, *acount;/* per-node successor and antecedent counts */
    703 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    704 	int     retcode = 0;
    705 	int     unvisited;
    706 	int     commitNodeCount = 0;
    707 
    708 	if (rf_validateVisitedDebug)
    709 		rf_ValidateVisitedBits(dag_h);
    710 
    711 	if (dag_h->numNodesCompleted != 0) {
    712 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    713 		retcode = 1;
    714 		goto validate_dag_bad;
    715 	}
    716 	if (dag_h->status != rf_enable) {
    717 		printf("INVALID DAG: not enabled\n");
    718 		retcode = 1;
    719 		goto validate_dag_bad;
    720 	}
    721 	if (dag_h->numCommits != 0) {
    722 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    723 		retcode = 1;
    724 		goto validate_dag_bad;
    725 	}
    726 	if (dag_h->numSuccedents != 1) {
    727 		/* currently, all dags must have only one succedent */
    728 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    729 		retcode = 1;
    730 		goto validate_dag_bad;
    731 	}
    732 	nodecount = rf_AssignNodeNums(dag_h);
    733 
    734 	unvisited = dag_h->succedents[0]->visited;
    735 
    736 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    737 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    738 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    739 		  (RF_DagNode_t **));
    740 	for (i = 0; i < dag_h->numSuccedents; i++) {
    741 		if ((dag_h->succedents[i]->visited == unvisited)
    742 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    743 			acount, nodes, unvisited)) {
    744 			retcode = 1;
    745 		}
    746 	}
    747 	/* start at 1 to skip the header node */
    748 	for (i = 1; i < nodecount; i++) {
    749 		if (nodes[i]->commitNode)
    750 			commitNodeCount++;
    751 		if (nodes[i]->doFunc == NULL) {
    752 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    753 			retcode = 1;
    754 			goto validate_dag_out;
    755 		}
    756 		if (nodes[i]->undoFunc == NULL) {
    757 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    758 			retcode = 1;
    759 			goto validate_dag_out;
    760 		}
    761 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    762 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    763 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    764 			retcode = 1;
    765 			goto validate_dag_out;
    766 		}
    767 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    768 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    769 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    770 			retcode = 1;
    771 			goto validate_dag_out;
    772 		}
    773 	}
    774 
    775 	if (dag_h->numCommitNodes != commitNodeCount) {
    776 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    777 		    dag_h->numCommitNodes, commitNodeCount);
    778 		retcode = 1;
    779 		goto validate_dag_out;
    780 	}
    781 validate_dag_out:
    782 	RF_Free(scount, nodecount * sizeof(int));
    783 	RF_Free(acount, nodecount * sizeof(int));
    784 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    785 	if (retcode)
    786 		rf_PrintDAGList(dag_h);
    787 
    788 	if (rf_validateVisitedDebug)
    789 		rf_ValidateVisitedBits(dag_h);
    790 
    791 	return (retcode);
    792 
    793 validate_dag_bad:
    794 	rf_PrintDAGList(dag_h);
    795 	return (retcode);
    796 }
    797 
    798 #endif /* RF_DEBUG_VALIDATE_DAG */
    799 
    800 /******************************************************************************
    801  *
    802  * misc construction routines
    803  *
    804  *****************************************************************************/
    805 
    806 void
    807 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    808 {
    809 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    810 	int     fcol = raidPtr->reconControl->fcol;
    811 	int     scol = raidPtr->reconControl->spareCol;
    812 	RF_PhysDiskAddr_t *pda;
    813 
    814 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    815 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    816 		if (pda->col == fcol) {
    817 #if RF_DEBUG_DAG
    818 			if (rf_dagDebug) {
    819 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    820 					pda->startSector)) {
    821 					RF_PANIC();
    822 				}
    823 			}
    824 #endif
    825 			/* printf("Remapped data for large write\n"); */
    826 			if (ds) {
    827 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    828 				    &pda->col, &pda->startSector, RF_REMAP);
    829 			} else {
    830 				pda->col = scol;
    831 			}
    832 		}
    833 	}
    834 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    835 		if (pda->col == fcol) {
    836 #if RF_DEBUG_DAG
    837 			if (rf_dagDebug) {
    838 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    839 					RF_PANIC();
    840 				}
    841 			}
    842 #endif
    843 		}
    844 		if (ds) {
    845 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    846 		} else {
    847 			pda->col = scol;
    848 		}
    849 	}
    850 }
    851 
    852 
    853 /* this routine allocates read buffers and generates stripe maps for the
    854  * regions of the array from the start of the stripe to the start of the
    855  * access, and from the end of the access to the end of the stripe.  It also
    856  * computes and returns the number of DAG nodes needed to read all this data.
    857  * Note that this routine does the wrong thing if the access is fully
    858  * contained within one stripe unit, so we RF_ASSERT against this case at the
    859  * start.
    860  *
    861  * layoutPtr - in: layout information
    862  * asmap     - in: access stripe map
    863  * dag_h     - in: header of the dag to create
    864  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    865  * nRodNodes - out: num nodes to be generated to read unaccessed data
    866  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    867  */
    868 void
    869 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    870 				RF_RaidLayout_t *layoutPtr,
    871 				RF_AccessStripeMap_t *asmap,
    872 				RF_DagHeader_t *dag_h,
    873 				RF_AccessStripeMapHeader_t **new_asm_h,
    874 				int *nRodNodes,
    875 				char **sosBuffer, char **eosBuffer,
    876 				RF_AllocListElem_t *allocList)
    877 {
    878 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    879 	RF_SectorNum_t sosNumSector, eosNumSector;
    880 
    881 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    882 	/* generate an access map for the region of the array from start of
    883 	 * stripe to start of access */
    884 	new_asm_h[0] = new_asm_h[1] = NULL;
    885 	*nRodNodes = 0;
    886 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    887 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    888 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    889 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    890 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    891 		new_asm_h[0]->next = dag_h->asmList;
    892 		dag_h->asmList = new_asm_h[0];
    893 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    894 
    895 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    896 		/* we're totally within one stripe here */
    897 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    898 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    899 	}
    900 	/* generate an access map for the region of the array from end of
    901 	 * access to end of stripe */
    902 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    903 		eosRaidAddress = asmap->endRaidAddress;
    904 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    905 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    906 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    907 		new_asm_h[1]->next = dag_h->asmList;
    908 		dag_h->asmList = new_asm_h[1];
    909 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    910 
    911 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    912 		/* we're totally within one stripe here */
    913 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    914 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    915 	}
    916 }
    917 
    918 
    919 
    920 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    921 int
    922 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
    923 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
    924 {
    925 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    926 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    927 	/* use -1 to be sure we stay within SU */
    928 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    929 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    930 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    931 }
    932 
    933 
    934 /* GenerateFailedAccessASMs
    935  *
    936  * this routine figures out what portion of the stripe needs to be read
    937  * to effect the degraded read or write operation.  It's primary function
    938  * is to identify everything required to recover the data, and then
    939  * eliminate anything that is already being accessed by the user.
    940  *
    941  * The main result is two new ASMs, one for the region from the start of the
    942  * stripe to the start of the access, and one for the region from the end of
    943  * the access to the end of the stripe.  These ASMs describe everything that
    944  * needs to be read to effect the degraded access.  Other results are:
    945  *    nXorBufs -- the total number of buffers that need to be XORed together to
    946  *                recover the lost data,
    947  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    948  *                at entry, not allocated.
    949  *    overlappingPDAs --
    950  *                describes which of the non-failed PDAs in the user access
    951  *                overlap data that needs to be read to effect recovery.
    952  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    953  *                PDA, the ith pda in the input asm overlaps data that needs
    954  *                to be read for recovery.
    955  */
    956  /* in: asm - ASM for the actual access, one stripe only */
    957  /* in: failedPDA - which component of the access has failed */
    958  /* in: dag_h - header of the DAG we're going to create */
    959  /* out: new_asm_h - the two new ASMs */
    960  /* out: nXorBufs - the total number of xor bufs required */
    961  /* out: rpBufPtr - a buffer for the parity read */
    962 void
    963 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    964 			    RF_PhysDiskAddr_t *failedPDA,
    965 			    RF_DagHeader_t *dag_h,
    966 			    RF_AccessStripeMapHeader_t **new_asm_h,
    967 			    int *nXorBufs, char **rpBufPtr,
    968 			    char *overlappingPDAs,
    969 			    RF_AllocListElem_t *allocList)
    970 {
    971 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    972 
    973 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    974 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    975 	RF_PhysDiskAddr_t *pda;
    976 	int     foundit, i;
    977 
    978 	foundit = 0;
    979 	/* first compute the following raid addresses: start of stripe,
    980 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    981 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    982 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    983 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    984 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    985 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    986 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    987 
    988 	/* now generate access stripe maps for each of the above regions of
    989 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    990 
    991 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    992 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    993 
    994 	/* walk through the PDAs and range-restrict each SU to the region of
    995 	 * the SU touched on the failed PDA.  also compute total data buffer
    996 	 * space requirements in this step.  Ignore the parity for now. */
    997 	/* Also count nodes to find out how many bufs need to be xored together */
    998 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    999 				 * case, 1 is for failed data */
   1000 
   1001 	if (new_asm_h[0]) {
   1002 		new_asm_h[0]->next = dag_h->asmList;
   1003 		dag_h->asmList = new_asm_h[0];
   1004 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1005 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1006 			pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
   1007 		}
   1008 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1009 	}
   1010 	if (new_asm_h[1]) {
   1011 		new_asm_h[1]->next = dag_h->asmList;
   1012 		dag_h->asmList = new_asm_h[1];
   1013 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1014 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1015 			pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
   1016 		}
   1017 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1018 	}
   1019 
   1020 	/* allocate a buffer for parity */
   1021 	if (rpBufPtr)
   1022 		*rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
   1023 
   1024 	/* the last step is to figure out how many more distinct buffers need
   1025 	 * to get xor'd to produce the missing unit.  there's one for each
   1026 	 * user-data read node that overlaps the portion of the failed unit
   1027 	 * being accessed */
   1028 
   1029 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1030 		if (pda == failedPDA) {
   1031 			i--;
   1032 			foundit = 1;
   1033 			continue;
   1034 		}
   1035 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1036 			overlappingPDAs[i] = 1;
   1037 			(*nXorBufs)++;
   1038 		}
   1039 	}
   1040 	if (!foundit) {
   1041 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1042 		RF_ASSERT(0);
   1043 	}
   1044 #if RF_DEBUG_DAG
   1045 	if (rf_degDagDebug) {
   1046 		if (new_asm_h[0]) {
   1047 			printf("First asm:\n");
   1048 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1049 		}
   1050 		if (new_asm_h[1]) {
   1051 			printf("Second asm:\n");
   1052 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1053 		}
   1054 	}
   1055 #endif
   1056 }
   1057 
   1058 
   1059 /* adjusts the offset and number of sectors in the destination pda so that
   1060  * it covers at most the region of the SU covered by the source PDA.  This
   1061  * is exclusively a restriction:  the number of sectors indicated by the
   1062  * target PDA can only shrink.
   1063  *
   1064  * For example:  s = sectors within SU indicated by source PDA
   1065  *               d = sectors within SU indicated by dest PDA
   1066  *               r = results, stored in dest PDA
   1067  *
   1068  * |--------------- one stripe unit ---------------------|
   1069  * |           sssssssssssssssssssssssssssssssss         |
   1070  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1071  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1072  *
   1073  * Another example:
   1074  *
   1075  * |--------------- one stripe unit ---------------------|
   1076  * |           sssssssssssssssssssssssssssssssss         |
   1077  * |    ddddddddddddddddddddddd                          |
   1078  * |           rrrrrrrrrrrrrrrr                          |
   1079  *
   1080  */
   1081 void
   1082 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1083 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1084 {
   1085 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1086 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1087 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1088 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1089 													 * stay within SU */
   1090 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1091 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1092 
   1093 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1094 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1095 
   1096 	if (dobuffer)
   1097 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1098 	if (doraidaddr) {
   1099 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1100 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1101 	}
   1102 }
   1103 
   1104 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1105 
   1106 /*
   1107  * Want the highest of these primes to be the largest one
   1108  * less than the max expected number of columns (won't hurt
   1109  * to be too small or too large, but won't be optimal, either)
   1110  * --jimz
   1111  */
   1112 #define NLOWPRIMES 8
   1113 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1114 /*****************************************************************************
   1115  * compute the workload shift factor.  (chained declustering)
   1116  *
   1117  * return nonzero if access should shift to secondary, otherwise,
   1118  * access is to primary
   1119  *****************************************************************************/
   1120 int
   1121 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1122 {
   1123 	/*
   1124          * variables:
   1125          *  d   = column of disk containing primary
   1126          *  f   = column of failed disk
   1127          *  n   = number of disks in array
   1128          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1129          *  v   = numerator of redirection ratio
   1130          *  k   = denominator of redirection ratio
   1131          */
   1132 	RF_RowCol_t d, f, sd, n;
   1133 	int     k, v, ret, i;
   1134 
   1135 	n = raidPtr->numCol;
   1136 
   1137 	/* assign column of primary copy to d */
   1138 	d = pda->col;
   1139 
   1140 	/* assign column of dead disk to f */
   1141 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1142 
   1143 	RF_ASSERT(f < n);
   1144 	RF_ASSERT(f != d);
   1145 
   1146 	sd = (f > d) ? (n + d - f) : (d - f);
   1147 	RF_ASSERT(sd < n);
   1148 
   1149 	/*
   1150          * v of every k accesses should be redirected
   1151          *
   1152          * v/k := (n-1-sd)/(n-1)
   1153          */
   1154 	v = (n - 1 - sd);
   1155 	k = (n - 1);
   1156 
   1157 #if 1
   1158 	/*
   1159          * XXX
   1160          * Is this worth it?
   1161          *
   1162          * Now reduce the fraction, by repeatedly factoring
   1163          * out primes (just like they teach in elementary school!)
   1164          */
   1165 	for (i = 0; i < NLOWPRIMES; i++) {
   1166 		if (lowprimes[i] > v)
   1167 			break;
   1168 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1169 			v /= lowprimes[i];
   1170 			k /= lowprimes[i];
   1171 		}
   1172 	}
   1173 #endif
   1174 
   1175 	raidPtr->hist_diskreq[d]++;
   1176 	if (raidPtr->hist_diskreq[d] > v) {
   1177 		ret = 0;	/* do not redirect */
   1178 	} else {
   1179 		ret = 1;	/* redirect */
   1180 	}
   1181 
   1182 #if 0
   1183 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1184 	    raidPtr->hist_diskreq[d]);
   1185 #endif
   1186 
   1187 	if (raidPtr->hist_diskreq[d] >= k) {
   1188 		/* reset counter */
   1189 		raidPtr->hist_diskreq[d] = 0;
   1190 	}
   1191 	return (ret);
   1192 }
   1193 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1194 
   1195 /*
   1196  * Disk selection routines
   1197  */
   1198 
   1199 /*
   1200  * Selects the disk with the shortest queue from a mirror pair.
   1201  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1202  * disk are counted as members of the "queue"
   1203  */
   1204 void
   1205 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1206 {
   1207 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1208 	RF_RowCol_t colData, colMirror;
   1209 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1210 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1211 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1212 	RF_PhysDiskAddr_t *tmp_pda;
   1213 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1214 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1215 
   1216 	/* return the [row col] of the disk with the shortest queue */
   1217 	colData = data_pda->col;
   1218 	colMirror = mirror_pda->col;
   1219 	dataQueue = &(dqs[colData]);
   1220 	mirrorQueue = &(dqs[colMirror]);
   1221 
   1222 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1223 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1224 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1225 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1226 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1227 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1228 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1229 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1230 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1231 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1232 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1233 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1234 
   1235 	usemirror = 0;
   1236 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1237 		usemirror = 0;
   1238 	} else
   1239 		if (RF_DEAD_DISK(disks[colData].status)) {
   1240 			usemirror = 1;
   1241 		} else
   1242 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1243 				/* Trust only the main disk */
   1244 				usemirror = 0;
   1245 			} else
   1246 				if (dataQueueLength < mirrorQueueLength) {
   1247 					usemirror = 0;
   1248 				} else
   1249 					if (mirrorQueueLength < dataQueueLength) {
   1250 						usemirror = 1;
   1251 					} else {
   1252 						/* queues are equal length. attempt
   1253 						 * cleverness. */
   1254 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1255 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1256 							usemirror = 0;
   1257 						} else {
   1258 							usemirror = 1;
   1259 						}
   1260 					}
   1261 
   1262 	if (usemirror) {
   1263 		/* use mirror (parity) disk, swap params 0 & 4 */
   1264 		tmp_pda = data_pda;
   1265 		node->params[0].p = mirror_pda;
   1266 		node->params[4].p = tmp_pda;
   1267 	} else {
   1268 		/* use data disk, leave param 0 unchanged */
   1269 	}
   1270 	/* printf("dataQueueLength %d, mirrorQueueLength
   1271 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1272 }
   1273 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1274 /*
   1275  * Do simple partitioning. This assumes that
   1276  * the data and parity disks are laid out identically.
   1277  */
   1278 void
   1279 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1280 {
   1281 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1282 	RF_RowCol_t colData, colMirror;
   1283 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1284 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1285 	RF_PhysDiskAddr_t *tmp_pda;
   1286 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1287 	int     usemirror;
   1288 
   1289 	/* return the [row col] of the disk with the shortest queue */
   1290 	colData = data_pda->col;
   1291 	colMirror = mirror_pda->col;
   1292 
   1293 	usemirror = 0;
   1294 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1295 		usemirror = 0;
   1296 	} else
   1297 		if (RF_DEAD_DISK(disks[colData].status)) {
   1298 			usemirror = 1;
   1299 		} else
   1300 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1301 				/* Trust only the main disk */
   1302 				usemirror = 0;
   1303 			} else
   1304 				if (data_pda->startSector <
   1305 				    (disks[colData].numBlocks / 2)) {
   1306 					usemirror = 0;
   1307 				} else {
   1308 					usemirror = 1;
   1309 				}
   1310 
   1311 	if (usemirror) {
   1312 		/* use mirror (parity) disk, swap params 0 & 4 */
   1313 		tmp_pda = data_pda;
   1314 		node->params[0].p = mirror_pda;
   1315 		node->params[4].p = tmp_pda;
   1316 	} else {
   1317 		/* use data disk, leave param 0 unchanged */
   1318 	}
   1319 }
   1320 #endif
   1321