rf_dagutils.c revision 1.41 1 /* $NetBSD: rf_dagutils.c,v 1.41 2004/03/20 04:22:05 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.41 2004/03/20 04:22:05 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /* The maximum number of nodes in a DAG is bounded by
70
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 (1 * 2 * layoutPtr->numParityCol) + 3
73
74 which is: 2*RF_MAXCOL+1*2+1*2*2+3
75
76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82
83
84 /******************************************************************************
85 *
86 * InitNode - initialize a dag node
87 *
88 * the size of the propList array is always the same as that of the
89 * successors array.
90 *
91 *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 int (*doFunc) (RF_DagNode_t *node),
95 int (*undoFunc) (RF_DagNode_t *node),
96 int (*wakeFunc) (RF_DagNode_t *node, int status),
97 int nSucc, int nAnte, int nParam, int nResult,
98 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
99 {
100 void **ptrs;
101 int nptrs;
102
103 if (nAnte > RF_MAX_ANTECEDENTS)
104 RF_PANIC();
105 node->status = initstatus;
106 node->commitNode = commit;
107 node->doFunc = doFunc;
108 node->undoFunc = undoFunc;
109 node->wakeFunc = wakeFunc;
110 node->numParams = nParam;
111 node->numResults = nResult;
112 node->numAntecedents = nAnte;
113 node->numAntDone = 0;
114 node->next = NULL;
115 /* node->list_next = NULL */ /* Don't touch this here!
116 It may already be
117 in use by the caller! */
118 node->numSuccedents = nSucc;
119 node->name = name;
120 node->dagHdr = hdr;
121 node->big_dag_ptrs = NULL;
122 node->big_dag_params = NULL;
123 node->visited = 0;
124
125 /* allocate all the pointers with one call to malloc */
126 nptrs = nSucc + nAnte + nResult + nSucc;
127
128 if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 /*
130 * The dag_ptrs field of the node is basically some scribble
131 * space to be used here. We could get rid of it, and always
132 * allocate the range of pointers, but that's expensive. So,
133 * we pick a "common case" size for the pointer cache. Hopefully,
134 * we'll find that:
135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 * only a little bit (least efficient case)
137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 * (wasted memory)
139 */
140 ptrs = (void **) node->dag_ptrs;
141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 node->big_dag_ptrs = rf_AllocDAGPCache();
143 ptrs = (void **) node->big_dag_ptrs;
144 } else {
145 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 (void **), alist);
147 }
148 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152
153 if (nParam) {
154 if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 node->params = (RF_DagParam_t *) node->dag_params;
156 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 node->big_dag_params = rf_AllocDAGPCache();
158 node->params = node->big_dag_params;
159 } else {
160 RF_MallocAndAdd(node->params,
161 nParam * sizeof(RF_DagParam_t),
162 (RF_DagParam_t *), alist);
163 }
164 } else {
165 node->params = NULL;
166 }
167 }
168
169
170
171 /******************************************************************************
172 *
173 * allocation and deallocation routines
174 *
175 *****************************************************************************/
176
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
179 {
180 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 RF_PhysDiskAddr_t *pda;
182 RF_DagNode_t *tmpnode;
183 RF_VoidPointerListElem_t *tmpiobuf;
184 RF_DagHeader_t *nextDag;
185
186 while (dag_h) {
187 nextDag = dag_h->next;
188 rf_FreeAllocList(dag_h->allocList);
189 for (asmap = dag_h->asmList; asmap;) {
190 t_asmap = asmap;
191 asmap = asmap->next;
192 rf_FreeAccessStripeMap(t_asmap);
193 }
194 while (dag_h->pda_cleanup_list) {
195 pda = dag_h->pda_cleanup_list;
196 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
197 rf_FreePhysDiskAddr(pda);
198 }
199 while (dag_h->iobufs) {
200 tmpiobuf = dag_h->iobufs;
201 dag_h->iobufs = dag_h->iobufs->next;
202 if (tmpiobuf->p)
203 rf_FreeIOBuffer(dag_h->raidPtr, tmpiobuf->p);
204 rf_FreeVPListElem(tmpiobuf);
205 }
206 while (dag_h->nodes) {
207 tmpnode = dag_h->nodes;
208 dag_h->nodes = dag_h->nodes->list_next;
209 rf_FreeDAGNode(tmpnode);
210 }
211 rf_FreeDAGHeader(dag_h);
212 dag_h = nextDag;
213 }
214 }
215
216 #define RF_MAX_FREE_DAGH 128
217 #define RF_MIN_FREE_DAGH 32
218
219 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
220 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
221
222 #define RF_MAX_FREE_DAGLIST 128
223 #define RF_MIN_FREE_DAGLIST 32
224
225 #define RF_MAX_FREE_DAGPCACHE 128
226 #define RF_MIN_FREE_DAGPCACHE 8
227
228 #define RF_MAX_FREE_FUNCLIST 128
229 #define RF_MIN_FREE_FUNCLIST 32
230
231 #define RF_MAX_FREE_BUFFERS 128
232 #define RF_MIN_FREE_BUFFERS 32
233
234 static void rf_ShutdownDAGs(void *);
235 static void
236 rf_ShutdownDAGs(void *ignored)
237 {
238 pool_destroy(&rf_pools.dagh);
239 pool_destroy(&rf_pools.dagnode);
240 pool_destroy(&rf_pools.daglist);
241 pool_destroy(&rf_pools.dagpcache);
242 pool_destroy(&rf_pools.funclist);
243 }
244
245 int
246 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
247 {
248
249 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
250 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
251 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
252 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
253 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
254 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
255 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
256 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
257 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
258 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
259 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
260
261 return (0);
262 }
263
264 RF_DagHeader_t *
265 rf_AllocDAGHeader()
266 {
267 RF_DagHeader_t *dh;
268
269 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
270 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
271 return (dh);
272 }
273
274 void
275 rf_FreeDAGHeader(RF_DagHeader_t * dh)
276 {
277 pool_put(&rf_pools.dagh, dh);
278 }
279
280 RF_DagNode_t *
281 rf_AllocDAGNode()
282 {
283 RF_DagNode_t *node;
284
285 node = pool_get(&rf_pools.dagnode, PR_WAITOK);
286 memset(node, 0, sizeof(RF_DagNode_t));
287 return (node);
288 }
289
290 void
291 rf_FreeDAGNode(RF_DagNode_t *node)
292 {
293 if (node->big_dag_ptrs) {
294 rf_FreeDAGPCache(node->big_dag_ptrs);
295 }
296 if (node->big_dag_params) {
297 rf_FreeDAGPCache(node->big_dag_params);
298 }
299 pool_put(&rf_pools.dagnode, node);
300 }
301
302 RF_DagList_t *
303 rf_AllocDAGList()
304 {
305 RF_DagList_t *dagList;
306
307 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
308 memset(dagList, 0, sizeof(RF_DagList_t));
309
310 return (dagList);
311 }
312
313 void
314 rf_FreeDAGList(RF_DagList_t *dagList)
315 {
316 pool_put(&rf_pools.daglist, dagList);
317 }
318
319 void *
320 rf_AllocDAGPCache()
321 {
322 void *p;
323 p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
324 memset(p, 0, RF_DAGPCACHE_SIZE);
325
326 return (p);
327 }
328
329 void
330 rf_FreeDAGPCache(void *p)
331 {
332 pool_put(&rf_pools.dagpcache, p);
333 }
334
335 RF_FuncList_t *
336 rf_AllocFuncList()
337 {
338 RF_FuncList_t *funcList;
339
340 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
341 memset(funcList, 0, sizeof(RF_FuncList_t));
342
343 return (funcList);
344 }
345
346 void
347 rf_FreeFuncList(RF_FuncList_t *funcList)
348 {
349 pool_put(&rf_pools.funclist, funcList);
350 }
351
352
353
354 /* allocates a buffer big enough to hold the data described by pda */
355 void *
356 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
357 RF_AllocListElem_t *allocList)
358 {
359 char *p;
360 p = rf_AllocIOBuffer(raidPtr, pda->numSector << raidPtr->logBytesPerSector);
361
362 if (allocList)
363 rf_AddToAllocList(allocList, p, pda->numSector << raidPtr->logBytesPerSector);
364 return ((void *) p);
365 }
366
367 void *
368 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
369 {
370 void *p;
371
372 RF_ASSERT(size <= (raidPtr->Layout.sectorsPerStripeUnit <<
373 raidPtr->logBytesPerSector));
374
375 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
376 raidPtr->logBytesPerSector,
377 M_RAIDFRAME, M_NOWAIT);
378 if (!p) {
379 RF_LOCK_MUTEX(raidPtr->mutex);
380 if (raidPtr->iobuf_count > 0) {
381 p = raidPtr->iobuf;
382 raidPtr->iobuf = raidPtr->iobuf->next;
383 raidPtr->iobuf_count--;
384 } else {
385 #ifdef DIAGNOSTIC
386 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
387 #endif
388 }
389 RF_UNLOCK_MUTEX(raidPtr->mutex);
390 if (!p) {
391 /* We didn't get a buffer... not much we can do other than wait,
392 and hope that someone frees up memory for us.. */
393 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
394 raidPtr->logBytesPerSector,
395 M_RAIDFRAME, M_WAITOK);
396 }
397 }
398 return (p);
399 }
400
401 void
402 rf_FreeIOBuffer(RF_Raid_t *raidPtr, void *p)
403 {
404 RF_LOCK_MUTEX(raidPtr->mutex);
405 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
406 ((RF_IOBufHeader_t *)p)->next = raidPtr->iobuf;
407 raidPtr->iobuf = p;
408 raidPtr->iobuf_count++;
409 } else {
410 free(p, M_RAIDFRAME);
411 }
412 RF_UNLOCK_MUTEX(raidPtr->mutex);
413 }
414
415
416
417 #if RF_DEBUG_VALIDATE_DAG
418 /******************************************************************************
419 *
420 * debug routines
421 *
422 *****************************************************************************/
423
424 char *
425 rf_NodeStatusString(RF_DagNode_t *node)
426 {
427 switch (node->status) {
428 case rf_wait:
429 return ("wait");
430 case rf_fired:
431 return ("fired");
432 case rf_good:
433 return ("good");
434 case rf_bad:
435 return ("bad");
436 default:
437 return ("?");
438 }
439 }
440
441 void
442 rf_PrintNodeInfoString(RF_DagNode_t *node)
443 {
444 RF_PhysDiskAddr_t *pda;
445 int (*df) (RF_DagNode_t *) = node->doFunc;
446 int i, lk, unlk;
447 void *bufPtr;
448
449 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
450 || (df == rf_DiskReadMirrorIdleFunc)
451 || (df == rf_DiskReadMirrorPartitionFunc)) {
452 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
453 bufPtr = (void *) node->params[1].p;
454 lk = 0;
455 unlk = 0;
456 RF_ASSERT(!(lk && unlk));
457 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
458 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
459 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
460 return;
461 }
462 if (df == rf_DiskUnlockFunc) {
463 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
464 lk = 0;
465 unlk = 0;
466 RF_ASSERT(!(lk && unlk));
467 printf("c %d %s\n", pda->col,
468 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
469 return;
470 }
471 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
472 || (df == rf_RecoveryXorFunc)) {
473 printf("result buf 0x%lx\n", (long) node->results[0]);
474 for (i = 0; i < node->numParams - 1; i += 2) {
475 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
476 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
477 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
478 (long) bufPtr, pda->col,
479 (long) pda->startSector, (int) pda->numSector);
480 }
481 return;
482 }
483 #if RF_INCLUDE_PARITYLOGGING > 0
484 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
485 for (i = 0; i < node->numParams - 1; i += 2) {
486 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
487 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
488 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
489 pda->col, (long) pda->startSector,
490 (int) pda->numSector, (long) bufPtr);
491 }
492 return;
493 }
494 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
495
496 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
497 printf("\n");
498 return;
499 }
500 printf("?\n");
501 }
502 #ifdef DEBUG
503 static void
504 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
505 {
506 char *anttype;
507 int i;
508
509 node->visited = (unvisited) ? 0 : 1;
510 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
511 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
512 node->numSuccedents, node->numSuccFired, node->numSuccDone,
513 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
514 for (i = 0; i < node->numSuccedents; i++) {
515 printf("%d%s", node->succedents[i]->nodeNum,
516 ((i == node->numSuccedents - 1) ? "\0" : " "));
517 }
518 printf("} A{");
519 for (i = 0; i < node->numAntecedents; i++) {
520 switch (node->antType[i]) {
521 case rf_trueData:
522 anttype = "T";
523 break;
524 case rf_antiData:
525 anttype = "A";
526 break;
527 case rf_outputData:
528 anttype = "O";
529 break;
530 case rf_control:
531 anttype = "C";
532 break;
533 default:
534 anttype = "?";
535 break;
536 }
537 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
538 }
539 printf("}; ");
540 rf_PrintNodeInfoString(node);
541 for (i = 0; i < node->numSuccedents; i++) {
542 if (node->succedents[i]->visited == unvisited)
543 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
544 }
545 }
546
547 static void
548 rf_PrintDAG(RF_DagHeader_t *dag_h)
549 {
550 int unvisited, i;
551 char *status;
552
553 /* set dag status */
554 switch (dag_h->status) {
555 case rf_enable:
556 status = "enable";
557 break;
558 case rf_rollForward:
559 status = "rollForward";
560 break;
561 case rf_rollBackward:
562 status = "rollBackward";
563 break;
564 default:
565 status = "illegal!";
566 break;
567 }
568 /* find out if visited bits are currently set or clear */
569 unvisited = dag_h->succedents[0]->visited;
570
571 printf("DAG type: %s\n", dag_h->creator);
572 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
573 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
574 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
575 for (i = 0; i < dag_h->numSuccedents; i++) {
576 printf("%d%s", dag_h->succedents[i]->nodeNum,
577 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
578 }
579 printf("};\n");
580 for (i = 0; i < dag_h->numSuccedents; i++) {
581 if (dag_h->succedents[i]->visited == unvisited)
582 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
583 }
584 }
585 #endif
586 /* assigns node numbers */
587 int
588 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
589 {
590 int unvisited, i, nnum;
591 RF_DagNode_t *node;
592
593 nnum = 0;
594 unvisited = dag_h->succedents[0]->visited;
595
596 dag_h->nodeNum = nnum++;
597 for (i = 0; i < dag_h->numSuccedents; i++) {
598 node = dag_h->succedents[i];
599 if (node->visited == unvisited) {
600 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
601 }
602 }
603 return (nnum);
604 }
605
606 int
607 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
608 {
609 int i;
610
611 node->visited = (unvisited) ? 0 : 1;
612
613 node->nodeNum = num++;
614 for (i = 0; i < node->numSuccedents; i++) {
615 if (node->succedents[i]->visited == unvisited) {
616 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
617 }
618 }
619 return (num);
620 }
621 /* set the header pointers in each node to "newptr" */
622 void
623 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
624 {
625 int i;
626 for (i = 0; i < dag_h->numSuccedents; i++)
627 if (dag_h->succedents[i]->dagHdr != newptr)
628 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
629 }
630
631 void
632 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
633 {
634 int i;
635 node->dagHdr = newptr;
636 for (i = 0; i < node->numSuccedents; i++)
637 if (node->succedents[i]->dagHdr != newptr)
638 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
639 }
640
641
642 void
643 rf_PrintDAGList(RF_DagHeader_t * dag_h)
644 {
645 int i = 0;
646
647 for (; dag_h; dag_h = dag_h->next) {
648 rf_AssignNodeNums(dag_h);
649 printf("\n\nDAG %d IN LIST:\n", i++);
650 rf_PrintDAG(dag_h);
651 }
652 }
653
654 static int
655 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
656 RF_DagNode_t **nodes, int unvisited)
657 {
658 int i, retcode = 0;
659
660 /* construct an array of node pointers indexed by node num */
661 node->visited = (unvisited) ? 0 : 1;
662 nodes[node->nodeNum] = node;
663
664 if (node->next != NULL) {
665 printf("INVALID DAG: next pointer in node is not NULL\n");
666 retcode = 1;
667 }
668 if (node->status != rf_wait) {
669 printf("INVALID DAG: Node status is not wait\n");
670 retcode = 1;
671 }
672 if (node->numAntDone != 0) {
673 printf("INVALID DAG: numAntDone is not zero\n");
674 retcode = 1;
675 }
676 if (node->doFunc == rf_TerminateFunc) {
677 if (node->numSuccedents != 0) {
678 printf("INVALID DAG: Terminator node has succedents\n");
679 retcode = 1;
680 }
681 } else {
682 if (node->numSuccedents == 0) {
683 printf("INVALID DAG: Non-terminator node has no succedents\n");
684 retcode = 1;
685 }
686 }
687 for (i = 0; i < node->numSuccedents; i++) {
688 if (!node->succedents[i]) {
689 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
690 retcode = 1;
691 }
692 scount[node->succedents[i]->nodeNum]++;
693 }
694 for (i = 0; i < node->numAntecedents; i++) {
695 if (!node->antecedents[i]) {
696 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
697 retcode = 1;
698 }
699 acount[node->antecedents[i]->nodeNum]++;
700 }
701 for (i = 0; i < node->numSuccedents; i++) {
702 if (node->succedents[i]->visited == unvisited) {
703 if (rf_ValidateBranch(node->succedents[i], scount,
704 acount, nodes, unvisited)) {
705 retcode = 1;
706 }
707 }
708 }
709 return (retcode);
710 }
711
712 static void
713 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
714 {
715 int i;
716
717 RF_ASSERT(node->visited == unvisited);
718 for (i = 0; i < node->numSuccedents; i++) {
719 if (node->succedents[i] == NULL) {
720 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
721 RF_ASSERT(0);
722 }
723 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
724 }
725 }
726 /* NOTE: never call this on a big dag, because it is exponential
727 * in execution time
728 */
729 static void
730 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
731 {
732 int i, unvisited;
733
734 unvisited = dag->succedents[0]->visited;
735
736 for (i = 0; i < dag->numSuccedents; i++) {
737 if (dag->succedents[i] == NULL) {
738 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
739 RF_ASSERT(0);
740 }
741 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
742 }
743 }
744 /* validate a DAG. _at entry_ verify that:
745 * -- numNodesCompleted is zero
746 * -- node queue is null
747 * -- dag status is rf_enable
748 * -- next pointer is null on every node
749 * -- all nodes have status wait
750 * -- numAntDone is zero in all nodes
751 * -- terminator node has zero successors
752 * -- no other node besides terminator has zero successors
753 * -- no successor or antecedent pointer in a node is NULL
754 * -- number of times that each node appears as a successor of another node
755 * is equal to the antecedent count on that node
756 * -- number of times that each node appears as an antecedent of another node
757 * is equal to the succedent count on that node
758 * -- what else?
759 */
760 int
761 rf_ValidateDAG(RF_DagHeader_t *dag_h)
762 {
763 int i, nodecount;
764 int *scount, *acount;/* per-node successor and antecedent counts */
765 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
766 int retcode = 0;
767 int unvisited;
768 int commitNodeCount = 0;
769
770 if (rf_validateVisitedDebug)
771 rf_ValidateVisitedBits(dag_h);
772
773 if (dag_h->numNodesCompleted != 0) {
774 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
775 retcode = 1;
776 goto validate_dag_bad;
777 }
778 if (dag_h->status != rf_enable) {
779 printf("INVALID DAG: not enabled\n");
780 retcode = 1;
781 goto validate_dag_bad;
782 }
783 if (dag_h->numCommits != 0) {
784 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
785 retcode = 1;
786 goto validate_dag_bad;
787 }
788 if (dag_h->numSuccedents != 1) {
789 /* currently, all dags must have only one succedent */
790 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
791 retcode = 1;
792 goto validate_dag_bad;
793 }
794 nodecount = rf_AssignNodeNums(dag_h);
795
796 unvisited = dag_h->succedents[0]->visited;
797
798 RF_Malloc(scount, nodecount * sizeof(int), (int *));
799 RF_Malloc(acount, nodecount * sizeof(int), (int *));
800 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
801 (RF_DagNode_t **));
802 for (i = 0; i < dag_h->numSuccedents; i++) {
803 if ((dag_h->succedents[i]->visited == unvisited)
804 && rf_ValidateBranch(dag_h->succedents[i], scount,
805 acount, nodes, unvisited)) {
806 retcode = 1;
807 }
808 }
809 /* start at 1 to skip the header node */
810 for (i = 1; i < nodecount; i++) {
811 if (nodes[i]->commitNode)
812 commitNodeCount++;
813 if (nodes[i]->doFunc == NULL) {
814 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
815 retcode = 1;
816 goto validate_dag_out;
817 }
818 if (nodes[i]->undoFunc == NULL) {
819 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
820 retcode = 1;
821 goto validate_dag_out;
822 }
823 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
824 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
825 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
826 retcode = 1;
827 goto validate_dag_out;
828 }
829 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
830 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
831 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
832 retcode = 1;
833 goto validate_dag_out;
834 }
835 }
836
837 if (dag_h->numCommitNodes != commitNodeCount) {
838 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
839 dag_h->numCommitNodes, commitNodeCount);
840 retcode = 1;
841 goto validate_dag_out;
842 }
843 validate_dag_out:
844 RF_Free(scount, nodecount * sizeof(int));
845 RF_Free(acount, nodecount * sizeof(int));
846 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
847 if (retcode)
848 rf_PrintDAGList(dag_h);
849
850 if (rf_validateVisitedDebug)
851 rf_ValidateVisitedBits(dag_h);
852
853 return (retcode);
854
855 validate_dag_bad:
856 rf_PrintDAGList(dag_h);
857 return (retcode);
858 }
859
860 #endif /* RF_DEBUG_VALIDATE_DAG */
861
862 /******************************************************************************
863 *
864 * misc construction routines
865 *
866 *****************************************************************************/
867
868 void
869 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
870 {
871 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
872 int fcol = raidPtr->reconControl->fcol;
873 int scol = raidPtr->reconControl->spareCol;
874 RF_PhysDiskAddr_t *pda;
875
876 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
877 for (pda = asmap->physInfo; pda; pda = pda->next) {
878 if (pda->col == fcol) {
879 #if RF_DEBUG_DAG
880 if (rf_dagDebug) {
881 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
882 pda->startSector)) {
883 RF_PANIC();
884 }
885 }
886 #endif
887 /* printf("Remapped data for large write\n"); */
888 if (ds) {
889 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
890 &pda->col, &pda->startSector, RF_REMAP);
891 } else {
892 pda->col = scol;
893 }
894 }
895 }
896 for (pda = asmap->parityInfo; pda; pda = pda->next) {
897 if (pda->col == fcol) {
898 #if RF_DEBUG_DAG
899 if (rf_dagDebug) {
900 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
901 RF_PANIC();
902 }
903 }
904 #endif
905 }
906 if (ds) {
907 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
908 } else {
909 pda->col = scol;
910 }
911 }
912 }
913
914
915 /* this routine allocates read buffers and generates stripe maps for the
916 * regions of the array from the start of the stripe to the start of the
917 * access, and from the end of the access to the end of the stripe. It also
918 * computes and returns the number of DAG nodes needed to read all this data.
919 * Note that this routine does the wrong thing if the access is fully
920 * contained within one stripe unit, so we RF_ASSERT against this case at the
921 * start.
922 *
923 * layoutPtr - in: layout information
924 * asmap - in: access stripe map
925 * dag_h - in: header of the dag to create
926 * new_asm_h - in: ptr to array of 2 headers. to be filled in
927 * nRodNodes - out: num nodes to be generated to read unaccessed data
928 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
929 */
930 void
931 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
932 RF_RaidLayout_t *layoutPtr,
933 RF_AccessStripeMap_t *asmap,
934 RF_DagHeader_t *dag_h,
935 RF_AccessStripeMapHeader_t **new_asm_h,
936 int *nRodNodes,
937 char **sosBuffer, char **eosBuffer,
938 RF_AllocListElem_t *allocList)
939 {
940 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
941 RF_SectorNum_t sosNumSector, eosNumSector;
942 RF_VoidPointerListElem_t *vple;
943
944 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
945 /* generate an access map for the region of the array from start of
946 * stripe to start of access */
947 new_asm_h[0] = new_asm_h[1] = NULL;
948 *nRodNodes = 0;
949 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
950 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
951 sosNumSector = asmap->raidAddress - sosRaidAddress;
952 *sosBuffer = rf_AllocIOBuffer(raidPtr, rf_RaidAddressToByte(raidPtr, sosNumSector));
953 vple = rf_AllocVPListElem();
954 vple->p = *sosBuffer;
955 vple->next = dag_h->iobufs;
956 dag_h->iobufs = vple;
957 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
958 new_asm_h[0]->next = dag_h->asmList;
959 dag_h->asmList = new_asm_h[0];
960 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
961
962 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
963 /* we're totally within one stripe here */
964 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
965 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
966 }
967 /* generate an access map for the region of the array from end of
968 * access to end of stripe */
969 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
970 eosRaidAddress = asmap->endRaidAddress;
971 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
972 *eosBuffer = rf_AllocIOBuffer(raidPtr, rf_RaidAddressToByte(raidPtr, eosNumSector));
973 vple = rf_AllocVPListElem();
974 vple->p = *eosBuffer;
975 vple->next = dag_h->iobufs;
976 dag_h->iobufs = vple;
977 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
978 new_asm_h[1]->next = dag_h->asmList;
979 dag_h->asmList = new_asm_h[1];
980 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
981
982 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
983 /* we're totally within one stripe here */
984 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
985 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
986 }
987 }
988
989
990
991 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
992 int
993 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
994 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
995 {
996 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
997 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
998 /* use -1 to be sure we stay within SU */
999 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1000 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1001 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1002 }
1003
1004
1005 /* GenerateFailedAccessASMs
1006 *
1007 * this routine figures out what portion of the stripe needs to be read
1008 * to effect the degraded read or write operation. It's primary function
1009 * is to identify everything required to recover the data, and then
1010 * eliminate anything that is already being accessed by the user.
1011 *
1012 * The main result is two new ASMs, one for the region from the start of the
1013 * stripe to the start of the access, and one for the region from the end of
1014 * the access to the end of the stripe. These ASMs describe everything that
1015 * needs to be read to effect the degraded access. Other results are:
1016 * nXorBufs -- the total number of buffers that need to be XORed together to
1017 * recover the lost data,
1018 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1019 * at entry, not allocated.
1020 * overlappingPDAs --
1021 * describes which of the non-failed PDAs in the user access
1022 * overlap data that needs to be read to effect recovery.
1023 * overlappingPDAs[i]==1 if and only if, neglecting the failed
1024 * PDA, the ith pda in the input asm overlaps data that needs
1025 * to be read for recovery.
1026 */
1027 /* in: asm - ASM for the actual access, one stripe only */
1028 /* in: failedPDA - which component of the access has failed */
1029 /* in: dag_h - header of the DAG we're going to create */
1030 /* out: new_asm_h - the two new ASMs */
1031 /* out: nXorBufs - the total number of xor bufs required */
1032 /* out: rpBufPtr - a buffer for the parity read */
1033 void
1034 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1035 RF_PhysDiskAddr_t *failedPDA,
1036 RF_DagHeader_t *dag_h,
1037 RF_AccessStripeMapHeader_t **new_asm_h,
1038 int *nXorBufs, char **rpBufPtr,
1039 char *overlappingPDAs,
1040 RF_AllocListElem_t *allocList)
1041 {
1042 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1043
1044 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1045 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1046 RF_PhysDiskAddr_t *pda;
1047 int foundit, i;
1048
1049 foundit = 0;
1050 /* first compute the following raid addresses: start of stripe,
1051 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1052 * MAX(end of access, end of failed SU), (eosStartAddr) end of
1053 * stripe (i.e. start of next stripe) (eosAddr) */
1054 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1055 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1056 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1057 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1058
1059 /* now generate access stripe maps for each of the above regions of
1060 * the stripe. Use a dummy (NULL) buf ptr for now */
1061
1062 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1063 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1064
1065 /* walk through the PDAs and range-restrict each SU to the region of
1066 * the SU touched on the failed PDA. also compute total data buffer
1067 * space requirements in this step. Ignore the parity for now. */
1068 /* Also count nodes to find out how many bufs need to be xored together */
1069 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1070 * case, 1 is for failed data */
1071
1072 if (new_asm_h[0]) {
1073 new_asm_h[0]->next = dag_h->asmList;
1074 dag_h->asmList = new_asm_h[0];
1075 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1076 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1077 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
1078 }
1079 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1080 }
1081 if (new_asm_h[1]) {
1082 new_asm_h[1]->next = dag_h->asmList;
1083 dag_h->asmList = new_asm_h[1];
1084 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1085 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1086 pda->bufPtr = rf_AllocBuffer(raidPtr, pda, allocList);
1087 }
1088 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1089 }
1090
1091 /* allocate a buffer for parity */
1092 if (rpBufPtr)
1093 *rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA, allocList);
1094
1095 /* the last step is to figure out how many more distinct buffers need
1096 * to get xor'd to produce the missing unit. there's one for each
1097 * user-data read node that overlaps the portion of the failed unit
1098 * being accessed */
1099
1100 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1101 if (pda == failedPDA) {
1102 i--;
1103 foundit = 1;
1104 continue;
1105 }
1106 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1107 overlappingPDAs[i] = 1;
1108 (*nXorBufs)++;
1109 }
1110 }
1111 if (!foundit) {
1112 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1113 RF_ASSERT(0);
1114 }
1115 #if RF_DEBUG_DAG
1116 if (rf_degDagDebug) {
1117 if (new_asm_h[0]) {
1118 printf("First asm:\n");
1119 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1120 }
1121 if (new_asm_h[1]) {
1122 printf("Second asm:\n");
1123 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1124 }
1125 }
1126 #endif
1127 }
1128
1129
1130 /* adjusts the offset and number of sectors in the destination pda so that
1131 * it covers at most the region of the SU covered by the source PDA. This
1132 * is exclusively a restriction: the number of sectors indicated by the
1133 * target PDA can only shrink.
1134 *
1135 * For example: s = sectors within SU indicated by source PDA
1136 * d = sectors within SU indicated by dest PDA
1137 * r = results, stored in dest PDA
1138 *
1139 * |--------------- one stripe unit ---------------------|
1140 * | sssssssssssssssssssssssssssssssss |
1141 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1142 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1143 *
1144 * Another example:
1145 *
1146 * |--------------- one stripe unit ---------------------|
1147 * | sssssssssssssssssssssssssssssssss |
1148 * | ddddddddddddddddddddddd |
1149 * | rrrrrrrrrrrrrrrr |
1150 *
1151 */
1152 void
1153 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1154 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1155 {
1156 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1157 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1158 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1159 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1160 * stay within SU */
1161 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1162 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1163
1164 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1165 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1166
1167 if (dobuffer)
1168 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1169 if (doraidaddr) {
1170 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1171 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1172 }
1173 }
1174
1175 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1176
1177 /*
1178 * Want the highest of these primes to be the largest one
1179 * less than the max expected number of columns (won't hurt
1180 * to be too small or too large, but won't be optimal, either)
1181 * --jimz
1182 */
1183 #define NLOWPRIMES 8
1184 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1185 /*****************************************************************************
1186 * compute the workload shift factor. (chained declustering)
1187 *
1188 * return nonzero if access should shift to secondary, otherwise,
1189 * access is to primary
1190 *****************************************************************************/
1191 int
1192 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1193 {
1194 /*
1195 * variables:
1196 * d = column of disk containing primary
1197 * f = column of failed disk
1198 * n = number of disks in array
1199 * sd = "shift distance" (number of columns that d is to the right of f)
1200 * v = numerator of redirection ratio
1201 * k = denominator of redirection ratio
1202 */
1203 RF_RowCol_t d, f, sd, n;
1204 int k, v, ret, i;
1205
1206 n = raidPtr->numCol;
1207
1208 /* assign column of primary copy to d */
1209 d = pda->col;
1210
1211 /* assign column of dead disk to f */
1212 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1213
1214 RF_ASSERT(f < n);
1215 RF_ASSERT(f != d);
1216
1217 sd = (f > d) ? (n + d - f) : (d - f);
1218 RF_ASSERT(sd < n);
1219
1220 /*
1221 * v of every k accesses should be redirected
1222 *
1223 * v/k := (n-1-sd)/(n-1)
1224 */
1225 v = (n - 1 - sd);
1226 k = (n - 1);
1227
1228 #if 1
1229 /*
1230 * XXX
1231 * Is this worth it?
1232 *
1233 * Now reduce the fraction, by repeatedly factoring
1234 * out primes (just like they teach in elementary school!)
1235 */
1236 for (i = 0; i < NLOWPRIMES; i++) {
1237 if (lowprimes[i] > v)
1238 break;
1239 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1240 v /= lowprimes[i];
1241 k /= lowprimes[i];
1242 }
1243 }
1244 #endif
1245
1246 raidPtr->hist_diskreq[d]++;
1247 if (raidPtr->hist_diskreq[d] > v) {
1248 ret = 0; /* do not redirect */
1249 } else {
1250 ret = 1; /* redirect */
1251 }
1252
1253 #if 0
1254 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1255 raidPtr->hist_diskreq[d]);
1256 #endif
1257
1258 if (raidPtr->hist_diskreq[d] >= k) {
1259 /* reset counter */
1260 raidPtr->hist_diskreq[d] = 0;
1261 }
1262 return (ret);
1263 }
1264 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1265
1266 /*
1267 * Disk selection routines
1268 */
1269
1270 /*
1271 * Selects the disk with the shortest queue from a mirror pair.
1272 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1273 * disk are counted as members of the "queue"
1274 */
1275 void
1276 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1277 {
1278 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1279 RF_RowCol_t colData, colMirror;
1280 int dataQueueLength, mirrorQueueLength, usemirror;
1281 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1282 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1283 RF_PhysDiskAddr_t *tmp_pda;
1284 RF_RaidDisk_t *disks = raidPtr->Disks;
1285 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1286
1287 /* return the [row col] of the disk with the shortest queue */
1288 colData = data_pda->col;
1289 colMirror = mirror_pda->col;
1290 dataQueue = &(dqs[colData]);
1291 mirrorQueue = &(dqs[colMirror]);
1292
1293 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1294 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1295 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1296 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1297 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1298 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1299 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1300 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1301 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1302 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1303 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1304 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1305
1306 usemirror = 0;
1307 if (RF_DEAD_DISK(disks[colMirror].status)) {
1308 usemirror = 0;
1309 } else
1310 if (RF_DEAD_DISK(disks[colData].status)) {
1311 usemirror = 1;
1312 } else
1313 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1314 /* Trust only the main disk */
1315 usemirror = 0;
1316 } else
1317 if (dataQueueLength < mirrorQueueLength) {
1318 usemirror = 0;
1319 } else
1320 if (mirrorQueueLength < dataQueueLength) {
1321 usemirror = 1;
1322 } else {
1323 /* queues are equal length. attempt
1324 * cleverness. */
1325 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1326 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1327 usemirror = 0;
1328 } else {
1329 usemirror = 1;
1330 }
1331 }
1332
1333 if (usemirror) {
1334 /* use mirror (parity) disk, swap params 0 & 4 */
1335 tmp_pda = data_pda;
1336 node->params[0].p = mirror_pda;
1337 node->params[4].p = tmp_pda;
1338 } else {
1339 /* use data disk, leave param 0 unchanged */
1340 }
1341 /* printf("dataQueueLength %d, mirrorQueueLength
1342 * %d\n",dataQueueLength, mirrorQueueLength); */
1343 }
1344 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1345 /*
1346 * Do simple partitioning. This assumes that
1347 * the data and parity disks are laid out identically.
1348 */
1349 void
1350 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1351 {
1352 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1353 RF_RowCol_t colData, colMirror;
1354 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1355 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1356 RF_PhysDiskAddr_t *tmp_pda;
1357 RF_RaidDisk_t *disks = raidPtr->Disks;
1358 int usemirror;
1359
1360 /* return the [row col] of the disk with the shortest queue */
1361 colData = data_pda->col;
1362 colMirror = mirror_pda->col;
1363
1364 usemirror = 0;
1365 if (RF_DEAD_DISK(disks[colMirror].status)) {
1366 usemirror = 0;
1367 } else
1368 if (RF_DEAD_DISK(disks[colData].status)) {
1369 usemirror = 1;
1370 } else
1371 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1372 /* Trust only the main disk */
1373 usemirror = 0;
1374 } else
1375 if (data_pda->startSector <
1376 (disks[colData].numBlocks / 2)) {
1377 usemirror = 0;
1378 } else {
1379 usemirror = 1;
1380 }
1381
1382 if (usemirror) {
1383 /* use mirror (parity) disk, swap params 0 & 4 */
1384 tmp_pda = data_pda;
1385 node->params[0].p = mirror_pda;
1386 node->params[4].p = tmp_pda;
1387 } else {
1388 /* use data disk, leave param 0 unchanged */
1389 }
1390 }
1391 #endif
1392