rf_dagutils.c revision 1.43 1 /* $NetBSD: rf_dagutils.c,v 1.43 2004/03/23 21:53:36 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.43 2004/03/23 21:53:36 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /* The maximum number of nodes in a DAG is bounded by
70
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 (1 * 2 * layoutPtr->numParityCol) + 3
73
74 which is: 2*RF_MAXCOL+1*2+1*2*2+3
75
76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82
83
84 /******************************************************************************
85 *
86 * InitNode - initialize a dag node
87 *
88 * the size of the propList array is always the same as that of the
89 * successors array.
90 *
91 *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 int (*doFunc) (RF_DagNode_t *node),
95 int (*undoFunc) (RF_DagNode_t *node),
96 int (*wakeFunc) (RF_DagNode_t *node, int status),
97 int nSucc, int nAnte, int nParam, int nResult,
98 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
99 {
100 void **ptrs;
101 int nptrs;
102
103 if (nAnte > RF_MAX_ANTECEDENTS)
104 RF_PANIC();
105 node->status = initstatus;
106 node->commitNode = commit;
107 node->doFunc = doFunc;
108 node->undoFunc = undoFunc;
109 node->wakeFunc = wakeFunc;
110 node->numParams = nParam;
111 node->numResults = nResult;
112 node->numAntecedents = nAnte;
113 node->numAntDone = 0;
114 node->next = NULL;
115 /* node->list_next = NULL */ /* Don't touch this here!
116 It may already be
117 in use by the caller! */
118 node->numSuccedents = nSucc;
119 node->name = name;
120 node->dagHdr = hdr;
121 node->big_dag_ptrs = NULL;
122 node->big_dag_params = NULL;
123 node->visited = 0;
124
125 /* allocate all the pointers with one call to malloc */
126 nptrs = nSucc + nAnte + nResult + nSucc;
127
128 if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 /*
130 * The dag_ptrs field of the node is basically some scribble
131 * space to be used here. We could get rid of it, and always
132 * allocate the range of pointers, but that's expensive. So,
133 * we pick a "common case" size for the pointer cache. Hopefully,
134 * we'll find that:
135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 * only a little bit (least efficient case)
137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 * (wasted memory)
139 */
140 ptrs = (void **) node->dag_ptrs;
141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 node->big_dag_ptrs = rf_AllocDAGPCache();
143 ptrs = (void **) node->big_dag_ptrs;
144 } else {
145 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 (void **), alist);
147 }
148 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152
153 if (nParam) {
154 if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 node->params = (RF_DagParam_t *) node->dag_params;
156 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 node->big_dag_params = rf_AllocDAGPCache();
158 node->params = node->big_dag_params;
159 } else {
160 RF_MallocAndAdd(node->params,
161 nParam * sizeof(RF_DagParam_t),
162 (RF_DagParam_t *), alist);
163 }
164 } else {
165 node->params = NULL;
166 }
167 }
168
169
170
171 /******************************************************************************
172 *
173 * allocation and deallocation routines
174 *
175 *****************************************************************************/
176
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
179 {
180 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 RF_PhysDiskAddr_t *pda;
182 RF_DagNode_t *tmpnode;
183 RF_VoidPointerListElem_t *tmpiobuf;
184 RF_DagHeader_t *nextDag;
185
186 while (dag_h) {
187 nextDag = dag_h->next;
188 rf_FreeAllocList(dag_h->allocList);
189 for (asmap = dag_h->asmList; asmap;) {
190 t_asmap = asmap;
191 asmap = asmap->next;
192 rf_FreeAccessStripeMap(t_asmap);
193 }
194 while (dag_h->pda_cleanup_list) {
195 pda = dag_h->pda_cleanup_list;
196 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
197 rf_FreePhysDiskAddr(pda);
198 }
199 while (dag_h->iobufs) {
200 tmpiobuf = dag_h->iobufs;
201 dag_h->iobufs = dag_h->iobufs->next;
202 if (tmpiobuf->p)
203 rf_FreeIOBuffer(dag_h->raidPtr, tmpiobuf->p);
204 rf_FreeVPListElem(tmpiobuf);
205 }
206 while (dag_h->nodes) {
207 tmpnode = dag_h->nodes;
208 dag_h->nodes = dag_h->nodes->list_next;
209 rf_FreeDAGNode(tmpnode);
210 }
211 rf_FreeDAGHeader(dag_h);
212 dag_h = nextDag;
213 }
214 }
215
216 #define RF_MAX_FREE_DAGH 128
217 #define RF_MIN_FREE_DAGH 32
218
219 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
220 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
221
222 #define RF_MAX_FREE_DAGLIST 128
223 #define RF_MIN_FREE_DAGLIST 32
224
225 #define RF_MAX_FREE_DAGPCACHE 128
226 #define RF_MIN_FREE_DAGPCACHE 8
227
228 #define RF_MAX_FREE_FUNCLIST 128
229 #define RF_MIN_FREE_FUNCLIST 32
230
231 #define RF_MAX_FREE_BUFFERS 128
232 #define RF_MIN_FREE_BUFFERS 32
233
234 static void rf_ShutdownDAGs(void *);
235 static void
236 rf_ShutdownDAGs(void *ignored)
237 {
238 pool_destroy(&rf_pools.dagh);
239 pool_destroy(&rf_pools.dagnode);
240 pool_destroy(&rf_pools.daglist);
241 pool_destroy(&rf_pools.dagpcache);
242 pool_destroy(&rf_pools.funclist);
243 }
244
245 int
246 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
247 {
248
249 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
250 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
251 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
252 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
253 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
254 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
255 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
256 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
257 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
258 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
259 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
260
261 return (0);
262 }
263
264 RF_DagHeader_t *
265 rf_AllocDAGHeader()
266 {
267 RF_DagHeader_t *dh;
268
269 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
270 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
271 return (dh);
272 }
273
274 void
275 rf_FreeDAGHeader(RF_DagHeader_t * dh)
276 {
277 pool_put(&rf_pools.dagh, dh);
278 }
279
280 RF_DagNode_t *
281 rf_AllocDAGNode()
282 {
283 RF_DagNode_t *node;
284
285 node = pool_get(&rf_pools.dagnode, PR_WAITOK);
286 memset(node, 0, sizeof(RF_DagNode_t));
287 return (node);
288 }
289
290 void
291 rf_FreeDAGNode(RF_DagNode_t *node)
292 {
293 if (node->big_dag_ptrs) {
294 rf_FreeDAGPCache(node->big_dag_ptrs);
295 }
296 if (node->big_dag_params) {
297 rf_FreeDAGPCache(node->big_dag_params);
298 }
299 pool_put(&rf_pools.dagnode, node);
300 }
301
302 RF_DagList_t *
303 rf_AllocDAGList()
304 {
305 RF_DagList_t *dagList;
306
307 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
308 memset(dagList, 0, sizeof(RF_DagList_t));
309
310 return (dagList);
311 }
312
313 void
314 rf_FreeDAGList(RF_DagList_t *dagList)
315 {
316 pool_put(&rf_pools.daglist, dagList);
317 }
318
319 void *
320 rf_AllocDAGPCache()
321 {
322 void *p;
323 p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
324 memset(p, 0, RF_DAGPCACHE_SIZE);
325
326 return (p);
327 }
328
329 void
330 rf_FreeDAGPCache(void *p)
331 {
332 pool_put(&rf_pools.dagpcache, p);
333 }
334
335 RF_FuncList_t *
336 rf_AllocFuncList()
337 {
338 RF_FuncList_t *funcList;
339
340 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
341 memset(funcList, 0, sizeof(RF_FuncList_t));
342
343 return (funcList);
344 }
345
346 void
347 rf_FreeFuncList(RF_FuncList_t *funcList)
348 {
349 pool_put(&rf_pools.funclist, funcList);
350 }
351
352
353
354 /* allocates a buffer big enough to hold the data described by the
355 caller (ie. the data of the associated PDA). Glue this buffer
356 into our dag_h cleanup structure. */
357
358 void *
359 rf_AllocBuffer(RF_Raid_t *raidPtr, int size, RF_AllocListElem_t * allocList)
360 {
361 void *p;
362
363 RF_MallocAndAdd(p, size, (char *), allocList);
364 return ((void *) p);
365 }
366
367
368 void *
369 rf_AllocBuffer2(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
370 {
371 RF_VoidPointerListElem_t *vple;
372 void *p;
373
374 p = rf_AllocIOBuffer(raidPtr, size);
375 vple = rf_AllocVPListElem();
376 vple->p = p;
377 vple->next = dag_h->iobufs;
378 dag_h->iobufs = vple;
379
380 return (p);
381 }
382
383 void *
384 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
385 {
386 void *p;
387
388 RF_ASSERT(size <= (raidPtr->Layout.sectorsPerStripeUnit <<
389 raidPtr->logBytesPerSector));
390
391 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
392 raidPtr->logBytesPerSector,
393 M_RAIDFRAME, M_NOWAIT);
394 if (!p) {
395 RF_LOCK_MUTEX(raidPtr->mutex);
396 if (raidPtr->iobuf_count > 0) {
397 p = raidPtr->iobuf;
398 raidPtr->iobuf = raidPtr->iobuf->next;
399 raidPtr->iobuf_count--;
400 } else {
401 #ifdef DIAGNOSTIC
402 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
403 #endif
404 }
405 RF_UNLOCK_MUTEX(raidPtr->mutex);
406 if (!p) {
407 /* We didn't get a buffer... not much we can do other than wait,
408 and hope that someone frees up memory for us.. */
409 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
410 raidPtr->logBytesPerSector,
411 M_RAIDFRAME, M_WAITOK);
412 }
413 }
414 return (p);
415 }
416
417 void
418 rf_FreeIOBuffer(RF_Raid_t *raidPtr, void *p)
419 {
420 RF_LOCK_MUTEX(raidPtr->mutex);
421 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
422 ((RF_IOBufHeader_t *)p)->next = raidPtr->iobuf;
423 raidPtr->iobuf = p;
424 raidPtr->iobuf_count++;
425 } else {
426 free(p, M_RAIDFRAME);
427 }
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 }
430
431
432
433 #if RF_DEBUG_VALIDATE_DAG
434 /******************************************************************************
435 *
436 * debug routines
437 *
438 *****************************************************************************/
439
440 char *
441 rf_NodeStatusString(RF_DagNode_t *node)
442 {
443 switch (node->status) {
444 case rf_wait:
445 return ("wait");
446 case rf_fired:
447 return ("fired");
448 case rf_good:
449 return ("good");
450 case rf_bad:
451 return ("bad");
452 default:
453 return ("?");
454 }
455 }
456
457 void
458 rf_PrintNodeInfoString(RF_DagNode_t *node)
459 {
460 RF_PhysDiskAddr_t *pda;
461 int (*df) (RF_DagNode_t *) = node->doFunc;
462 int i, lk, unlk;
463 void *bufPtr;
464
465 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
466 || (df == rf_DiskReadMirrorIdleFunc)
467 || (df == rf_DiskReadMirrorPartitionFunc)) {
468 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
469 bufPtr = (void *) node->params[1].p;
470 lk = 0;
471 unlk = 0;
472 RF_ASSERT(!(lk && unlk));
473 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
474 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
475 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
476 return;
477 }
478 if (df == rf_DiskUnlockFunc) {
479 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
480 lk = 0;
481 unlk = 0;
482 RF_ASSERT(!(lk && unlk));
483 printf("c %d %s\n", pda->col,
484 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
485 return;
486 }
487 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
488 || (df == rf_RecoveryXorFunc)) {
489 printf("result buf 0x%lx\n", (long) node->results[0]);
490 for (i = 0; i < node->numParams - 1; i += 2) {
491 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
492 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
493 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
494 (long) bufPtr, pda->col,
495 (long) pda->startSector, (int) pda->numSector);
496 }
497 return;
498 }
499 #if RF_INCLUDE_PARITYLOGGING > 0
500 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
501 for (i = 0; i < node->numParams - 1; i += 2) {
502 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
503 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
504 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
505 pda->col, (long) pda->startSector,
506 (int) pda->numSector, (long) bufPtr);
507 }
508 return;
509 }
510 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
511
512 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
513 printf("\n");
514 return;
515 }
516 printf("?\n");
517 }
518 #ifdef DEBUG
519 static void
520 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
521 {
522 char *anttype;
523 int i;
524
525 node->visited = (unvisited) ? 0 : 1;
526 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
527 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
528 node->numSuccedents, node->numSuccFired, node->numSuccDone,
529 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
530 for (i = 0; i < node->numSuccedents; i++) {
531 printf("%d%s", node->succedents[i]->nodeNum,
532 ((i == node->numSuccedents - 1) ? "\0" : " "));
533 }
534 printf("} A{");
535 for (i = 0; i < node->numAntecedents; i++) {
536 switch (node->antType[i]) {
537 case rf_trueData:
538 anttype = "T";
539 break;
540 case rf_antiData:
541 anttype = "A";
542 break;
543 case rf_outputData:
544 anttype = "O";
545 break;
546 case rf_control:
547 anttype = "C";
548 break;
549 default:
550 anttype = "?";
551 break;
552 }
553 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
554 }
555 printf("}; ");
556 rf_PrintNodeInfoString(node);
557 for (i = 0; i < node->numSuccedents; i++) {
558 if (node->succedents[i]->visited == unvisited)
559 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
560 }
561 }
562
563 static void
564 rf_PrintDAG(RF_DagHeader_t *dag_h)
565 {
566 int unvisited, i;
567 char *status;
568
569 /* set dag status */
570 switch (dag_h->status) {
571 case rf_enable:
572 status = "enable";
573 break;
574 case rf_rollForward:
575 status = "rollForward";
576 break;
577 case rf_rollBackward:
578 status = "rollBackward";
579 break;
580 default:
581 status = "illegal!";
582 break;
583 }
584 /* find out if visited bits are currently set or clear */
585 unvisited = dag_h->succedents[0]->visited;
586
587 printf("DAG type: %s\n", dag_h->creator);
588 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
589 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
590 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
591 for (i = 0; i < dag_h->numSuccedents; i++) {
592 printf("%d%s", dag_h->succedents[i]->nodeNum,
593 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
594 }
595 printf("};\n");
596 for (i = 0; i < dag_h->numSuccedents; i++) {
597 if (dag_h->succedents[i]->visited == unvisited)
598 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
599 }
600 }
601 #endif
602 /* assigns node numbers */
603 int
604 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
605 {
606 int unvisited, i, nnum;
607 RF_DagNode_t *node;
608
609 nnum = 0;
610 unvisited = dag_h->succedents[0]->visited;
611
612 dag_h->nodeNum = nnum++;
613 for (i = 0; i < dag_h->numSuccedents; i++) {
614 node = dag_h->succedents[i];
615 if (node->visited == unvisited) {
616 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
617 }
618 }
619 return (nnum);
620 }
621
622 int
623 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
624 {
625 int i;
626
627 node->visited = (unvisited) ? 0 : 1;
628
629 node->nodeNum = num++;
630 for (i = 0; i < node->numSuccedents; i++) {
631 if (node->succedents[i]->visited == unvisited) {
632 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
633 }
634 }
635 return (num);
636 }
637 /* set the header pointers in each node to "newptr" */
638 void
639 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
640 {
641 int i;
642 for (i = 0; i < dag_h->numSuccedents; i++)
643 if (dag_h->succedents[i]->dagHdr != newptr)
644 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
645 }
646
647 void
648 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
649 {
650 int i;
651 node->dagHdr = newptr;
652 for (i = 0; i < node->numSuccedents; i++)
653 if (node->succedents[i]->dagHdr != newptr)
654 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
655 }
656
657
658 void
659 rf_PrintDAGList(RF_DagHeader_t * dag_h)
660 {
661 int i = 0;
662
663 for (; dag_h; dag_h = dag_h->next) {
664 rf_AssignNodeNums(dag_h);
665 printf("\n\nDAG %d IN LIST:\n", i++);
666 rf_PrintDAG(dag_h);
667 }
668 }
669
670 static int
671 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
672 RF_DagNode_t **nodes, int unvisited)
673 {
674 int i, retcode = 0;
675
676 /* construct an array of node pointers indexed by node num */
677 node->visited = (unvisited) ? 0 : 1;
678 nodes[node->nodeNum] = node;
679
680 if (node->next != NULL) {
681 printf("INVALID DAG: next pointer in node is not NULL\n");
682 retcode = 1;
683 }
684 if (node->status != rf_wait) {
685 printf("INVALID DAG: Node status is not wait\n");
686 retcode = 1;
687 }
688 if (node->numAntDone != 0) {
689 printf("INVALID DAG: numAntDone is not zero\n");
690 retcode = 1;
691 }
692 if (node->doFunc == rf_TerminateFunc) {
693 if (node->numSuccedents != 0) {
694 printf("INVALID DAG: Terminator node has succedents\n");
695 retcode = 1;
696 }
697 } else {
698 if (node->numSuccedents == 0) {
699 printf("INVALID DAG: Non-terminator node has no succedents\n");
700 retcode = 1;
701 }
702 }
703 for (i = 0; i < node->numSuccedents; i++) {
704 if (!node->succedents[i]) {
705 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
706 retcode = 1;
707 }
708 scount[node->succedents[i]->nodeNum]++;
709 }
710 for (i = 0; i < node->numAntecedents; i++) {
711 if (!node->antecedents[i]) {
712 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
713 retcode = 1;
714 }
715 acount[node->antecedents[i]->nodeNum]++;
716 }
717 for (i = 0; i < node->numSuccedents; i++) {
718 if (node->succedents[i]->visited == unvisited) {
719 if (rf_ValidateBranch(node->succedents[i], scount,
720 acount, nodes, unvisited)) {
721 retcode = 1;
722 }
723 }
724 }
725 return (retcode);
726 }
727
728 static void
729 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
730 {
731 int i;
732
733 RF_ASSERT(node->visited == unvisited);
734 for (i = 0; i < node->numSuccedents; i++) {
735 if (node->succedents[i] == NULL) {
736 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
737 RF_ASSERT(0);
738 }
739 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
740 }
741 }
742 /* NOTE: never call this on a big dag, because it is exponential
743 * in execution time
744 */
745 static void
746 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
747 {
748 int i, unvisited;
749
750 unvisited = dag->succedents[0]->visited;
751
752 for (i = 0; i < dag->numSuccedents; i++) {
753 if (dag->succedents[i] == NULL) {
754 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
755 RF_ASSERT(0);
756 }
757 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
758 }
759 }
760 /* validate a DAG. _at entry_ verify that:
761 * -- numNodesCompleted is zero
762 * -- node queue is null
763 * -- dag status is rf_enable
764 * -- next pointer is null on every node
765 * -- all nodes have status wait
766 * -- numAntDone is zero in all nodes
767 * -- terminator node has zero successors
768 * -- no other node besides terminator has zero successors
769 * -- no successor or antecedent pointer in a node is NULL
770 * -- number of times that each node appears as a successor of another node
771 * is equal to the antecedent count on that node
772 * -- number of times that each node appears as an antecedent of another node
773 * is equal to the succedent count on that node
774 * -- what else?
775 */
776 int
777 rf_ValidateDAG(RF_DagHeader_t *dag_h)
778 {
779 int i, nodecount;
780 int *scount, *acount;/* per-node successor and antecedent counts */
781 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
782 int retcode = 0;
783 int unvisited;
784 int commitNodeCount = 0;
785
786 if (rf_validateVisitedDebug)
787 rf_ValidateVisitedBits(dag_h);
788
789 if (dag_h->numNodesCompleted != 0) {
790 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
791 retcode = 1;
792 goto validate_dag_bad;
793 }
794 if (dag_h->status != rf_enable) {
795 printf("INVALID DAG: not enabled\n");
796 retcode = 1;
797 goto validate_dag_bad;
798 }
799 if (dag_h->numCommits != 0) {
800 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
801 retcode = 1;
802 goto validate_dag_bad;
803 }
804 if (dag_h->numSuccedents != 1) {
805 /* currently, all dags must have only one succedent */
806 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
807 retcode = 1;
808 goto validate_dag_bad;
809 }
810 nodecount = rf_AssignNodeNums(dag_h);
811
812 unvisited = dag_h->succedents[0]->visited;
813
814 RF_Malloc(scount, nodecount * sizeof(int), (int *));
815 RF_Malloc(acount, nodecount * sizeof(int), (int *));
816 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
817 (RF_DagNode_t **));
818 for (i = 0; i < dag_h->numSuccedents; i++) {
819 if ((dag_h->succedents[i]->visited == unvisited)
820 && rf_ValidateBranch(dag_h->succedents[i], scount,
821 acount, nodes, unvisited)) {
822 retcode = 1;
823 }
824 }
825 /* start at 1 to skip the header node */
826 for (i = 1; i < nodecount; i++) {
827 if (nodes[i]->commitNode)
828 commitNodeCount++;
829 if (nodes[i]->doFunc == NULL) {
830 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
831 retcode = 1;
832 goto validate_dag_out;
833 }
834 if (nodes[i]->undoFunc == NULL) {
835 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
836 retcode = 1;
837 goto validate_dag_out;
838 }
839 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
840 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
841 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
842 retcode = 1;
843 goto validate_dag_out;
844 }
845 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
846 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
847 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
848 retcode = 1;
849 goto validate_dag_out;
850 }
851 }
852
853 if (dag_h->numCommitNodes != commitNodeCount) {
854 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
855 dag_h->numCommitNodes, commitNodeCount);
856 retcode = 1;
857 goto validate_dag_out;
858 }
859 validate_dag_out:
860 RF_Free(scount, nodecount * sizeof(int));
861 RF_Free(acount, nodecount * sizeof(int));
862 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
863 if (retcode)
864 rf_PrintDAGList(dag_h);
865
866 if (rf_validateVisitedDebug)
867 rf_ValidateVisitedBits(dag_h);
868
869 return (retcode);
870
871 validate_dag_bad:
872 rf_PrintDAGList(dag_h);
873 return (retcode);
874 }
875
876 #endif /* RF_DEBUG_VALIDATE_DAG */
877
878 /******************************************************************************
879 *
880 * misc construction routines
881 *
882 *****************************************************************************/
883
884 void
885 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
886 {
887 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
888 int fcol = raidPtr->reconControl->fcol;
889 int scol = raidPtr->reconControl->spareCol;
890 RF_PhysDiskAddr_t *pda;
891
892 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
893 for (pda = asmap->physInfo; pda; pda = pda->next) {
894 if (pda->col == fcol) {
895 #if RF_DEBUG_DAG
896 if (rf_dagDebug) {
897 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
898 pda->startSector)) {
899 RF_PANIC();
900 }
901 }
902 #endif
903 /* printf("Remapped data for large write\n"); */
904 if (ds) {
905 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
906 &pda->col, &pda->startSector, RF_REMAP);
907 } else {
908 pda->col = scol;
909 }
910 }
911 }
912 for (pda = asmap->parityInfo; pda; pda = pda->next) {
913 if (pda->col == fcol) {
914 #if RF_DEBUG_DAG
915 if (rf_dagDebug) {
916 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
917 RF_PANIC();
918 }
919 }
920 #endif
921 }
922 if (ds) {
923 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
924 } else {
925 pda->col = scol;
926 }
927 }
928 }
929
930
931 /* this routine allocates read buffers and generates stripe maps for the
932 * regions of the array from the start of the stripe to the start of the
933 * access, and from the end of the access to the end of the stripe. It also
934 * computes and returns the number of DAG nodes needed to read all this data.
935 * Note that this routine does the wrong thing if the access is fully
936 * contained within one stripe unit, so we RF_ASSERT against this case at the
937 * start.
938 *
939 * layoutPtr - in: layout information
940 * asmap - in: access stripe map
941 * dag_h - in: header of the dag to create
942 * new_asm_h - in: ptr to array of 2 headers. to be filled in
943 * nRodNodes - out: num nodes to be generated to read unaccessed data
944 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
945 */
946 void
947 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
948 RF_RaidLayout_t *layoutPtr,
949 RF_AccessStripeMap_t *asmap,
950 RF_DagHeader_t *dag_h,
951 RF_AccessStripeMapHeader_t **new_asm_h,
952 int *nRodNodes,
953 char **sosBuffer, char **eosBuffer,
954 RF_AllocListElem_t *allocList)
955 {
956 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
957 RF_SectorNum_t sosNumSector, eosNumSector;
958
959 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
960 /* generate an access map for the region of the array from start of
961 * stripe to start of access */
962 new_asm_h[0] = new_asm_h[1] = NULL;
963 *nRodNodes = 0;
964 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
965 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
966 sosNumSector = asmap->raidAddress - sosRaidAddress;
967 *sosBuffer = rf_AllocBuffer(raidPtr, rf_RaidAddressToByte(raidPtr, sosNumSector), allocList);
968 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
969 new_asm_h[0]->next = dag_h->asmList;
970 dag_h->asmList = new_asm_h[0];
971 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
972
973 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
974 /* we're totally within one stripe here */
975 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
976 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
977 }
978 /* generate an access map for the region of the array from end of
979 * access to end of stripe */
980 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
981 eosRaidAddress = asmap->endRaidAddress;
982 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
983 *eosBuffer = rf_AllocBuffer(raidPtr, rf_RaidAddressToByte(raidPtr, eosNumSector), allocList);
984 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
985 new_asm_h[1]->next = dag_h->asmList;
986 dag_h->asmList = new_asm_h[1];
987 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
988
989 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
990 /* we're totally within one stripe here */
991 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
992 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
993 }
994 }
995
996
997
998 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
999 int
1000 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1001 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1002 {
1003 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1004 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1005 /* use -1 to be sure we stay within SU */
1006 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1007 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1008 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1009 }
1010
1011
1012 /* GenerateFailedAccessASMs
1013 *
1014 * this routine figures out what portion of the stripe needs to be read
1015 * to effect the degraded read or write operation. It's primary function
1016 * is to identify everything required to recover the data, and then
1017 * eliminate anything that is already being accessed by the user.
1018 *
1019 * The main result is two new ASMs, one for the region from the start of the
1020 * stripe to the start of the access, and one for the region from the end of
1021 * the access to the end of the stripe. These ASMs describe everything that
1022 * needs to be read to effect the degraded access. Other results are:
1023 * nXorBufs -- the total number of buffers that need to be XORed together to
1024 * recover the lost data,
1025 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1026 * at entry, not allocated.
1027 * overlappingPDAs --
1028 * describes which of the non-failed PDAs in the user access
1029 * overlap data that needs to be read to effect recovery.
1030 * overlappingPDAs[i]==1 if and only if, neglecting the failed
1031 * PDA, the ith pda in the input asm overlaps data that needs
1032 * to be read for recovery.
1033 */
1034 /* in: asm - ASM for the actual access, one stripe only */
1035 /* in: failedPDA - which component of the access has failed */
1036 /* in: dag_h - header of the DAG we're going to create */
1037 /* out: new_asm_h - the two new ASMs */
1038 /* out: nXorBufs - the total number of xor bufs required */
1039 /* out: rpBufPtr - a buffer for the parity read */
1040 void
1041 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1042 RF_PhysDiskAddr_t *failedPDA,
1043 RF_DagHeader_t *dag_h,
1044 RF_AccessStripeMapHeader_t **new_asm_h,
1045 int *nXorBufs, char **rpBufPtr,
1046 char *overlappingPDAs,
1047 RF_AllocListElem_t *allocList)
1048 {
1049 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1050
1051 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1052 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1053 RF_PhysDiskAddr_t *pda;
1054 int foundit, i;
1055
1056 foundit = 0;
1057 /* first compute the following raid addresses: start of stripe,
1058 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1059 * MAX(end of access, end of failed SU), (eosStartAddr) end of
1060 * stripe (i.e. start of next stripe) (eosAddr) */
1061 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1062 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1063 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1064 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1065
1066 /* now generate access stripe maps for each of the above regions of
1067 * the stripe. Use a dummy (NULL) buf ptr for now */
1068
1069 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1070 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1071
1072 /* walk through the PDAs and range-restrict each SU to the region of
1073 * the SU touched on the failed PDA. also compute total data buffer
1074 * space requirements in this step. Ignore the parity for now. */
1075 /* Also count nodes to find out how many bufs need to be xored together */
1076 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1077 * case, 1 is for failed data */
1078
1079 if (new_asm_h[0]) {
1080 new_asm_h[0]->next = dag_h->asmList;
1081 dag_h->asmList = new_asm_h[0];
1082 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1083 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1084 pda->bufPtr = rf_AllocBuffer(raidPtr, pda->numSector << raidPtr->logBytesPerSector, allocList);
1085 }
1086 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1087 }
1088 if (new_asm_h[1]) {
1089 new_asm_h[1]->next = dag_h->asmList;
1090 dag_h->asmList = new_asm_h[1];
1091 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1092 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1093 pda->bufPtr = rf_AllocBuffer(raidPtr, pda->numSector << raidPtr->logBytesPerSector, allocList);
1094 }
1095 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1096 }
1097
1098 /* allocate a buffer for parity */
1099 if (rpBufPtr)
1100 *rpBufPtr = rf_AllocBuffer(raidPtr, failedPDA->numSector << raidPtr->logBytesPerSector, allocList);
1101
1102 /* the last step is to figure out how many more distinct buffers need
1103 * to get xor'd to produce the missing unit. there's one for each
1104 * user-data read node that overlaps the portion of the failed unit
1105 * being accessed */
1106
1107 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1108 if (pda == failedPDA) {
1109 i--;
1110 foundit = 1;
1111 continue;
1112 }
1113 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1114 overlappingPDAs[i] = 1;
1115 (*nXorBufs)++;
1116 }
1117 }
1118 if (!foundit) {
1119 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1120 RF_ASSERT(0);
1121 }
1122 #if RF_DEBUG_DAG
1123 if (rf_degDagDebug) {
1124 if (new_asm_h[0]) {
1125 printf("First asm:\n");
1126 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1127 }
1128 if (new_asm_h[1]) {
1129 printf("Second asm:\n");
1130 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1131 }
1132 }
1133 #endif
1134 }
1135
1136
1137 /* adjusts the offset and number of sectors in the destination pda so that
1138 * it covers at most the region of the SU covered by the source PDA. This
1139 * is exclusively a restriction: the number of sectors indicated by the
1140 * target PDA can only shrink.
1141 *
1142 * For example: s = sectors within SU indicated by source PDA
1143 * d = sectors within SU indicated by dest PDA
1144 * r = results, stored in dest PDA
1145 *
1146 * |--------------- one stripe unit ---------------------|
1147 * | sssssssssssssssssssssssssssssssss |
1148 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1149 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1150 *
1151 * Another example:
1152 *
1153 * |--------------- one stripe unit ---------------------|
1154 * | sssssssssssssssssssssssssssssssss |
1155 * | ddddddddddddddddddddddd |
1156 * | rrrrrrrrrrrrrrrr |
1157 *
1158 */
1159 void
1160 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1161 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1162 {
1163 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1164 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1165 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1166 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1167 * stay within SU */
1168 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1169 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1170
1171 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1172 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1173
1174 if (dobuffer)
1175 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1176 if (doraidaddr) {
1177 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1178 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1179 }
1180 }
1181
1182 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1183
1184 /*
1185 * Want the highest of these primes to be the largest one
1186 * less than the max expected number of columns (won't hurt
1187 * to be too small or too large, but won't be optimal, either)
1188 * --jimz
1189 */
1190 #define NLOWPRIMES 8
1191 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1192 /*****************************************************************************
1193 * compute the workload shift factor. (chained declustering)
1194 *
1195 * return nonzero if access should shift to secondary, otherwise,
1196 * access is to primary
1197 *****************************************************************************/
1198 int
1199 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1200 {
1201 /*
1202 * variables:
1203 * d = column of disk containing primary
1204 * f = column of failed disk
1205 * n = number of disks in array
1206 * sd = "shift distance" (number of columns that d is to the right of f)
1207 * v = numerator of redirection ratio
1208 * k = denominator of redirection ratio
1209 */
1210 RF_RowCol_t d, f, sd, n;
1211 int k, v, ret, i;
1212
1213 n = raidPtr->numCol;
1214
1215 /* assign column of primary copy to d */
1216 d = pda->col;
1217
1218 /* assign column of dead disk to f */
1219 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1220
1221 RF_ASSERT(f < n);
1222 RF_ASSERT(f != d);
1223
1224 sd = (f > d) ? (n + d - f) : (d - f);
1225 RF_ASSERT(sd < n);
1226
1227 /*
1228 * v of every k accesses should be redirected
1229 *
1230 * v/k := (n-1-sd)/(n-1)
1231 */
1232 v = (n - 1 - sd);
1233 k = (n - 1);
1234
1235 #if 1
1236 /*
1237 * XXX
1238 * Is this worth it?
1239 *
1240 * Now reduce the fraction, by repeatedly factoring
1241 * out primes (just like they teach in elementary school!)
1242 */
1243 for (i = 0; i < NLOWPRIMES; i++) {
1244 if (lowprimes[i] > v)
1245 break;
1246 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1247 v /= lowprimes[i];
1248 k /= lowprimes[i];
1249 }
1250 }
1251 #endif
1252
1253 raidPtr->hist_diskreq[d]++;
1254 if (raidPtr->hist_diskreq[d] > v) {
1255 ret = 0; /* do not redirect */
1256 } else {
1257 ret = 1; /* redirect */
1258 }
1259
1260 #if 0
1261 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1262 raidPtr->hist_diskreq[d]);
1263 #endif
1264
1265 if (raidPtr->hist_diskreq[d] >= k) {
1266 /* reset counter */
1267 raidPtr->hist_diskreq[d] = 0;
1268 }
1269 return (ret);
1270 }
1271 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1272
1273 /*
1274 * Disk selection routines
1275 */
1276
1277 /*
1278 * Selects the disk with the shortest queue from a mirror pair.
1279 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1280 * disk are counted as members of the "queue"
1281 */
1282 void
1283 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1284 {
1285 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1286 RF_RowCol_t colData, colMirror;
1287 int dataQueueLength, mirrorQueueLength, usemirror;
1288 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1289 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1290 RF_PhysDiskAddr_t *tmp_pda;
1291 RF_RaidDisk_t *disks = raidPtr->Disks;
1292 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1293
1294 /* return the [row col] of the disk with the shortest queue */
1295 colData = data_pda->col;
1296 colMirror = mirror_pda->col;
1297 dataQueue = &(dqs[colData]);
1298 mirrorQueue = &(dqs[colMirror]);
1299
1300 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1301 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1302 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1303 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1304 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1305 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1306 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1307 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1308 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1309 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1310 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1311 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1312
1313 usemirror = 0;
1314 if (RF_DEAD_DISK(disks[colMirror].status)) {
1315 usemirror = 0;
1316 } else
1317 if (RF_DEAD_DISK(disks[colData].status)) {
1318 usemirror = 1;
1319 } else
1320 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1321 /* Trust only the main disk */
1322 usemirror = 0;
1323 } else
1324 if (dataQueueLength < mirrorQueueLength) {
1325 usemirror = 0;
1326 } else
1327 if (mirrorQueueLength < dataQueueLength) {
1328 usemirror = 1;
1329 } else {
1330 /* queues are equal length. attempt
1331 * cleverness. */
1332 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1333 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1334 usemirror = 0;
1335 } else {
1336 usemirror = 1;
1337 }
1338 }
1339
1340 if (usemirror) {
1341 /* use mirror (parity) disk, swap params 0 & 4 */
1342 tmp_pda = data_pda;
1343 node->params[0].p = mirror_pda;
1344 node->params[4].p = tmp_pda;
1345 } else {
1346 /* use data disk, leave param 0 unchanged */
1347 }
1348 /* printf("dataQueueLength %d, mirrorQueueLength
1349 * %d\n",dataQueueLength, mirrorQueueLength); */
1350 }
1351 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1352 /*
1353 * Do simple partitioning. This assumes that
1354 * the data and parity disks are laid out identically.
1355 */
1356 void
1357 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1358 {
1359 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1360 RF_RowCol_t colData, colMirror;
1361 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1362 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1363 RF_PhysDiskAddr_t *tmp_pda;
1364 RF_RaidDisk_t *disks = raidPtr->Disks;
1365 int usemirror;
1366
1367 /* return the [row col] of the disk with the shortest queue */
1368 colData = data_pda->col;
1369 colMirror = mirror_pda->col;
1370
1371 usemirror = 0;
1372 if (RF_DEAD_DISK(disks[colMirror].status)) {
1373 usemirror = 0;
1374 } else
1375 if (RF_DEAD_DISK(disks[colData].status)) {
1376 usemirror = 1;
1377 } else
1378 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1379 /* Trust only the main disk */
1380 usemirror = 0;
1381 } else
1382 if (data_pda->startSector <
1383 (disks[colData].numBlocks / 2)) {
1384 usemirror = 0;
1385 } else {
1386 usemirror = 1;
1387 }
1388
1389 if (usemirror) {
1390 /* use mirror (parity) disk, swap params 0 & 4 */
1391 tmp_pda = data_pda;
1392 node->params[0].p = mirror_pda;
1393 node->params[4].p = tmp_pda;
1394 } else {
1395 /* use data disk, leave param 0 unchanged */
1396 }
1397 }
1398 #endif
1399