rf_dagutils.c revision 1.46.2.1 1 /* $NetBSD: rf_dagutils.c,v 1.46.2.1 2006/06/21 15:06:28 yamt Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.46.2.1 2006/06/21 15:06:28 yamt Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /* The maximum number of nodes in a DAG is bounded by
70
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 (1 * 2 * layoutPtr->numParityCol) + 3
73
74 which is: 2*RF_MAXCOL+1*2+1*2*2+3
75
76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82
83
84 /******************************************************************************
85 *
86 * InitNode - initialize a dag node
87 *
88 * the size of the propList array is always the same as that of the
89 * successors array.
90 *
91 *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 int (*doFunc) (RF_DagNode_t *node),
95 int (*undoFunc) (RF_DagNode_t *node),
96 int (*wakeFunc) (RF_DagNode_t *node, int status),
97 int nSucc, int nAnte, int nParam, int nResult,
98 RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 {
100 void **ptrs;
101 int nptrs;
102
103 if (nAnte > RF_MAX_ANTECEDENTS)
104 RF_PANIC();
105 node->status = initstatus;
106 node->commitNode = commit;
107 node->doFunc = doFunc;
108 node->undoFunc = undoFunc;
109 node->wakeFunc = wakeFunc;
110 node->numParams = nParam;
111 node->numResults = nResult;
112 node->numAntecedents = nAnte;
113 node->numAntDone = 0;
114 node->next = NULL;
115 /* node->list_next = NULL */ /* Don't touch this here!
116 It may already be
117 in use by the caller! */
118 node->numSuccedents = nSucc;
119 node->name = name;
120 node->dagHdr = hdr;
121 node->big_dag_ptrs = NULL;
122 node->big_dag_params = NULL;
123 node->visited = 0;
124
125 /* allocate all the pointers with one call to malloc */
126 nptrs = nSucc + nAnte + nResult + nSucc;
127
128 if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 /*
130 * The dag_ptrs field of the node is basically some scribble
131 * space to be used here. We could get rid of it, and always
132 * allocate the range of pointers, but that's expensive. So,
133 * we pick a "common case" size for the pointer cache. Hopefully,
134 * we'll find that:
135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 * only a little bit (least efficient case)
137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 * (wasted memory)
139 */
140 ptrs = (void **) node->dag_ptrs;
141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 node->big_dag_ptrs = rf_AllocDAGPCache();
143 ptrs = (void **) node->big_dag_ptrs;
144 } else {
145 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 (void **), alist);
147 }
148 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152
153 if (nParam) {
154 if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 node->params = (RF_DagParam_t *) node->dag_params;
156 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 node->big_dag_params = rf_AllocDAGPCache();
158 node->params = node->big_dag_params;
159 } else {
160 RF_MallocAndAdd(node->params,
161 nParam * sizeof(RF_DagParam_t),
162 (RF_DagParam_t *), alist);
163 }
164 } else {
165 node->params = NULL;
166 }
167 }
168
169
170
171 /******************************************************************************
172 *
173 * allocation and deallocation routines
174 *
175 *****************************************************************************/
176
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
179 {
180 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 RF_PhysDiskAddr_t *pda;
182 RF_DagNode_t *tmpnode;
183 RF_DagHeader_t *nextDag;
184
185 while (dag_h) {
186 nextDag = dag_h->next;
187 rf_FreeAllocList(dag_h->allocList);
188 for (asmap = dag_h->asmList; asmap;) {
189 t_asmap = asmap;
190 asmap = asmap->next;
191 rf_FreeAccessStripeMap(t_asmap);
192 }
193 while (dag_h->pda_cleanup_list) {
194 pda = dag_h->pda_cleanup_list;
195 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
196 rf_FreePhysDiskAddr(pda);
197 }
198 while (dag_h->nodes) {
199 tmpnode = dag_h->nodes;
200 dag_h->nodes = dag_h->nodes->list_next;
201 rf_FreeDAGNode(tmpnode);
202 }
203 rf_FreeDAGHeader(dag_h);
204 dag_h = nextDag;
205 }
206 }
207
208 #define RF_MAX_FREE_DAGH 128
209 #define RF_MIN_FREE_DAGH 32
210
211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
213
214 #define RF_MAX_FREE_DAGLIST 128
215 #define RF_MIN_FREE_DAGLIST 32
216
217 #define RF_MAX_FREE_DAGPCACHE 128
218 #define RF_MIN_FREE_DAGPCACHE 8
219
220 #define RF_MAX_FREE_FUNCLIST 128
221 #define RF_MIN_FREE_FUNCLIST 32
222
223 #define RF_MAX_FREE_BUFFERS 128
224 #define RF_MIN_FREE_BUFFERS 32
225
226 static void rf_ShutdownDAGs(void *);
227 static void
228 rf_ShutdownDAGs(void *ignored)
229 {
230 pool_destroy(&rf_pools.dagh);
231 pool_destroy(&rf_pools.dagnode);
232 pool_destroy(&rf_pools.daglist);
233 pool_destroy(&rf_pools.dagpcache);
234 pool_destroy(&rf_pools.funclist);
235 }
236
237 int
238 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
239 {
240
241 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
242 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
243 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
244 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
245 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
246 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
247 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
248 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
249 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
250 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
251 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
252
253 return (0);
254 }
255
256 RF_DagHeader_t *
257 rf_AllocDAGHeader()
258 {
259 RF_DagHeader_t *dh;
260
261 dh = pool_get(&rf_pools.dagh, PR_WAITOK);
262 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
263 return (dh);
264 }
265
266 void
267 rf_FreeDAGHeader(RF_DagHeader_t * dh)
268 {
269 pool_put(&rf_pools.dagh, dh);
270 }
271
272 RF_DagNode_t *
273 rf_AllocDAGNode()
274 {
275 RF_DagNode_t *node;
276
277 node = pool_get(&rf_pools.dagnode, PR_WAITOK);
278 memset(node, 0, sizeof(RF_DagNode_t));
279 return (node);
280 }
281
282 void
283 rf_FreeDAGNode(RF_DagNode_t *node)
284 {
285 if (node->big_dag_ptrs) {
286 rf_FreeDAGPCache(node->big_dag_ptrs);
287 }
288 if (node->big_dag_params) {
289 rf_FreeDAGPCache(node->big_dag_params);
290 }
291 pool_put(&rf_pools.dagnode, node);
292 }
293
294 RF_DagList_t *
295 rf_AllocDAGList()
296 {
297 RF_DagList_t *dagList;
298
299 dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
300 memset(dagList, 0, sizeof(RF_DagList_t));
301
302 return (dagList);
303 }
304
305 void
306 rf_FreeDAGList(RF_DagList_t *dagList)
307 {
308 pool_put(&rf_pools.daglist, dagList);
309 }
310
311 void *
312 rf_AllocDAGPCache()
313 {
314 void *p;
315 p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
316 memset(p, 0, RF_DAGPCACHE_SIZE);
317
318 return (p);
319 }
320
321 void
322 rf_FreeDAGPCache(void *p)
323 {
324 pool_put(&rf_pools.dagpcache, p);
325 }
326
327 RF_FuncList_t *
328 rf_AllocFuncList()
329 {
330 RF_FuncList_t *funcList;
331
332 funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
333 memset(funcList, 0, sizeof(RF_FuncList_t));
334
335 return (funcList);
336 }
337
338 void
339 rf_FreeFuncList(RF_FuncList_t *funcList)
340 {
341 pool_put(&rf_pools.funclist, funcList);
342 }
343
344 /* allocates a stripe buffer -- a buffer large enough to hold all the data
345 in an entire stripe.
346 */
347
348 void *
349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
350 {
351 RF_VoidPointerListElem_t *vple;
352 void *p;
353
354 RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 raidPtr->logBytesPerSector))));
356
357 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
358 raidPtr->logBytesPerSector),
359 M_RAIDFRAME, M_NOWAIT);
360 if (!p) {
361 RF_LOCK_MUTEX(raidPtr->mutex);
362 if (raidPtr->stripebuf_count > 0) {
363 vple = raidPtr->stripebuf;
364 raidPtr->stripebuf = vple->next;
365 p = vple->p;
366 rf_FreeVPListElem(vple);
367 raidPtr->stripebuf_count--;
368 } else {
369 #ifdef DIAGNOSTIC
370 printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
371 #endif
372 }
373 RF_UNLOCK_MUTEX(raidPtr->mutex);
374 if (!p) {
375 /* We didn't get a buffer... not much we can do other than wait,
376 and hope that someone frees up memory for us.. */
377 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
378 raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
379 }
380 }
381 memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
382
383 vple = rf_AllocVPListElem();
384 vple->p = p;
385 vple->next = dag_h->desc->stripebufs;
386 dag_h->desc->stripebufs = vple;
387
388 return (p);
389 }
390
391
392 void
393 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
394 {
395 RF_LOCK_MUTEX(raidPtr->mutex);
396 if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
397 /* just tack it in */
398 vple->next = raidPtr->stripebuf;
399 raidPtr->stripebuf = vple;
400 raidPtr->stripebuf_count++;
401 } else {
402 free(vple->p, M_RAIDFRAME);
403 rf_FreeVPListElem(vple);
404 }
405 RF_UNLOCK_MUTEX(raidPtr->mutex);
406 }
407
408 /* allocates a buffer big enough to hold the data described by the
409 caller (ie. the data of the associated PDA). Glue this buffer
410 into our dag_h cleanup structure. */
411
412 void *
413 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
414 {
415 RF_VoidPointerListElem_t *vple;
416 void *p;
417
418 p = rf_AllocIOBuffer(raidPtr, size);
419 vple = rf_AllocVPListElem();
420 vple->p = p;
421 vple->next = dag_h->desc->iobufs;
422 dag_h->desc->iobufs = vple;
423
424 return (p);
425 }
426
427 void *
428 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
429 {
430 RF_VoidPointerListElem_t *vple;
431 void *p;
432
433 RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
434 raidPtr->logBytesPerSector)));
435
436 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
437 raidPtr->logBytesPerSector,
438 M_RAIDFRAME, M_NOWAIT);
439 if (!p) {
440 RF_LOCK_MUTEX(raidPtr->mutex);
441 if (raidPtr->iobuf_count > 0) {
442 vple = raidPtr->iobuf;
443 raidPtr->iobuf = vple->next;
444 p = vple->p;
445 rf_FreeVPListElem(vple);
446 raidPtr->iobuf_count--;
447 } else {
448 #ifdef DIAGNOSTIC
449 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
450 #endif
451 }
452 RF_UNLOCK_MUTEX(raidPtr->mutex);
453 if (!p) {
454 /* We didn't get a buffer... not much we can do other than wait,
455 and hope that someone frees up memory for us.. */
456 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
457 raidPtr->logBytesPerSector,
458 M_RAIDFRAME, M_WAITOK);
459 }
460 }
461 memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
462 return (p);
463 }
464
465 void
466 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
467 {
468 RF_LOCK_MUTEX(raidPtr->mutex);
469 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
470 /* just tack it in */
471 vple->next = raidPtr->iobuf;
472 raidPtr->iobuf = vple;
473 raidPtr->iobuf_count++;
474 } else {
475 free(vple->p, M_RAIDFRAME);
476 rf_FreeVPListElem(vple);
477 }
478 RF_UNLOCK_MUTEX(raidPtr->mutex);
479 }
480
481
482
483 #if RF_DEBUG_VALIDATE_DAG
484 /******************************************************************************
485 *
486 * debug routines
487 *
488 *****************************************************************************/
489
490 char *
491 rf_NodeStatusString(RF_DagNode_t *node)
492 {
493 switch (node->status) {
494 case rf_wait:
495 return ("wait");
496 case rf_fired:
497 return ("fired");
498 case rf_good:
499 return ("good");
500 case rf_bad:
501 return ("bad");
502 default:
503 return ("?");
504 }
505 }
506
507 void
508 rf_PrintNodeInfoString(RF_DagNode_t *node)
509 {
510 RF_PhysDiskAddr_t *pda;
511 int (*df) (RF_DagNode_t *) = node->doFunc;
512 int i, lk, unlk;
513 void *bufPtr;
514
515 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
516 || (df == rf_DiskReadMirrorIdleFunc)
517 || (df == rf_DiskReadMirrorPartitionFunc)) {
518 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
519 bufPtr = (void *) node->params[1].p;
520 lk = 0;
521 unlk = 0;
522 RF_ASSERT(!(lk && unlk));
523 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
524 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
525 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
526 return;
527 }
528 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
529 || (df == rf_RecoveryXorFunc)) {
530 printf("result buf 0x%lx\n", (long) node->results[0]);
531 for (i = 0; i < node->numParams - 1; i += 2) {
532 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
533 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
534 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
535 (long) bufPtr, pda->col,
536 (long) pda->startSector, (int) pda->numSector);
537 }
538 return;
539 }
540 #if RF_INCLUDE_PARITYLOGGING > 0
541 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
542 for (i = 0; i < node->numParams - 1; i += 2) {
543 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
544 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
545 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
546 pda->col, (long) pda->startSector,
547 (int) pda->numSector, (long) bufPtr);
548 }
549 return;
550 }
551 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
552
553 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
554 printf("\n");
555 return;
556 }
557 printf("?\n");
558 }
559 #ifdef DEBUG
560 static void
561 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
562 {
563 char *anttype;
564 int i;
565
566 node->visited = (unvisited) ? 0 : 1;
567 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
568 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
569 node->numSuccedents, node->numSuccFired, node->numSuccDone,
570 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
571 for (i = 0; i < node->numSuccedents; i++) {
572 printf("%d%s", node->succedents[i]->nodeNum,
573 ((i == node->numSuccedents - 1) ? "\0" : " "));
574 }
575 printf("} A{");
576 for (i = 0; i < node->numAntecedents; i++) {
577 switch (node->antType[i]) {
578 case rf_trueData:
579 anttype = "T";
580 break;
581 case rf_antiData:
582 anttype = "A";
583 break;
584 case rf_outputData:
585 anttype = "O";
586 break;
587 case rf_control:
588 anttype = "C";
589 break;
590 default:
591 anttype = "?";
592 break;
593 }
594 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
595 }
596 printf("}; ");
597 rf_PrintNodeInfoString(node);
598 for (i = 0; i < node->numSuccedents; i++) {
599 if (node->succedents[i]->visited == unvisited)
600 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
601 }
602 }
603
604 static void
605 rf_PrintDAG(RF_DagHeader_t *dag_h)
606 {
607 int unvisited, i;
608 char *status;
609
610 /* set dag status */
611 switch (dag_h->status) {
612 case rf_enable:
613 status = "enable";
614 break;
615 case rf_rollForward:
616 status = "rollForward";
617 break;
618 case rf_rollBackward:
619 status = "rollBackward";
620 break;
621 default:
622 status = "illegal!";
623 break;
624 }
625 /* find out if visited bits are currently set or clear */
626 unvisited = dag_h->succedents[0]->visited;
627
628 printf("DAG type: %s\n", dag_h->creator);
629 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
630 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
631 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
632 for (i = 0; i < dag_h->numSuccedents; i++) {
633 printf("%d%s", dag_h->succedents[i]->nodeNum,
634 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
635 }
636 printf("};\n");
637 for (i = 0; i < dag_h->numSuccedents; i++) {
638 if (dag_h->succedents[i]->visited == unvisited)
639 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
640 }
641 }
642 #endif
643 /* assigns node numbers */
644 int
645 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
646 {
647 int unvisited, i, nnum;
648 RF_DagNode_t *node;
649
650 nnum = 0;
651 unvisited = dag_h->succedents[0]->visited;
652
653 dag_h->nodeNum = nnum++;
654 for (i = 0; i < dag_h->numSuccedents; i++) {
655 node = dag_h->succedents[i];
656 if (node->visited == unvisited) {
657 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
658 }
659 }
660 return (nnum);
661 }
662
663 int
664 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
665 {
666 int i;
667
668 node->visited = (unvisited) ? 0 : 1;
669
670 node->nodeNum = num++;
671 for (i = 0; i < node->numSuccedents; i++) {
672 if (node->succedents[i]->visited == unvisited) {
673 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
674 }
675 }
676 return (num);
677 }
678 /* set the header pointers in each node to "newptr" */
679 void
680 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
681 {
682 int i;
683 for (i = 0; i < dag_h->numSuccedents; i++)
684 if (dag_h->succedents[i]->dagHdr != newptr)
685 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
686 }
687
688 void
689 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
690 {
691 int i;
692 node->dagHdr = newptr;
693 for (i = 0; i < node->numSuccedents; i++)
694 if (node->succedents[i]->dagHdr != newptr)
695 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
696 }
697
698
699 void
700 rf_PrintDAGList(RF_DagHeader_t * dag_h)
701 {
702 int i = 0;
703
704 for (; dag_h; dag_h = dag_h->next) {
705 rf_AssignNodeNums(dag_h);
706 printf("\n\nDAG %d IN LIST:\n", i++);
707 rf_PrintDAG(dag_h);
708 }
709 }
710
711 static int
712 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
713 RF_DagNode_t **nodes, int unvisited)
714 {
715 int i, retcode = 0;
716
717 /* construct an array of node pointers indexed by node num */
718 node->visited = (unvisited) ? 0 : 1;
719 nodes[node->nodeNum] = node;
720
721 if (node->next != NULL) {
722 printf("INVALID DAG: next pointer in node is not NULL\n");
723 retcode = 1;
724 }
725 if (node->status != rf_wait) {
726 printf("INVALID DAG: Node status is not wait\n");
727 retcode = 1;
728 }
729 if (node->numAntDone != 0) {
730 printf("INVALID DAG: numAntDone is not zero\n");
731 retcode = 1;
732 }
733 if (node->doFunc == rf_TerminateFunc) {
734 if (node->numSuccedents != 0) {
735 printf("INVALID DAG: Terminator node has succedents\n");
736 retcode = 1;
737 }
738 } else {
739 if (node->numSuccedents == 0) {
740 printf("INVALID DAG: Non-terminator node has no succedents\n");
741 retcode = 1;
742 }
743 }
744 for (i = 0; i < node->numSuccedents; i++) {
745 if (!node->succedents[i]) {
746 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
747 retcode = 1;
748 }
749 scount[node->succedents[i]->nodeNum]++;
750 }
751 for (i = 0; i < node->numAntecedents; i++) {
752 if (!node->antecedents[i]) {
753 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
754 retcode = 1;
755 }
756 acount[node->antecedents[i]->nodeNum]++;
757 }
758 for (i = 0; i < node->numSuccedents; i++) {
759 if (node->succedents[i]->visited == unvisited) {
760 if (rf_ValidateBranch(node->succedents[i], scount,
761 acount, nodes, unvisited)) {
762 retcode = 1;
763 }
764 }
765 }
766 return (retcode);
767 }
768
769 static void
770 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
771 {
772 int i;
773
774 RF_ASSERT(node->visited == unvisited);
775 for (i = 0; i < node->numSuccedents; i++) {
776 if (node->succedents[i] == NULL) {
777 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
778 RF_ASSERT(0);
779 }
780 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
781 }
782 }
783 /* NOTE: never call this on a big dag, because it is exponential
784 * in execution time
785 */
786 static void
787 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
788 {
789 int i, unvisited;
790
791 unvisited = dag->succedents[0]->visited;
792
793 for (i = 0; i < dag->numSuccedents; i++) {
794 if (dag->succedents[i] == NULL) {
795 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
796 RF_ASSERT(0);
797 }
798 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
799 }
800 }
801 /* validate a DAG. _at entry_ verify that:
802 * -- numNodesCompleted is zero
803 * -- node queue is null
804 * -- dag status is rf_enable
805 * -- next pointer is null on every node
806 * -- all nodes have status wait
807 * -- numAntDone is zero in all nodes
808 * -- terminator node has zero successors
809 * -- no other node besides terminator has zero successors
810 * -- no successor or antecedent pointer in a node is NULL
811 * -- number of times that each node appears as a successor of another node
812 * is equal to the antecedent count on that node
813 * -- number of times that each node appears as an antecedent of another node
814 * is equal to the succedent count on that node
815 * -- what else?
816 */
817 int
818 rf_ValidateDAG(RF_DagHeader_t *dag_h)
819 {
820 int i, nodecount;
821 int *scount, *acount;/* per-node successor and antecedent counts */
822 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
823 int retcode = 0;
824 int unvisited;
825 int commitNodeCount = 0;
826
827 if (rf_validateVisitedDebug)
828 rf_ValidateVisitedBits(dag_h);
829
830 if (dag_h->numNodesCompleted != 0) {
831 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
832 retcode = 1;
833 goto validate_dag_bad;
834 }
835 if (dag_h->status != rf_enable) {
836 printf("INVALID DAG: not enabled\n");
837 retcode = 1;
838 goto validate_dag_bad;
839 }
840 if (dag_h->numCommits != 0) {
841 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
842 retcode = 1;
843 goto validate_dag_bad;
844 }
845 if (dag_h->numSuccedents != 1) {
846 /* currently, all dags must have only one succedent */
847 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
848 retcode = 1;
849 goto validate_dag_bad;
850 }
851 nodecount = rf_AssignNodeNums(dag_h);
852
853 unvisited = dag_h->succedents[0]->visited;
854
855 RF_Malloc(scount, nodecount * sizeof(int), (int *));
856 RF_Malloc(acount, nodecount * sizeof(int), (int *));
857 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
858 (RF_DagNode_t **));
859 for (i = 0; i < dag_h->numSuccedents; i++) {
860 if ((dag_h->succedents[i]->visited == unvisited)
861 && rf_ValidateBranch(dag_h->succedents[i], scount,
862 acount, nodes, unvisited)) {
863 retcode = 1;
864 }
865 }
866 /* start at 1 to skip the header node */
867 for (i = 1; i < nodecount; i++) {
868 if (nodes[i]->commitNode)
869 commitNodeCount++;
870 if (nodes[i]->doFunc == NULL) {
871 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
872 retcode = 1;
873 goto validate_dag_out;
874 }
875 if (nodes[i]->undoFunc == NULL) {
876 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
877 retcode = 1;
878 goto validate_dag_out;
879 }
880 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
881 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
882 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
883 retcode = 1;
884 goto validate_dag_out;
885 }
886 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
887 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
888 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
889 retcode = 1;
890 goto validate_dag_out;
891 }
892 }
893
894 if (dag_h->numCommitNodes != commitNodeCount) {
895 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
896 dag_h->numCommitNodes, commitNodeCount);
897 retcode = 1;
898 goto validate_dag_out;
899 }
900 validate_dag_out:
901 RF_Free(scount, nodecount * sizeof(int));
902 RF_Free(acount, nodecount * sizeof(int));
903 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
904 if (retcode)
905 rf_PrintDAGList(dag_h);
906
907 if (rf_validateVisitedDebug)
908 rf_ValidateVisitedBits(dag_h);
909
910 return (retcode);
911
912 validate_dag_bad:
913 rf_PrintDAGList(dag_h);
914 return (retcode);
915 }
916
917 #endif /* RF_DEBUG_VALIDATE_DAG */
918
919 /******************************************************************************
920 *
921 * misc construction routines
922 *
923 *****************************************************************************/
924
925 void
926 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
927 {
928 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
929 int fcol = raidPtr->reconControl->fcol;
930 int scol = raidPtr->reconControl->spareCol;
931 RF_PhysDiskAddr_t *pda;
932
933 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
934 for (pda = asmap->physInfo; pda; pda = pda->next) {
935 if (pda->col == fcol) {
936 #if RF_DEBUG_DAG
937 if (rf_dagDebug) {
938 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
939 pda->startSector)) {
940 RF_PANIC();
941 }
942 }
943 #endif
944 /* printf("Remapped data for large write\n"); */
945 if (ds) {
946 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
947 &pda->col, &pda->startSector, RF_REMAP);
948 } else {
949 pda->col = scol;
950 }
951 }
952 }
953 for (pda = asmap->parityInfo; pda; pda = pda->next) {
954 if (pda->col == fcol) {
955 #if RF_DEBUG_DAG
956 if (rf_dagDebug) {
957 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
958 RF_PANIC();
959 }
960 }
961 #endif
962 }
963 if (ds) {
964 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
965 } else {
966 pda->col = scol;
967 }
968 }
969 }
970
971
972 /* this routine allocates read buffers and generates stripe maps for the
973 * regions of the array from the start of the stripe to the start of the
974 * access, and from the end of the access to the end of the stripe. It also
975 * computes and returns the number of DAG nodes needed to read all this data.
976 * Note that this routine does the wrong thing if the access is fully
977 * contained within one stripe unit, so we RF_ASSERT against this case at the
978 * start.
979 *
980 * layoutPtr - in: layout information
981 * asmap - in: access stripe map
982 * dag_h - in: header of the dag to create
983 * new_asm_h - in: ptr to array of 2 headers. to be filled in
984 * nRodNodes - out: num nodes to be generated to read unaccessed data
985 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
986 */
987 void
988 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
989 RF_RaidLayout_t *layoutPtr,
990 RF_AccessStripeMap_t *asmap,
991 RF_DagHeader_t *dag_h,
992 RF_AccessStripeMapHeader_t **new_asm_h,
993 int *nRodNodes,
994 char **sosBuffer, char **eosBuffer,
995 RF_AllocListElem_t *allocList)
996 {
997 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
998 RF_SectorNum_t sosNumSector, eosNumSector;
999
1000 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
1001 /* generate an access map for the region of the array from start of
1002 * stripe to start of access */
1003 new_asm_h[0] = new_asm_h[1] = NULL;
1004 *nRodNodes = 0;
1005 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
1006 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1007 sosNumSector = asmap->raidAddress - sosRaidAddress;
1008 *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
1009 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
1010 new_asm_h[0]->next = dag_h->asmList;
1011 dag_h->asmList = new_asm_h[0];
1012 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1013
1014 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1015 /* we're totally within one stripe here */
1016 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1017 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1018 }
1019 /* generate an access map for the region of the array from end of
1020 * access to end of stripe */
1021 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1022 eosRaidAddress = asmap->endRaidAddress;
1023 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1024 *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1025 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1026 new_asm_h[1]->next = dag_h->asmList;
1027 dag_h->asmList = new_asm_h[1];
1028 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1029
1030 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1031 /* we're totally within one stripe here */
1032 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1033 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1034 }
1035 }
1036
1037
1038
1039 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1040 int
1041 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1042 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1043 {
1044 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1045 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1046 /* use -1 to be sure we stay within SU */
1047 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1048 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1049 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1050 }
1051
1052
1053 /* GenerateFailedAccessASMs
1054 *
1055 * this routine figures out what portion of the stripe needs to be read
1056 * to effect the degraded read or write operation. It's primary function
1057 * is to identify everything required to recover the data, and then
1058 * eliminate anything that is already being accessed by the user.
1059 *
1060 * The main result is two new ASMs, one for the region from the start of the
1061 * stripe to the start of the access, and one for the region from the end of
1062 * the access to the end of the stripe. These ASMs describe everything that
1063 * needs to be read to effect the degraded access. Other results are:
1064 * nXorBufs -- the total number of buffers that need to be XORed together to
1065 * recover the lost data,
1066 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1067 * at entry, not allocated.
1068 * overlappingPDAs --
1069 * describes which of the non-failed PDAs in the user access
1070 * overlap data that needs to be read to effect recovery.
1071 * overlappingPDAs[i]==1 if and only if, neglecting the failed
1072 * PDA, the ith pda in the input asm overlaps data that needs
1073 * to be read for recovery.
1074 */
1075 /* in: asm - ASM for the actual access, one stripe only */
1076 /* in: failedPDA - which component of the access has failed */
1077 /* in: dag_h - header of the DAG we're going to create */
1078 /* out: new_asm_h - the two new ASMs */
1079 /* out: nXorBufs - the total number of xor bufs required */
1080 /* out: rpBufPtr - a buffer for the parity read */
1081 void
1082 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1083 RF_PhysDiskAddr_t *failedPDA,
1084 RF_DagHeader_t *dag_h,
1085 RF_AccessStripeMapHeader_t **new_asm_h,
1086 int *nXorBufs, char **rpBufPtr,
1087 char *overlappingPDAs,
1088 RF_AllocListElem_t *allocList)
1089 {
1090 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1091
1092 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1093 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1094 RF_PhysDiskAddr_t *pda;
1095 int foundit, i;
1096
1097 foundit = 0;
1098 /* first compute the following raid addresses: start of stripe,
1099 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1100 * MAX(end of access, end of failed SU), (eosStartAddr) end of
1101 * stripe (i.e. start of next stripe) (eosAddr) */
1102 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1103 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1104 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1105 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1106
1107 /* now generate access stripe maps for each of the above regions of
1108 * the stripe. Use a dummy (NULL) buf ptr for now */
1109
1110 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1111 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1112
1113 /* walk through the PDAs and range-restrict each SU to the region of
1114 * the SU touched on the failed PDA. also compute total data buffer
1115 * space requirements in this step. Ignore the parity for now. */
1116 /* Also count nodes to find out how many bufs need to be xored together */
1117 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1118 * case, 1 is for failed data */
1119
1120 if (new_asm_h[0]) {
1121 new_asm_h[0]->next = dag_h->asmList;
1122 dag_h->asmList = new_asm_h[0];
1123 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1124 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1125 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1126 }
1127 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1128 }
1129 if (new_asm_h[1]) {
1130 new_asm_h[1]->next = dag_h->asmList;
1131 dag_h->asmList = new_asm_h[1];
1132 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1133 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1134 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1135 }
1136 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1137 }
1138
1139 /* allocate a buffer for parity */
1140 if (rpBufPtr)
1141 *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1142
1143 /* the last step is to figure out how many more distinct buffers need
1144 * to get xor'd to produce the missing unit. there's one for each
1145 * user-data read node that overlaps the portion of the failed unit
1146 * being accessed */
1147
1148 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1149 if (pda == failedPDA) {
1150 i--;
1151 foundit = 1;
1152 continue;
1153 }
1154 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1155 overlappingPDAs[i] = 1;
1156 (*nXorBufs)++;
1157 }
1158 }
1159 if (!foundit) {
1160 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1161 RF_ASSERT(0);
1162 }
1163 #if RF_DEBUG_DAG
1164 if (rf_degDagDebug) {
1165 if (new_asm_h[0]) {
1166 printf("First asm:\n");
1167 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1168 }
1169 if (new_asm_h[1]) {
1170 printf("Second asm:\n");
1171 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1172 }
1173 }
1174 #endif
1175 }
1176
1177
1178 /* adjusts the offset and number of sectors in the destination pda so that
1179 * it covers at most the region of the SU covered by the source PDA. This
1180 * is exclusively a restriction: the number of sectors indicated by the
1181 * target PDA can only shrink.
1182 *
1183 * For example: s = sectors within SU indicated by source PDA
1184 * d = sectors within SU indicated by dest PDA
1185 * r = results, stored in dest PDA
1186 *
1187 * |--------------- one stripe unit ---------------------|
1188 * | sssssssssssssssssssssssssssssssss |
1189 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1190 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1191 *
1192 * Another example:
1193 *
1194 * |--------------- one stripe unit ---------------------|
1195 * | sssssssssssssssssssssssssssssssss |
1196 * | ddddddddddddddddddddddd |
1197 * | rrrrrrrrrrrrrrrr |
1198 *
1199 */
1200 void
1201 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1202 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1203 {
1204 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1205 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1206 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1207 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1208 * stay within SU */
1209 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1210 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1211
1212 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1213 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1214
1215 if (dobuffer)
1216 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1217 if (doraidaddr) {
1218 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1219 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1220 }
1221 }
1222
1223 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1224
1225 /*
1226 * Want the highest of these primes to be the largest one
1227 * less than the max expected number of columns (won't hurt
1228 * to be too small or too large, but won't be optimal, either)
1229 * --jimz
1230 */
1231 #define NLOWPRIMES 8
1232 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1233 /*****************************************************************************
1234 * compute the workload shift factor. (chained declustering)
1235 *
1236 * return nonzero if access should shift to secondary, otherwise,
1237 * access is to primary
1238 *****************************************************************************/
1239 int
1240 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1241 {
1242 /*
1243 * variables:
1244 * d = column of disk containing primary
1245 * f = column of failed disk
1246 * n = number of disks in array
1247 * sd = "shift distance" (number of columns that d is to the right of f)
1248 * v = numerator of redirection ratio
1249 * k = denominator of redirection ratio
1250 */
1251 RF_RowCol_t d, f, sd, n;
1252 int k, v, ret, i;
1253
1254 n = raidPtr->numCol;
1255
1256 /* assign column of primary copy to d */
1257 d = pda->col;
1258
1259 /* assign column of dead disk to f */
1260 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1261
1262 RF_ASSERT(f < n);
1263 RF_ASSERT(f != d);
1264
1265 sd = (f > d) ? (n + d - f) : (d - f);
1266 RF_ASSERT(sd < n);
1267
1268 /*
1269 * v of every k accesses should be redirected
1270 *
1271 * v/k := (n-1-sd)/(n-1)
1272 */
1273 v = (n - 1 - sd);
1274 k = (n - 1);
1275
1276 #if 1
1277 /*
1278 * XXX
1279 * Is this worth it?
1280 *
1281 * Now reduce the fraction, by repeatedly factoring
1282 * out primes (just like they teach in elementary school!)
1283 */
1284 for (i = 0; i < NLOWPRIMES; i++) {
1285 if (lowprimes[i] > v)
1286 break;
1287 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1288 v /= lowprimes[i];
1289 k /= lowprimes[i];
1290 }
1291 }
1292 #endif
1293
1294 raidPtr->hist_diskreq[d]++;
1295 if (raidPtr->hist_diskreq[d] > v) {
1296 ret = 0; /* do not redirect */
1297 } else {
1298 ret = 1; /* redirect */
1299 }
1300
1301 #if 0
1302 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1303 raidPtr->hist_diskreq[d]);
1304 #endif
1305
1306 if (raidPtr->hist_diskreq[d] >= k) {
1307 /* reset counter */
1308 raidPtr->hist_diskreq[d] = 0;
1309 }
1310 return (ret);
1311 }
1312 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1313
1314 /*
1315 * Disk selection routines
1316 */
1317
1318 /*
1319 * Selects the disk with the shortest queue from a mirror pair.
1320 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1321 * disk are counted as members of the "queue"
1322 */
1323 void
1324 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1325 {
1326 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1327 RF_RowCol_t colData, colMirror;
1328 int dataQueueLength, mirrorQueueLength, usemirror;
1329 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1330 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1331 RF_PhysDiskAddr_t *tmp_pda;
1332 RF_RaidDisk_t *disks = raidPtr->Disks;
1333 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1334
1335 /* return the [row col] of the disk with the shortest queue */
1336 colData = data_pda->col;
1337 colMirror = mirror_pda->col;
1338 dataQueue = &(dqs[colData]);
1339 mirrorQueue = &(dqs[colMirror]);
1340
1341 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1342 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1343 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1344 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1345 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1346 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1347 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1348 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1349 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1350 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1351 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1352 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1353
1354 usemirror = 0;
1355 if (RF_DEAD_DISK(disks[colMirror].status)) {
1356 usemirror = 0;
1357 } else
1358 if (RF_DEAD_DISK(disks[colData].status)) {
1359 usemirror = 1;
1360 } else
1361 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1362 /* Trust only the main disk */
1363 usemirror = 0;
1364 } else
1365 if (dataQueueLength < mirrorQueueLength) {
1366 usemirror = 0;
1367 } else
1368 if (mirrorQueueLength < dataQueueLength) {
1369 usemirror = 1;
1370 } else {
1371 /* queues are equal length. attempt
1372 * cleverness. */
1373 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1374 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1375 usemirror = 0;
1376 } else {
1377 usemirror = 1;
1378 }
1379 }
1380
1381 if (usemirror) {
1382 /* use mirror (parity) disk, swap params 0 & 4 */
1383 tmp_pda = data_pda;
1384 node->params[0].p = mirror_pda;
1385 node->params[4].p = tmp_pda;
1386 } else {
1387 /* use data disk, leave param 0 unchanged */
1388 }
1389 /* printf("dataQueueLength %d, mirrorQueueLength
1390 * %d\n",dataQueueLength, mirrorQueueLength); */
1391 }
1392 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1393 /*
1394 * Do simple partitioning. This assumes that
1395 * the data and parity disks are laid out identically.
1396 */
1397 void
1398 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1399 {
1400 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1401 RF_RowCol_t colData, colMirror;
1402 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1403 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1404 RF_PhysDiskAddr_t *tmp_pda;
1405 RF_RaidDisk_t *disks = raidPtr->Disks;
1406 int usemirror;
1407
1408 /* return the [row col] of the disk with the shortest queue */
1409 colData = data_pda->col;
1410 colMirror = mirror_pda->col;
1411
1412 usemirror = 0;
1413 if (RF_DEAD_DISK(disks[colMirror].status)) {
1414 usemirror = 0;
1415 } else
1416 if (RF_DEAD_DISK(disks[colData].status)) {
1417 usemirror = 1;
1418 } else
1419 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1420 /* Trust only the main disk */
1421 usemirror = 0;
1422 } else
1423 if (data_pda->startSector <
1424 (disks[colData].numBlocks / 2)) {
1425 usemirror = 0;
1426 } else {
1427 usemirror = 1;
1428 }
1429
1430 if (usemirror) {
1431 /* use mirror (parity) disk, swap params 0 & 4 */
1432 tmp_pda = data_pda;
1433 node->params[0].p = mirror_pda;
1434 node->params[4].p = tmp_pda;
1435 } else {
1436 /* use data disk, leave param 0 unchanged */
1437 }
1438 }
1439 #endif
1440