rf_dagutils.c revision 1.5 1 /* $NetBSD: rf_dagutils.c,v 1.5 1999/11/09 03:07:20 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include "rf_archs.h"
36 #include "rf_types.h"
37 #include "rf_threadstuff.h"
38 #include "rf_raid.h"
39 #include "rf_dag.h"
40 #include "rf_dagutils.h"
41 #include "rf_dagfuncs.h"
42 #include "rf_general.h"
43 #include "rf_freelist.h"
44 #include "rf_map.h"
45 #include "rf_shutdown.h"
46
47 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
48
49 RF_RedFuncs_t rf_xorFuncs = {
50 rf_RegularXorFunc, "Reg Xr",
51 rf_SimpleXorFunc, "Simple Xr"};
52
53 RF_RedFuncs_t rf_xorRecoveryFuncs = {
54 rf_RecoveryXorFunc, "Recovery Xr",
55 rf_RecoveryXorFunc, "Recovery Xr"};
56
57 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
58 static void rf_PrintDAG(RF_DagHeader_t *);
59 static int
60 rf_ValidateBranch(RF_DagNode_t *, int *, int *,
61 RF_DagNode_t **, int);
62 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
63 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
64
65 /******************************************************************************
66 *
67 * InitNode - initialize a dag node
68 *
69 * the size of the propList array is always the same as that of the
70 * successors array.
71 *
72 *****************************************************************************/
73 void
74 rf_InitNode(
75 RF_DagNode_t * node,
76 RF_NodeStatus_t initstatus,
77 int commit,
78 int (*doFunc) (RF_DagNode_t * node),
79 int (*undoFunc) (RF_DagNode_t * node),
80 int (*wakeFunc) (RF_DagNode_t * node, int status),
81 int nSucc,
82 int nAnte,
83 int nParam,
84 int nResult,
85 RF_DagHeader_t * hdr,
86 char *name,
87 RF_AllocListElem_t * alist)
88 {
89 void **ptrs;
90 int nptrs;
91
92 if (nAnte > RF_MAX_ANTECEDENTS)
93 RF_PANIC();
94 node->status = initstatus;
95 node->commitNode = commit;
96 node->doFunc = doFunc;
97 node->undoFunc = undoFunc;
98 node->wakeFunc = wakeFunc;
99 node->numParams = nParam;
100 node->numResults = nResult;
101 node->numAntecedents = nAnte;
102 node->numAntDone = 0;
103 node->next = NULL;
104 node->numSuccedents = nSucc;
105 node->name = name;
106 node->dagHdr = hdr;
107 node->visited = 0;
108
109 /* allocate all the pointers with one call to malloc */
110 nptrs = nSucc + nAnte + nResult + nSucc;
111
112 if (nptrs <= RF_DAG_PTRCACHESIZE) {
113 /*
114 * The dag_ptrs field of the node is basically some scribble
115 * space to be used here. We could get rid of it, and always
116 * allocate the range of pointers, but that's expensive. So,
117 * we pick a "common case" size for the pointer cache. Hopefully,
118 * we'll find that:
119 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
120 * only a little bit (least efficient case)
121 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
122 * (wasted memory)
123 */
124 ptrs = (void **) node->dag_ptrs;
125 } else {
126 RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
127 }
128 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
129 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
130 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
131 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
132
133 if (nParam) {
134 if (nParam <= RF_DAG_PARAMCACHESIZE) {
135 node->params = (RF_DagParam_t *) node->dag_params;
136 } else {
137 RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
138 }
139 } else {
140 node->params = NULL;
141 }
142 }
143
144
145
146 /******************************************************************************
147 *
148 * allocation and deallocation routines
149 *
150 *****************************************************************************/
151
152 void
153 rf_FreeDAG(dag_h)
154 RF_DagHeader_t *dag_h;
155 {
156 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
157 RF_DagHeader_t *nextDag;
158 int i;
159
160 while (dag_h) {
161 nextDag = dag_h->next;
162 for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
163 /* release mem chunks */
164 rf_ReleaseMemChunk(dag_h->memChunk[i]);
165 dag_h->memChunk[i] = NULL;
166 }
167
168 RF_ASSERT(i == dag_h->chunkIndex);
169 if (dag_h->xtraChunkCnt > 0) {
170 /* free xtraMemChunks */
171 for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
172 rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
173 dag_h->xtraMemChunk[i] = NULL;
174 }
175 RF_ASSERT(i == dag_h->xtraChunkIndex);
176 /* free ptrs to xtraMemChunks */
177 RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
178 }
179 rf_FreeAllocList(dag_h->allocList);
180 for (asmap = dag_h->asmList; asmap;) {
181 t_asmap = asmap;
182 asmap = asmap->next;
183 rf_FreeAccessStripeMap(t_asmap);
184 }
185 rf_FreeDAGHeader(dag_h);
186 dag_h = nextDag;
187 }
188 }
189
190 RF_PropHeader_t *
191 rf_MakePropListEntry(
192 RF_DagHeader_t * dag_h,
193 int resultNum,
194 int paramNum,
195 RF_PropHeader_t * next,
196 RF_AllocListElem_t * allocList)
197 {
198 RF_PropHeader_t *p;
199
200 RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
201 (RF_PropHeader_t *), allocList);
202 p->resultNum = resultNum;
203 p->paramNum = paramNum;
204 p->next = next;
205 return (p);
206 }
207
208 static RF_FreeList_t *rf_dagh_freelist;
209
210 #define RF_MAX_FREE_DAGH 128
211 #define RF_DAGH_INC 16
212 #define RF_DAGH_INITIAL 32
213
214 static void rf_ShutdownDAGs(void *);
215 static void
216 rf_ShutdownDAGs(ignored)
217 void *ignored;
218 {
219 RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
220 }
221
222 int
223 rf_ConfigureDAGs(listp)
224 RF_ShutdownList_t **listp;
225 {
226 int rc;
227
228 RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
229 RF_DAGH_INC, sizeof(RF_DagHeader_t));
230 if (rf_dagh_freelist == NULL)
231 return (ENOMEM);
232 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
233 if (rc) {
234 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
235 __FILE__, __LINE__, rc);
236 rf_ShutdownDAGs(NULL);
237 return (rc);
238 }
239 RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
240 (RF_DagHeader_t *));
241 return (0);
242 }
243
244 RF_DagHeader_t *
245 rf_AllocDAGHeader()
246 {
247 RF_DagHeader_t *dh;
248
249 RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
250 if (dh) {
251 bzero((char *) dh, sizeof(RF_DagHeader_t));
252 }
253 return (dh);
254 }
255
256 void
257 rf_FreeDAGHeader(RF_DagHeader_t * dh)
258 {
259 RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
260 }
261 /* allocates a buffer big enough to hold the data described by pda */
262 void *
263 rf_AllocBuffer(
264 RF_Raid_t * raidPtr,
265 RF_DagHeader_t * dag_h,
266 RF_PhysDiskAddr_t * pda,
267 RF_AllocListElem_t * allocList)
268 {
269 char *p;
270
271 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
272 (char *), allocList);
273 return ((void *) p);
274 }
275 /******************************************************************************
276 *
277 * debug routines
278 *
279 *****************************************************************************/
280
281 char *
282 rf_NodeStatusString(RF_DagNode_t * node)
283 {
284 switch (node->status) {
285 case rf_wait:return ("wait");
286 case rf_fired:
287 return ("fired");
288 case rf_good:
289 return ("good");
290 case rf_bad:
291 return ("bad");
292 default:
293 return ("?");
294 }
295 }
296
297 void
298 rf_PrintNodeInfoString(RF_DagNode_t * node)
299 {
300 RF_PhysDiskAddr_t *pda;
301 int (*df) (RF_DagNode_t *) = node->doFunc;
302 int i, lk, unlk;
303 void *bufPtr;
304
305 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
306 || (df == rf_DiskReadMirrorIdleFunc)
307 || (df == rf_DiskReadMirrorPartitionFunc)) {
308 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
309 bufPtr = (void *) node->params[1].p;
310 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
311 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
312 RF_ASSERT(!(lk && unlk));
313 printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
314 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
315 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
316 return;
317 }
318 if (df == rf_DiskUnlockFunc) {
319 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
320 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
321 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
322 RF_ASSERT(!(lk && unlk));
323 printf("r %d c %d %s\n", pda->row, pda->col,
324 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
325 return;
326 }
327 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
328 || (df == rf_RecoveryXorFunc)) {
329 printf("result buf 0x%lx\n", (long) node->results[0]);
330 for (i = 0; i < node->numParams - 1; i += 2) {
331 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
332 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
333 printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
334 (long) bufPtr, pda->row, pda->col,
335 (long) pda->startSector, (int) pda->numSector);
336 }
337 return;
338 }
339 #if RF_INCLUDE_PARITYLOGGING > 0
340 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
341 for (i = 0; i < node->numParams - 1; i += 2) {
342 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
343 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
344 printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
345 pda->row, pda->col, (long) pda->startSector,
346 (int) pda->numSector, (long) bufPtr);
347 }
348 return;
349 }
350 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
351
352 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
353 printf("\n");
354 return;
355 }
356 printf("?\n");
357 }
358
359 static void
360 rf_RecurPrintDAG(node, depth, unvisited)
361 RF_DagNode_t *node;
362 int depth;
363 int unvisited;
364 {
365 char *anttype;
366 int i;
367
368 node->visited = (unvisited) ? 0 : 1;
369 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
370 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
371 node->numSuccedents, node->numSuccFired, node->numSuccDone,
372 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
373 for (i = 0; i < node->numSuccedents; i++) {
374 printf("%d%s", node->succedents[i]->nodeNum,
375 ((i == node->numSuccedents - 1) ? "\0" : " "));
376 }
377 printf("} A{");
378 for (i = 0; i < node->numAntecedents; i++) {
379 switch (node->antType[i]) {
380 case rf_trueData:
381 anttype = "T";
382 break;
383 case rf_antiData:
384 anttype = "A";
385 break;
386 case rf_outputData:
387 anttype = "O";
388 break;
389 case rf_control:
390 anttype = "C";
391 break;
392 default:
393 anttype = "?";
394 break;
395 }
396 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
397 }
398 printf("}; ");
399 rf_PrintNodeInfoString(node);
400 for (i = 0; i < node->numSuccedents; i++) {
401 if (node->succedents[i]->visited == unvisited)
402 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
403 }
404 }
405
406 static void
407 rf_PrintDAG(dag_h)
408 RF_DagHeader_t *dag_h;
409 {
410 int unvisited, i;
411 char *status;
412
413 /* set dag status */
414 switch (dag_h->status) {
415 case rf_enable:
416 status = "enable";
417 break;
418 case rf_rollForward:
419 status = "rollForward";
420 break;
421 case rf_rollBackward:
422 status = "rollBackward";
423 break;
424 default:
425 status = "illegal!";
426 break;
427 }
428 /* find out if visited bits are currently set or clear */
429 unvisited = dag_h->succedents[0]->visited;
430
431 printf("DAG type: %s\n", dag_h->creator);
432 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
433 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
434 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
435 for (i = 0; i < dag_h->numSuccedents; i++) {
436 printf("%d%s", dag_h->succedents[i]->nodeNum,
437 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
438 }
439 printf("};\n");
440 for (i = 0; i < dag_h->numSuccedents; i++) {
441 if (dag_h->succedents[i]->visited == unvisited)
442 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
443 }
444 }
445 /* assigns node numbers */
446 int
447 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
448 {
449 int unvisited, i, nnum;
450 RF_DagNode_t *node;
451
452 nnum = 0;
453 unvisited = dag_h->succedents[0]->visited;
454
455 dag_h->nodeNum = nnum++;
456 for (i = 0; i < dag_h->numSuccedents; i++) {
457 node = dag_h->succedents[i];
458 if (node->visited == unvisited) {
459 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
460 }
461 }
462 return (nnum);
463 }
464
465 int
466 rf_RecurAssignNodeNums(node, num, unvisited)
467 RF_DagNode_t *node;
468 int num;
469 int unvisited;
470 {
471 int i;
472
473 node->visited = (unvisited) ? 0 : 1;
474
475 node->nodeNum = num++;
476 for (i = 0; i < node->numSuccedents; i++) {
477 if (node->succedents[i]->visited == unvisited) {
478 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
479 }
480 }
481 return (num);
482 }
483 /* set the header pointers in each node to "newptr" */
484 void
485 rf_ResetDAGHeaderPointers(dag_h, newptr)
486 RF_DagHeader_t *dag_h;
487 RF_DagHeader_t *newptr;
488 {
489 int i;
490 for (i = 0; i < dag_h->numSuccedents; i++)
491 if (dag_h->succedents[i]->dagHdr != newptr)
492 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
493 }
494
495 void
496 rf_RecurResetDAGHeaderPointers(node, newptr)
497 RF_DagNode_t *node;
498 RF_DagHeader_t *newptr;
499 {
500 int i;
501 node->dagHdr = newptr;
502 for (i = 0; i < node->numSuccedents; i++)
503 if (node->succedents[i]->dagHdr != newptr)
504 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
505 }
506
507
508 void
509 rf_PrintDAGList(RF_DagHeader_t * dag_h)
510 {
511 int i = 0;
512
513 for (; dag_h; dag_h = dag_h->next) {
514 rf_AssignNodeNums(dag_h);
515 printf("\n\nDAG %d IN LIST:\n", i++);
516 rf_PrintDAG(dag_h);
517 }
518 }
519
520 static int
521 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
522 RF_DagNode_t *node;
523 int *scount;
524 int *acount;
525 RF_DagNode_t **nodes;
526 int unvisited;
527 {
528 int i, retcode = 0;
529
530 /* construct an array of node pointers indexed by node num */
531 node->visited = (unvisited) ? 0 : 1;
532 nodes[node->nodeNum] = node;
533
534 if (node->next != NULL) {
535 printf("INVALID DAG: next pointer in node is not NULL\n");
536 retcode = 1;
537 }
538 if (node->status != rf_wait) {
539 printf("INVALID DAG: Node status is not wait\n");
540 retcode = 1;
541 }
542 if (node->numAntDone != 0) {
543 printf("INVALID DAG: numAntDone is not zero\n");
544 retcode = 1;
545 }
546 if (node->doFunc == rf_TerminateFunc) {
547 if (node->numSuccedents != 0) {
548 printf("INVALID DAG: Terminator node has succedents\n");
549 retcode = 1;
550 }
551 } else {
552 if (node->numSuccedents == 0) {
553 printf("INVALID DAG: Non-terminator node has no succedents\n");
554 retcode = 1;
555 }
556 }
557 for (i = 0; i < node->numSuccedents; i++) {
558 if (!node->succedents[i]) {
559 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
560 retcode = 1;
561 }
562 scount[node->succedents[i]->nodeNum]++;
563 }
564 for (i = 0; i < node->numAntecedents; i++) {
565 if (!node->antecedents[i]) {
566 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
567 retcode = 1;
568 }
569 acount[node->antecedents[i]->nodeNum]++;
570 }
571 for (i = 0; i < node->numSuccedents; i++) {
572 if (node->succedents[i]->visited == unvisited) {
573 if (rf_ValidateBranch(node->succedents[i], scount,
574 acount, nodes, unvisited)) {
575 retcode = 1;
576 }
577 }
578 }
579 return (retcode);
580 }
581
582 static void
583 rf_ValidateBranchVisitedBits(node, unvisited, rl)
584 RF_DagNode_t *node;
585 int unvisited;
586 int rl;
587 {
588 int i;
589
590 RF_ASSERT(node->visited == unvisited);
591 for (i = 0; i < node->numSuccedents; i++) {
592 if (node->succedents[i] == NULL) {
593 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
594 RF_ASSERT(0);
595 }
596 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
597 }
598 }
599 /* NOTE: never call this on a big dag, because it is exponential
600 * in execution time
601 */
602 static void
603 rf_ValidateVisitedBits(dag)
604 RF_DagHeader_t *dag;
605 {
606 int i, unvisited;
607
608 unvisited = dag->succedents[0]->visited;
609
610 for (i = 0; i < dag->numSuccedents; i++) {
611 if (dag->succedents[i] == NULL) {
612 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
613 RF_ASSERT(0);
614 }
615 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
616 }
617 }
618 /* validate a DAG. _at entry_ verify that:
619 * -- numNodesCompleted is zero
620 * -- node queue is null
621 * -- dag status is rf_enable
622 * -- next pointer is null on every node
623 * -- all nodes have status wait
624 * -- numAntDone is zero in all nodes
625 * -- terminator node has zero successors
626 * -- no other node besides terminator has zero successors
627 * -- no successor or antecedent pointer in a node is NULL
628 * -- number of times that each node appears as a successor of another node
629 * is equal to the antecedent count on that node
630 * -- number of times that each node appears as an antecedent of another node
631 * is equal to the succedent count on that node
632 * -- what else?
633 */
634 int
635 rf_ValidateDAG(dag_h)
636 RF_DagHeader_t *dag_h;
637 {
638 int i, nodecount;
639 int *scount, *acount;/* per-node successor and antecedent counts */
640 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
641 int retcode = 0;
642 int unvisited;
643 int commitNodeCount = 0;
644
645 if (rf_validateVisitedDebug)
646 rf_ValidateVisitedBits(dag_h);
647
648 if (dag_h->numNodesCompleted != 0) {
649 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
650 retcode = 1;
651 goto validate_dag_bad;
652 }
653 if (dag_h->status != rf_enable) {
654 printf("INVALID DAG: not enabled\n");
655 retcode = 1;
656 goto validate_dag_bad;
657 }
658 if (dag_h->numCommits != 0) {
659 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
660 retcode = 1;
661 goto validate_dag_bad;
662 }
663 if (dag_h->numSuccedents != 1) {
664 /* currently, all dags must have only one succedent */
665 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
666 retcode = 1;
667 goto validate_dag_bad;
668 }
669 nodecount = rf_AssignNodeNums(dag_h);
670
671 unvisited = dag_h->succedents[0]->visited;
672
673 RF_Calloc(scount, nodecount, sizeof(int), (int *));
674 RF_Calloc(acount, nodecount, sizeof(int), (int *));
675 RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
676 for (i = 0; i < dag_h->numSuccedents; i++) {
677 if ((dag_h->succedents[i]->visited == unvisited)
678 && rf_ValidateBranch(dag_h->succedents[i], scount,
679 acount, nodes, unvisited)) {
680 retcode = 1;
681 }
682 }
683 /* start at 1 to skip the header node */
684 for (i = 1; i < nodecount; i++) {
685 if (nodes[i]->commitNode)
686 commitNodeCount++;
687 if (nodes[i]->doFunc == NULL) {
688 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
689 retcode = 1;
690 goto validate_dag_out;
691 }
692 if (nodes[i]->undoFunc == NULL) {
693 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
694 retcode = 1;
695 goto validate_dag_out;
696 }
697 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
698 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
699 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
700 retcode = 1;
701 goto validate_dag_out;
702 }
703 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
704 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
705 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
706 retcode = 1;
707 goto validate_dag_out;
708 }
709 }
710
711 if (dag_h->numCommitNodes != commitNodeCount) {
712 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
713 dag_h->numCommitNodes, commitNodeCount);
714 retcode = 1;
715 goto validate_dag_out;
716 }
717 validate_dag_out:
718 RF_Free(scount, nodecount * sizeof(int));
719 RF_Free(acount, nodecount * sizeof(int));
720 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
721 if (retcode)
722 rf_PrintDAGList(dag_h);
723
724 if (rf_validateVisitedDebug)
725 rf_ValidateVisitedBits(dag_h);
726
727 return (retcode);
728
729 validate_dag_bad:
730 rf_PrintDAGList(dag_h);
731 return (retcode);
732 }
733
734
735 /******************************************************************************
736 *
737 * misc construction routines
738 *
739 *****************************************************************************/
740
741 void
742 rf_redirect_asm(
743 RF_Raid_t * raidPtr,
744 RF_AccessStripeMap_t * asmap)
745 {
746 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
747 int row = asmap->physInfo->row;
748 int fcol = raidPtr->reconControl[row]->fcol;
749 int srow = raidPtr->reconControl[row]->spareRow;
750 int scol = raidPtr->reconControl[row]->spareCol;
751 RF_PhysDiskAddr_t *pda;
752
753 RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
754 for (pda = asmap->physInfo; pda; pda = pda->next) {
755 if (pda->col == fcol) {
756 if (rf_dagDebug) {
757 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
758 pda->startSector)) {
759 RF_PANIC();
760 }
761 }
762 /* printf("Remapped data for large write\n"); */
763 if (ds) {
764 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
765 &pda->row, &pda->col, &pda->startSector, RF_REMAP);
766 } else {
767 pda->row = srow;
768 pda->col = scol;
769 }
770 }
771 }
772 for (pda = asmap->parityInfo; pda; pda = pda->next) {
773 if (pda->col == fcol) {
774 if (rf_dagDebug) {
775 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
776 RF_PANIC();
777 }
778 }
779 }
780 if (ds) {
781 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
782 } else {
783 pda->row = srow;
784 pda->col = scol;
785 }
786 }
787 }
788
789
790 /* this routine allocates read buffers and generates stripe maps for the
791 * regions of the array from the start of the stripe to the start of the
792 * access, and from the end of the access to the end of the stripe. It also
793 * computes and returns the number of DAG nodes needed to read all this data.
794 * Note that this routine does the wrong thing if the access is fully
795 * contained within one stripe unit, so we RF_ASSERT against this case at the
796 * start.
797 */
798 void
799 rf_MapUnaccessedPortionOfStripe(
800 RF_Raid_t * raidPtr,
801 RF_RaidLayout_t * layoutPtr,/* in: layout information */
802 RF_AccessStripeMap_t * asmap, /* in: access stripe map */
803 RF_DagHeader_t * dag_h, /* in: header of the dag to create */
804 RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
805 * headers, to be filled in */
806 int *nRodNodes, /* out: num nodes to be generated to read
807 * unaccessed data */
808 char **sosBuffer, /* out: pointers to newly allocated buffer */
809 char **eosBuffer,
810 RF_AllocListElem_t * allocList)
811 {
812 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
813 RF_SectorNum_t sosNumSector, eosNumSector;
814
815 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
816 /* generate an access map for the region of the array from start of
817 * stripe to start of access */
818 new_asm_h[0] = new_asm_h[1] = NULL;
819 *nRodNodes = 0;
820 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
821 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
822 sosNumSector = asmap->raidAddress - sosRaidAddress;
823 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
824 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
825 new_asm_h[0]->next = dag_h->asmList;
826 dag_h->asmList = new_asm_h[0];
827 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
828
829 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
830 /* we're totally within one stripe here */
831 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
832 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
833 }
834 /* generate an access map for the region of the array from end of
835 * access to end of stripe */
836 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
837 eosRaidAddress = asmap->endRaidAddress;
838 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
839 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
840 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
841 new_asm_h[1]->next = dag_h->asmList;
842 dag_h->asmList = new_asm_h[1];
843 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
844
845 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
846 /* we're totally within one stripe here */
847 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
848 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
849 }
850 }
851
852
853
854 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
855 int
856 rf_PDAOverlap(
857 RF_RaidLayout_t * layoutPtr,
858 RF_PhysDiskAddr_t * src,
859 RF_PhysDiskAddr_t * dest)
860 {
861 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
862 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
863 /* use -1 to be sure we stay within SU */
864 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
865 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
866 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
867 }
868
869
870 /* GenerateFailedAccessASMs
871 *
872 * this routine figures out what portion of the stripe needs to be read
873 * to effect the degraded read or write operation. It's primary function
874 * is to identify everything required to recover the data, and then
875 * eliminate anything that is already being accessed by the user.
876 *
877 * The main result is two new ASMs, one for the region from the start of the
878 * stripe to the start of the access, and one for the region from the end of
879 * the access to the end of the stripe. These ASMs describe everything that
880 * needs to be read to effect the degraded access. Other results are:
881 * nXorBufs -- the total number of buffers that need to be XORed together to
882 * recover the lost data,
883 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
884 * at entry, not allocated.
885 * overlappingPDAs --
886 * describes which of the non-failed PDAs in the user access
887 * overlap data that needs to be read to effect recovery.
888 * overlappingPDAs[i]==1 if and only if, neglecting the failed
889 * PDA, the ith pda in the input asm overlaps data that needs
890 * to be read for recovery.
891 */
892 /* in: asm - ASM for the actual access, one stripe only */
893 /* in: faildPDA - which component of the access has failed */
894 /* in: dag_h - header of the DAG we're going to create */
895 /* out: new_asm_h - the two new ASMs */
896 /* out: nXorBufs - the total number of xor bufs required */
897 /* out: rpBufPtr - a buffer for the parity read */
898 void
899 rf_GenerateFailedAccessASMs(
900 RF_Raid_t * raidPtr,
901 RF_AccessStripeMap_t * asmap,
902 RF_PhysDiskAddr_t * failedPDA,
903 RF_DagHeader_t * dag_h,
904 RF_AccessStripeMapHeader_t ** new_asm_h,
905 int *nXorBufs,
906 char **rpBufPtr,
907 char *overlappingPDAs,
908 RF_AllocListElem_t * allocList)
909 {
910 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
911
912 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
913 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
914
915 RF_SectorCount_t numSect[2], numParitySect;
916 RF_PhysDiskAddr_t *pda;
917 char *rdBuf, *bufP;
918 int foundit, i;
919
920 bufP = NULL;
921 foundit = 0;
922 /* first compute the following raid addresses: start of stripe,
923 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
924 * MAX(end of access, end of failed SU), (eosStartAddr) end of
925 * stripe (i.e. start of next stripe) (eosAddr) */
926 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
927 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
928 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
929 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
930
931 /* now generate access stripe maps for each of the above regions of
932 * the stripe. Use a dummy (NULL) buf ptr for now */
933
934 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
935 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
936
937 /* walk through the PDAs and range-restrict each SU to the region of
938 * the SU touched on the failed PDA. also compute total data buffer
939 * space requirements in this step. Ignore the parity for now. */
940
941 numSect[0] = numSect[1] = 0;
942 if (new_asm_h[0]) {
943 new_asm_h[0]->next = dag_h->asmList;
944 dag_h->asmList = new_asm_h[0];
945 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
946 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
947 numSect[0] += pda->numSector;
948 }
949 }
950 if (new_asm_h[1]) {
951 new_asm_h[1]->next = dag_h->asmList;
952 dag_h->asmList = new_asm_h[1];
953 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
954 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
955 numSect[1] += pda->numSector;
956 }
957 }
958 numParitySect = failedPDA->numSector;
959
960 /* allocate buffer space for the data & parity we have to read to
961 * recover from the failure */
962
963 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
964 * buf if not needed */
965 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
966 bufP = rdBuf;
967 if (rf_degDagDebug)
968 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
969 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
970 }
971 /* now walk through the pdas one last time and assign buffer pointers
972 * (ugh!). Again, ignore the parity. also, count nodes to find out
973 * how many bufs need to be xored together */
974 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
975 * case, 1 is for failed data */
976 if (new_asm_h[0]) {
977 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
978 pda->bufPtr = bufP;
979 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
980 }
981 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
982 }
983 if (new_asm_h[1]) {
984 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
985 pda->bufPtr = bufP;
986 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
987 }
988 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
989 }
990 if (rpBufPtr)
991 *rpBufPtr = bufP; /* the rest of the buffer is for
992 * parity */
993
994 /* the last step is to figure out how many more distinct buffers need
995 * to get xor'd to produce the missing unit. there's one for each
996 * user-data read node that overlaps the portion of the failed unit
997 * being accessed */
998
999 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1000 if (pda == failedPDA) {
1001 i--;
1002 foundit = 1;
1003 continue;
1004 }
1005 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1006 overlappingPDAs[i] = 1;
1007 (*nXorBufs)++;
1008 }
1009 }
1010 if (!foundit) {
1011 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1012 RF_ASSERT(0);
1013 }
1014 if (rf_degDagDebug) {
1015 if (new_asm_h[0]) {
1016 printf("First asm:\n");
1017 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1018 }
1019 if (new_asm_h[1]) {
1020 printf("Second asm:\n");
1021 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1022 }
1023 }
1024 }
1025
1026
1027 /* adjusts the offset and number of sectors in the destination pda so that
1028 * it covers at most the region of the SU covered by the source PDA. This
1029 * is exclusively a restriction: the number of sectors indicated by the
1030 * target PDA can only shrink.
1031 *
1032 * For example: s = sectors within SU indicated by source PDA
1033 * d = sectors within SU indicated by dest PDA
1034 * r = results, stored in dest PDA
1035 *
1036 * |--------------- one stripe unit ---------------------|
1037 * | sssssssssssssssssssssssssssssssss |
1038 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1039 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1040 *
1041 * Another example:
1042 *
1043 * |--------------- one stripe unit ---------------------|
1044 * | sssssssssssssssssssssssssssssssss |
1045 * | ddddddddddddddddddddddd |
1046 * | rrrrrrrrrrrrrrrr |
1047 *
1048 */
1049 void
1050 rf_RangeRestrictPDA(
1051 RF_Raid_t * raidPtr,
1052 RF_PhysDiskAddr_t * src,
1053 RF_PhysDiskAddr_t * dest,
1054 int dobuffer,
1055 int doraidaddr)
1056 {
1057 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1058 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1059 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1060 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1061 * stay within SU */
1062 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1063 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1064
1065 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1066 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1067
1068 if (dobuffer)
1069 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1070 if (doraidaddr) {
1071 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1072 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1073 }
1074 }
1075 /*
1076 * Want the highest of these primes to be the largest one
1077 * less than the max expected number of columns (won't hurt
1078 * to be too small or too large, but won't be optimal, either)
1079 * --jimz
1080 */
1081 #define NLOWPRIMES 8
1082 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1083 /*****************************************************************************
1084 * compute the workload shift factor. (chained declustering)
1085 *
1086 * return nonzero if access should shift to secondary, otherwise,
1087 * access is to primary
1088 *****************************************************************************/
1089 int
1090 rf_compute_workload_shift(
1091 RF_Raid_t * raidPtr,
1092 RF_PhysDiskAddr_t * pda)
1093 {
1094 /*
1095 * variables:
1096 * d = column of disk containing primary
1097 * f = column of failed disk
1098 * n = number of disks in array
1099 * sd = "shift distance" (number of columns that d is to the right of f)
1100 * row = row of array the access is in
1101 * v = numerator of redirection ratio
1102 * k = denominator of redirection ratio
1103 */
1104 RF_RowCol_t d, f, sd, row, n;
1105 int k, v, ret, i;
1106
1107 row = pda->row;
1108 n = raidPtr->numCol;
1109
1110 /* assign column of primary copy to d */
1111 d = pda->col;
1112
1113 /* assign column of dead disk to f */
1114 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1115
1116 RF_ASSERT(f < n);
1117 RF_ASSERT(f != d);
1118
1119 sd = (f > d) ? (n + d - f) : (d - f);
1120 RF_ASSERT(sd < n);
1121
1122 /*
1123 * v of every k accesses should be redirected
1124 *
1125 * v/k := (n-1-sd)/(n-1)
1126 */
1127 v = (n - 1 - sd);
1128 k = (n - 1);
1129
1130 #if 1
1131 /*
1132 * XXX
1133 * Is this worth it?
1134 *
1135 * Now reduce the fraction, by repeatedly factoring
1136 * out primes (just like they teach in elementary school!)
1137 */
1138 for (i = 0; i < NLOWPRIMES; i++) {
1139 if (lowprimes[i] > v)
1140 break;
1141 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1142 v /= lowprimes[i];
1143 k /= lowprimes[i];
1144 }
1145 }
1146 #endif
1147
1148 raidPtr->hist_diskreq[row][d]++;
1149 if (raidPtr->hist_diskreq[row][d] > v) {
1150 ret = 0; /* do not redirect */
1151 } else {
1152 ret = 1; /* redirect */
1153 }
1154
1155 #if 0
1156 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1157 raidPtr->hist_diskreq[row][d]);
1158 #endif
1159
1160 if (raidPtr->hist_diskreq[row][d] >= k) {
1161 /* reset counter */
1162 raidPtr->hist_diskreq[row][d] = 0;
1163 }
1164 return (ret);
1165 }
1166 /*
1167 * Disk selection routines
1168 */
1169
1170 /*
1171 * Selects the disk with the shortest queue from a mirror pair.
1172 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1173 * disk are counted as members of the "queue"
1174 */
1175 void
1176 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1177 {
1178 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1179 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1180 int dataQueueLength, mirrorQueueLength, usemirror;
1181 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1182 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1183 RF_PhysDiskAddr_t *tmp_pda;
1184 RF_RaidDisk_t **disks = raidPtr->Disks;
1185 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1186
1187 /* return the [row col] of the disk with the shortest queue */
1188 rowData = data_pda->row;
1189 colData = data_pda->col;
1190 rowMirror = mirror_pda->row;
1191 colMirror = mirror_pda->col;
1192 dataQueue = &(dqs[rowData][colData]);
1193 mirrorQueue = &(dqs[rowMirror][colMirror]);
1194
1195 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1196 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1197 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1198 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1199 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1200 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1201 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1202 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1203 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1204 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1205 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1206 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1207
1208 usemirror = 0;
1209 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1210 usemirror = 0;
1211 } else
1212 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1213 usemirror = 1;
1214 } else
1215 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1216 /* Trust only the main disk */
1217 usemirror = 0;
1218 } else
1219 if (dataQueueLength < mirrorQueueLength) {
1220 usemirror = 0;
1221 } else
1222 if (mirrorQueueLength < dataQueueLength) {
1223 usemirror = 1;
1224 } else {
1225 /* queues are equal length. attempt
1226 * cleverness. */
1227 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1228 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1229 usemirror = 0;
1230 } else {
1231 usemirror = 1;
1232 }
1233 }
1234
1235 if (usemirror) {
1236 /* use mirror (parity) disk, swap params 0 & 4 */
1237 tmp_pda = data_pda;
1238 node->params[0].p = mirror_pda;
1239 node->params[4].p = tmp_pda;
1240 } else {
1241 /* use data disk, leave param 0 unchanged */
1242 }
1243 /* printf("dataQueueLength %d, mirrorQueueLength
1244 * %d\n",dataQueueLength, mirrorQueueLength); */
1245 }
1246 /*
1247 * Do simple partitioning. This assumes that
1248 * the data and parity disks are laid out identically.
1249 */
1250 void
1251 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1252 {
1253 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1254 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1255 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1256 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1257 RF_PhysDiskAddr_t *tmp_pda;
1258 RF_RaidDisk_t **disks = raidPtr->Disks;
1259 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1260 int usemirror;
1261
1262 /* return the [row col] of the disk with the shortest queue */
1263 rowData = data_pda->row;
1264 colData = data_pda->col;
1265 rowMirror = mirror_pda->row;
1266 colMirror = mirror_pda->col;
1267 dataQueue = &(dqs[rowData][colData]);
1268 mirrorQueue = &(dqs[rowMirror][colMirror]);
1269
1270 usemirror = 0;
1271 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1272 usemirror = 0;
1273 } else
1274 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1275 usemirror = 1;
1276 } else
1277 if (data_pda->startSector < (disks[rowData][colData].numBlocks / 2)) {
1278 usemirror = 0;
1279 } else {
1280 usemirror = 1;
1281 }
1282
1283 if (usemirror) {
1284 /* use mirror (parity) disk, swap params 0 & 4 */
1285 tmp_pda = data_pda;
1286 node->params[0].p = mirror_pda;
1287 node->params[4].p = tmp_pda;
1288 } else {
1289 /* use data disk, leave param 0 unchanged */
1290 }
1291 }
1292