Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.50
      1 /*	$NetBSD: rf_dagutils.c,v 1.50 2006/11/16 01:33:23 christos Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.50 2006/11/16 01:33:23 christos Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_map.h"
     48 #include "rf_shutdown.h"
     49 
     50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51 
     52 const RF_RedFuncs_t rf_xorFuncs = {
     53 	rf_RegularXorFunc, "Reg Xr",
     54 	rf_SimpleXorFunc, "Simple Xr"};
     55 
     56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57 	rf_RecoveryXorFunc, "Recovery Xr",
     58 	rf_RecoveryXorFunc, "Recovery Xr"};
     59 
     60 #if RF_DEBUG_VALIDATE_DAG
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64 			     RF_DagNode_t **, int);
     65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67 #endif /* RF_DEBUG_VALIDATE_DAG */
     68 
     69 /* The maximum number of nodes in a DAG is bounded by
     70 
     71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72 	(1 * 2 * layoutPtr->numParityCol) + 3
     73 
     74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75 
     76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79 have a few kicking around.
     80 */
     81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82 
     83 
     84 /******************************************************************************
     85  *
     86  * InitNode - initialize a dag node
     87  *
     88  * the size of the propList array is always the same as that of the
     89  * successors array.
     90  *
     91  *****************************************************************************/
     92 void
     93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94     int (*doFunc) (RF_DagNode_t *node),
     95     int (*undoFunc) (RF_DagNode_t *node),
     96     int (*wakeFunc) (RF_DagNode_t *node, int status),
     97     int nSucc, int nAnte, int nParam, int nResult,
     98     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99 {
    100 	void  **ptrs;
    101 	int     nptrs;
    102 
    103 	if (nAnte > RF_MAX_ANTECEDENTS)
    104 		RF_PANIC();
    105 	node->status = initstatus;
    106 	node->commitNode = commit;
    107 	node->doFunc = doFunc;
    108 	node->undoFunc = undoFunc;
    109 	node->wakeFunc = wakeFunc;
    110 	node->numParams = nParam;
    111 	node->numResults = nResult;
    112 	node->numAntecedents = nAnte;
    113 	node->numAntDone = 0;
    114 	node->next = NULL;
    115 	/* node->list_next = NULL */  /* Don't touch this here!
    116 	                                 It may already be
    117 					 in use by the caller! */
    118 	node->numSuccedents = nSucc;
    119 	node->name = name;
    120 	node->dagHdr = hdr;
    121 	node->big_dag_ptrs = NULL;
    122 	node->big_dag_params = NULL;
    123 	node->visited = 0;
    124 
    125 	/* allocate all the pointers with one call to malloc */
    126 	nptrs = nSucc + nAnte + nResult + nSucc;
    127 
    128 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    129 		/*
    130 	         * The dag_ptrs field of the node is basically some scribble
    131 	         * space to be used here. We could get rid of it, and always
    132 	         * allocate the range of pointers, but that's expensive. So,
    133 	         * we pick a "common case" size for the pointer cache. Hopefully,
    134 	         * we'll find that:
    135 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    136 	         *     only a little bit (least efficient case)
    137 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    138 	         *     (wasted memory)
    139 	         */
    140 		ptrs = (void **) node->dag_ptrs;
    141 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    142 		node->big_dag_ptrs = rf_AllocDAGPCache();
    143 		ptrs = (void **) node->big_dag_ptrs;
    144 	} else {
    145 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
    146 				(void **), alist);
    147 	}
    148 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    149 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    150 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    151 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    152 
    153 	if (nParam) {
    154 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    155 			node->params = (RF_DagParam_t *) node->dag_params;
    156 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    157 			node->big_dag_params = rf_AllocDAGPCache();
    158 			node->params = node->big_dag_params;
    159 		} else {
    160 			RF_MallocAndAdd(node->params,
    161 					nParam * sizeof(RF_DagParam_t),
    162 					(RF_DagParam_t *), alist);
    163 		}
    164 	} else {
    165 		node->params = NULL;
    166 	}
    167 }
    168 
    169 
    170 
    171 /******************************************************************************
    172  *
    173  * allocation and deallocation routines
    174  *
    175  *****************************************************************************/
    176 
    177 void
    178 rf_FreeDAG(RF_DagHeader_t *dag_h)
    179 {
    180 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    181 	RF_PhysDiskAddr_t *pda;
    182 	RF_DagNode_t *tmpnode;
    183 	RF_DagHeader_t *nextDag;
    184 
    185 	while (dag_h) {
    186 		nextDag = dag_h->next;
    187 		rf_FreeAllocList(dag_h->allocList);
    188 		for (asmap = dag_h->asmList; asmap;) {
    189 			t_asmap = asmap;
    190 			asmap = asmap->next;
    191 			rf_FreeAccessStripeMap(t_asmap);
    192 		}
    193 		while (dag_h->pda_cleanup_list) {
    194 			pda = dag_h->pda_cleanup_list;
    195 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    196 			rf_FreePhysDiskAddr(pda);
    197 		}
    198 		while (dag_h->nodes) {
    199 			tmpnode = dag_h->nodes;
    200 			dag_h->nodes = dag_h->nodes->list_next;
    201 			rf_FreeDAGNode(tmpnode);
    202 		}
    203 		rf_FreeDAGHeader(dag_h);
    204 		dag_h = nextDag;
    205 	}
    206 }
    207 
    208 #define RF_MAX_FREE_DAGH 128
    209 #define RF_MIN_FREE_DAGH  32
    210 
    211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    213 
    214 #define RF_MAX_FREE_DAGLIST 128
    215 #define RF_MIN_FREE_DAGLIST  32
    216 
    217 #define RF_MAX_FREE_DAGPCACHE 128
    218 #define RF_MIN_FREE_DAGPCACHE   8
    219 
    220 #define RF_MAX_FREE_FUNCLIST 128
    221 #define RF_MIN_FREE_FUNCLIST  32
    222 
    223 #define RF_MAX_FREE_BUFFERS 128
    224 #define RF_MIN_FREE_BUFFERS  32
    225 
    226 static void rf_ShutdownDAGs(void *);
    227 static void
    228 rf_ShutdownDAGs(void *ignored)
    229 {
    230 	pool_destroy(&rf_pools.dagh);
    231 	pool_destroy(&rf_pools.dagnode);
    232 	pool_destroy(&rf_pools.daglist);
    233 	pool_destroy(&rf_pools.dagpcache);
    234 	pool_destroy(&rf_pools.funclist);
    235 }
    236 
    237 int
    238 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    239 {
    240 
    241 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    242 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    243 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    244 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    245 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    246 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    247 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    248 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    249 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    250 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    251 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    252 
    253 	return (0);
    254 }
    255 
    256 RF_DagHeader_t *
    257 rf_AllocDAGHeader()
    258 {
    259 	RF_DagHeader_t *dh;
    260 
    261 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    262 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    263 	return (dh);
    264 }
    265 
    266 void
    267 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    268 {
    269 	pool_put(&rf_pools.dagh, dh);
    270 }
    271 
    272 RF_DagNode_t *
    273 rf_AllocDAGNode()
    274 {
    275 	RF_DagNode_t *node;
    276 
    277 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    278 	memset(node, 0, sizeof(RF_DagNode_t));
    279 	return (node);
    280 }
    281 
    282 void
    283 rf_FreeDAGNode(RF_DagNode_t *node)
    284 {
    285 	if (node->big_dag_ptrs) {
    286 		rf_FreeDAGPCache(node->big_dag_ptrs);
    287 	}
    288 	if (node->big_dag_params) {
    289 		rf_FreeDAGPCache(node->big_dag_params);
    290 	}
    291 	pool_put(&rf_pools.dagnode, node);
    292 }
    293 
    294 RF_DagList_t *
    295 rf_AllocDAGList()
    296 {
    297 	RF_DagList_t *dagList;
    298 
    299 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    300 	memset(dagList, 0, sizeof(RF_DagList_t));
    301 
    302 	return (dagList);
    303 }
    304 
    305 void
    306 rf_FreeDAGList(RF_DagList_t *dagList)
    307 {
    308 	pool_put(&rf_pools.daglist, dagList);
    309 }
    310 
    311 void *
    312 rf_AllocDAGPCache()
    313 {
    314 	void *p;
    315 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    316 	memset(p, 0, RF_DAGPCACHE_SIZE);
    317 
    318 	return (p);
    319 }
    320 
    321 void
    322 rf_FreeDAGPCache(void *p)
    323 {
    324 	pool_put(&rf_pools.dagpcache, p);
    325 }
    326 
    327 RF_FuncList_t *
    328 rf_AllocFuncList()
    329 {
    330 	RF_FuncList_t *funcList;
    331 
    332 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    333 	memset(funcList, 0, sizeof(RF_FuncList_t));
    334 
    335 	return (funcList);
    336 }
    337 
    338 void
    339 rf_FreeFuncList(RF_FuncList_t *funcList)
    340 {
    341 	pool_put(&rf_pools.funclist, funcList);
    342 }
    343 
    344 /* allocates a stripe buffer -- a buffer large enough to hold all the data
    345    in an entire stripe.
    346 */
    347 
    348 void *
    349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    350     int size)
    351 {
    352 	RF_VoidPointerListElem_t *vple;
    353 	void *p;
    354 
    355 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    356 					       raidPtr->logBytesPerSector))));
    357 
    358 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    359 					raidPtr->logBytesPerSector),
    360 		     M_RAIDFRAME, M_NOWAIT);
    361 	if (!p) {
    362 		RF_LOCK_MUTEX(raidPtr->mutex);
    363 		if (raidPtr->stripebuf_count > 0) {
    364 			vple = raidPtr->stripebuf;
    365 			raidPtr->stripebuf = vple->next;
    366 			p = vple->p;
    367 			rf_FreeVPListElem(vple);
    368 			raidPtr->stripebuf_count--;
    369 		} else {
    370 #ifdef DIAGNOSTIC
    371 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    372 #endif
    373 		}
    374 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    375 		if (!p) {
    376 			/* We didn't get a buffer... not much we can do other than wait,
    377 			   and hope that someone frees up memory for us.. */
    378 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    379 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    380 		}
    381 	}
    382 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    383 
    384 	vple = rf_AllocVPListElem();
    385 	vple->p = p;
    386         vple->next = dag_h->desc->stripebufs;
    387         dag_h->desc->stripebufs = vple;
    388 
    389 	return (p);
    390 }
    391 
    392 
    393 void
    394 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    395 {
    396 	RF_LOCK_MUTEX(raidPtr->mutex);
    397 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    398 		/* just tack it in */
    399 		vple->next = raidPtr->stripebuf;
    400 		raidPtr->stripebuf = vple;
    401 		raidPtr->stripebuf_count++;
    402 	} else {
    403 		free(vple->p, M_RAIDFRAME);
    404 		rf_FreeVPListElem(vple);
    405 	}
    406 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    407 }
    408 
    409 /* allocates a buffer big enough to hold the data described by the
    410 caller (ie. the data of the associated PDA).  Glue this buffer
    411 into our dag_h cleanup structure. */
    412 
    413 void *
    414 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    415 {
    416 	RF_VoidPointerListElem_t *vple;
    417 	void *p;
    418 
    419 	p = rf_AllocIOBuffer(raidPtr, size);
    420 	vple = rf_AllocVPListElem();
    421 	vple->p = p;
    422 	vple->next = dag_h->desc->iobufs;
    423 	dag_h->desc->iobufs = vple;
    424 
    425 	return (p);
    426 }
    427 
    428 void *
    429 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    430 {
    431 	RF_VoidPointerListElem_t *vple;
    432 	void *p;
    433 
    434 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    435 			   raidPtr->logBytesPerSector)));
    436 
    437 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    438 				 raidPtr->logBytesPerSector,
    439 				 M_RAIDFRAME, M_NOWAIT);
    440 	if (!p) {
    441 		RF_LOCK_MUTEX(raidPtr->mutex);
    442 		if (raidPtr->iobuf_count > 0) {
    443 			vple = raidPtr->iobuf;
    444 			raidPtr->iobuf = vple->next;
    445 			p = vple->p;
    446 			rf_FreeVPListElem(vple);
    447 			raidPtr->iobuf_count--;
    448 		} else {
    449 #ifdef DIAGNOSTIC
    450 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    451 #endif
    452 		}
    453 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    454 		if (!p) {
    455 			/* We didn't get a buffer... not much we can do other than wait,
    456 			   and hope that someone frees up memory for us.. */
    457 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    458 				    raidPtr->logBytesPerSector,
    459 				    M_RAIDFRAME, M_WAITOK);
    460 		}
    461 	}
    462 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    463 	return (p);
    464 }
    465 
    466 void
    467 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    468 {
    469 	RF_LOCK_MUTEX(raidPtr->mutex);
    470 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    471 		/* just tack it in */
    472 		vple->next = raidPtr->iobuf;
    473 		raidPtr->iobuf = vple;
    474 		raidPtr->iobuf_count++;
    475 	} else {
    476 		free(vple->p, M_RAIDFRAME);
    477 		rf_FreeVPListElem(vple);
    478 	}
    479 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    480 }
    481 
    482 
    483 
    484 #if RF_DEBUG_VALIDATE_DAG
    485 /******************************************************************************
    486  *
    487  * debug routines
    488  *
    489  *****************************************************************************/
    490 
    491 char   *
    492 rf_NodeStatusString(RF_DagNode_t *node)
    493 {
    494 	switch (node->status) {
    495 	case rf_wait:
    496 		return ("wait");
    497 	case rf_fired:
    498 		return ("fired");
    499 	case rf_good:
    500 		return ("good");
    501 	case rf_bad:
    502 		return ("bad");
    503 	default:
    504 		return ("?");
    505 	}
    506 }
    507 
    508 void
    509 rf_PrintNodeInfoString(RF_DagNode_t *node)
    510 {
    511 	RF_PhysDiskAddr_t *pda;
    512 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    513 	int     i, lk, unlk;
    514 	void   *bufPtr;
    515 
    516 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    517 	    || (df == rf_DiskReadMirrorIdleFunc)
    518 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    519 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    520 		bufPtr = (void *) node->params[1].p;
    521 		lk = 0;
    522 		unlk = 0;
    523 		RF_ASSERT(!(lk && unlk));
    524 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    525 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    526 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    527 		return;
    528 	}
    529 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    530 	    || (df == rf_RecoveryXorFunc)) {
    531 		printf("result buf 0x%lx\n", (long) node->results[0]);
    532 		for (i = 0; i < node->numParams - 1; i += 2) {
    533 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    534 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    535 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    536 			    (long) bufPtr, pda->col,
    537 			    (long) pda->startSector, (int) pda->numSector);
    538 		}
    539 		return;
    540 	}
    541 #if RF_INCLUDE_PARITYLOGGING > 0
    542 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    543 		for (i = 0; i < node->numParams - 1; i += 2) {
    544 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    545 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    546 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    547 			    pda->col, (long) pda->startSector,
    548 			    (int) pda->numSector, (long) bufPtr);
    549 		}
    550 		return;
    551 	}
    552 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    553 
    554 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    555 		printf("\n");
    556 		return;
    557 	}
    558 	printf("?\n");
    559 }
    560 #ifdef DEBUG
    561 static void
    562 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    563 {
    564 	char   *anttype;
    565 	int     i;
    566 
    567 	node->visited = (unvisited) ? 0 : 1;
    568 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    569 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    570 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    571 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    572 	for (i = 0; i < node->numSuccedents; i++) {
    573 		printf("%d%s", node->succedents[i]->nodeNum,
    574 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    575 	}
    576 	printf("} A{");
    577 	for (i = 0; i < node->numAntecedents; i++) {
    578 		switch (node->antType[i]) {
    579 		case rf_trueData:
    580 			anttype = "T";
    581 			break;
    582 		case rf_antiData:
    583 			anttype = "A";
    584 			break;
    585 		case rf_outputData:
    586 			anttype = "O";
    587 			break;
    588 		case rf_control:
    589 			anttype = "C";
    590 			break;
    591 		default:
    592 			anttype = "?";
    593 			break;
    594 		}
    595 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    596 	}
    597 	printf("}; ");
    598 	rf_PrintNodeInfoString(node);
    599 	for (i = 0; i < node->numSuccedents; i++) {
    600 		if (node->succedents[i]->visited == unvisited)
    601 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    602 	}
    603 }
    604 
    605 static void
    606 rf_PrintDAG(RF_DagHeader_t *dag_h)
    607 {
    608 	int     unvisited, i;
    609 	char   *status;
    610 
    611 	/* set dag status */
    612 	switch (dag_h->status) {
    613 	case rf_enable:
    614 		status = "enable";
    615 		break;
    616 	case rf_rollForward:
    617 		status = "rollForward";
    618 		break;
    619 	case rf_rollBackward:
    620 		status = "rollBackward";
    621 		break;
    622 	default:
    623 		status = "illegal!";
    624 		break;
    625 	}
    626 	/* find out if visited bits are currently set or clear */
    627 	unvisited = dag_h->succedents[0]->visited;
    628 
    629 	printf("DAG type:  %s\n", dag_h->creator);
    630 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    631 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    632 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    633 	for (i = 0; i < dag_h->numSuccedents; i++) {
    634 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    635 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    636 	}
    637 	printf("};\n");
    638 	for (i = 0; i < dag_h->numSuccedents; i++) {
    639 		if (dag_h->succedents[i]->visited == unvisited)
    640 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    641 	}
    642 }
    643 #endif
    644 /* assigns node numbers */
    645 int
    646 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    647 {
    648 	int     unvisited, i, nnum;
    649 	RF_DagNode_t *node;
    650 
    651 	nnum = 0;
    652 	unvisited = dag_h->succedents[0]->visited;
    653 
    654 	dag_h->nodeNum = nnum++;
    655 	for (i = 0; i < dag_h->numSuccedents; i++) {
    656 		node = dag_h->succedents[i];
    657 		if (node->visited == unvisited) {
    658 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    659 		}
    660 	}
    661 	return (nnum);
    662 }
    663 
    664 int
    665 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    666 {
    667 	int     i;
    668 
    669 	node->visited = (unvisited) ? 0 : 1;
    670 
    671 	node->nodeNum = num++;
    672 	for (i = 0; i < node->numSuccedents; i++) {
    673 		if (node->succedents[i]->visited == unvisited) {
    674 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    675 		}
    676 	}
    677 	return (num);
    678 }
    679 /* set the header pointers in each node to "newptr" */
    680 void
    681 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    682 {
    683 	int     i;
    684 	for (i = 0; i < dag_h->numSuccedents; i++)
    685 		if (dag_h->succedents[i]->dagHdr != newptr)
    686 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    687 }
    688 
    689 void
    690 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    691 {
    692 	int     i;
    693 	node->dagHdr = newptr;
    694 	for (i = 0; i < node->numSuccedents; i++)
    695 		if (node->succedents[i]->dagHdr != newptr)
    696 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    697 }
    698 
    699 
    700 void
    701 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    702 {
    703 	int     i = 0;
    704 
    705 	for (; dag_h; dag_h = dag_h->next) {
    706 		rf_AssignNodeNums(dag_h);
    707 		printf("\n\nDAG %d IN LIST:\n", i++);
    708 		rf_PrintDAG(dag_h);
    709 	}
    710 }
    711 
    712 static int
    713 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    714 		  RF_DagNode_t **nodes, int unvisited)
    715 {
    716 	int     i, retcode = 0;
    717 
    718 	/* construct an array of node pointers indexed by node num */
    719 	node->visited = (unvisited) ? 0 : 1;
    720 	nodes[node->nodeNum] = node;
    721 
    722 	if (node->next != NULL) {
    723 		printf("INVALID DAG: next pointer in node is not NULL\n");
    724 		retcode = 1;
    725 	}
    726 	if (node->status != rf_wait) {
    727 		printf("INVALID DAG: Node status is not wait\n");
    728 		retcode = 1;
    729 	}
    730 	if (node->numAntDone != 0) {
    731 		printf("INVALID DAG: numAntDone is not zero\n");
    732 		retcode = 1;
    733 	}
    734 	if (node->doFunc == rf_TerminateFunc) {
    735 		if (node->numSuccedents != 0) {
    736 			printf("INVALID DAG: Terminator node has succedents\n");
    737 			retcode = 1;
    738 		}
    739 	} else {
    740 		if (node->numSuccedents == 0) {
    741 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    742 			retcode = 1;
    743 		}
    744 	}
    745 	for (i = 0; i < node->numSuccedents; i++) {
    746 		if (!node->succedents[i]) {
    747 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    748 			retcode = 1;
    749 		}
    750 		scount[node->succedents[i]->nodeNum]++;
    751 	}
    752 	for (i = 0; i < node->numAntecedents; i++) {
    753 		if (!node->antecedents[i]) {
    754 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    755 			retcode = 1;
    756 		}
    757 		acount[node->antecedents[i]->nodeNum]++;
    758 	}
    759 	for (i = 0; i < node->numSuccedents; i++) {
    760 		if (node->succedents[i]->visited == unvisited) {
    761 			if (rf_ValidateBranch(node->succedents[i], scount,
    762 				acount, nodes, unvisited)) {
    763 				retcode = 1;
    764 			}
    765 		}
    766 	}
    767 	return (retcode);
    768 }
    769 
    770 static void
    771 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    772 {
    773 	int     i;
    774 
    775 	RF_ASSERT(node->visited == unvisited);
    776 	for (i = 0; i < node->numSuccedents; i++) {
    777 		if (node->succedents[i] == NULL) {
    778 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    779 			RF_ASSERT(0);
    780 		}
    781 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    782 	}
    783 }
    784 /* NOTE:  never call this on a big dag, because it is exponential
    785  * in execution time
    786  */
    787 static void
    788 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    789 {
    790 	int     i, unvisited;
    791 
    792 	unvisited = dag->succedents[0]->visited;
    793 
    794 	for (i = 0; i < dag->numSuccedents; i++) {
    795 		if (dag->succedents[i] == NULL) {
    796 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    797 			RF_ASSERT(0);
    798 		}
    799 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    800 	}
    801 }
    802 /* validate a DAG.  _at entry_ verify that:
    803  *   -- numNodesCompleted is zero
    804  *   -- node queue is null
    805  *   -- dag status is rf_enable
    806  *   -- next pointer is null on every node
    807  *   -- all nodes have status wait
    808  *   -- numAntDone is zero in all nodes
    809  *   -- terminator node has zero successors
    810  *   -- no other node besides terminator has zero successors
    811  *   -- no successor or antecedent pointer in a node is NULL
    812  *   -- number of times that each node appears as a successor of another node
    813  *      is equal to the antecedent count on that node
    814  *   -- number of times that each node appears as an antecedent of another node
    815  *      is equal to the succedent count on that node
    816  *   -- what else?
    817  */
    818 int
    819 rf_ValidateDAG(RF_DagHeader_t *dag_h)
    820 {
    821 	int     i, nodecount;
    822 	int    *scount, *acount;/* per-node successor and antecedent counts */
    823 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    824 	int     retcode = 0;
    825 	int     unvisited;
    826 	int     commitNodeCount = 0;
    827 
    828 	if (rf_validateVisitedDebug)
    829 		rf_ValidateVisitedBits(dag_h);
    830 
    831 	if (dag_h->numNodesCompleted != 0) {
    832 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    833 		retcode = 1;
    834 		goto validate_dag_bad;
    835 	}
    836 	if (dag_h->status != rf_enable) {
    837 		printf("INVALID DAG: not enabled\n");
    838 		retcode = 1;
    839 		goto validate_dag_bad;
    840 	}
    841 	if (dag_h->numCommits != 0) {
    842 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    843 		retcode = 1;
    844 		goto validate_dag_bad;
    845 	}
    846 	if (dag_h->numSuccedents != 1) {
    847 		/* currently, all dags must have only one succedent */
    848 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    849 		retcode = 1;
    850 		goto validate_dag_bad;
    851 	}
    852 	nodecount = rf_AssignNodeNums(dag_h);
    853 
    854 	unvisited = dag_h->succedents[0]->visited;
    855 
    856 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
    857 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
    858 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
    859 		  (RF_DagNode_t **));
    860 	for (i = 0; i < dag_h->numSuccedents; i++) {
    861 		if ((dag_h->succedents[i]->visited == unvisited)
    862 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    863 			acount, nodes, unvisited)) {
    864 			retcode = 1;
    865 		}
    866 	}
    867 	/* start at 1 to skip the header node */
    868 	for (i = 1; i < nodecount; i++) {
    869 		if (nodes[i]->commitNode)
    870 			commitNodeCount++;
    871 		if (nodes[i]->doFunc == NULL) {
    872 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    873 			retcode = 1;
    874 			goto validate_dag_out;
    875 		}
    876 		if (nodes[i]->undoFunc == NULL) {
    877 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    878 			retcode = 1;
    879 			goto validate_dag_out;
    880 		}
    881 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    882 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    883 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    884 			retcode = 1;
    885 			goto validate_dag_out;
    886 		}
    887 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    888 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    889 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    890 			retcode = 1;
    891 			goto validate_dag_out;
    892 		}
    893 	}
    894 
    895 	if (dag_h->numCommitNodes != commitNodeCount) {
    896 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    897 		    dag_h->numCommitNodes, commitNodeCount);
    898 		retcode = 1;
    899 		goto validate_dag_out;
    900 	}
    901 validate_dag_out:
    902 	RF_Free(scount, nodecount * sizeof(int));
    903 	RF_Free(acount, nodecount * sizeof(int));
    904 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    905 	if (retcode)
    906 		rf_PrintDAGList(dag_h);
    907 
    908 	if (rf_validateVisitedDebug)
    909 		rf_ValidateVisitedBits(dag_h);
    910 
    911 	return (retcode);
    912 
    913 validate_dag_bad:
    914 	rf_PrintDAGList(dag_h);
    915 	return (retcode);
    916 }
    917 
    918 #endif /* RF_DEBUG_VALIDATE_DAG */
    919 
    920 /******************************************************************************
    921  *
    922  * misc construction routines
    923  *
    924  *****************************************************************************/
    925 
    926 void
    927 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    928 {
    929 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    930 	int     fcol = raidPtr->reconControl->fcol;
    931 	int     scol = raidPtr->reconControl->spareCol;
    932 	RF_PhysDiskAddr_t *pda;
    933 
    934 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    935 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    936 		if (pda->col == fcol) {
    937 #if RF_DEBUG_DAG
    938 			if (rf_dagDebug) {
    939 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    940 					pda->startSector)) {
    941 					RF_PANIC();
    942 				}
    943 			}
    944 #endif
    945 			/* printf("Remapped data for large write\n"); */
    946 			if (ds) {
    947 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    948 				    &pda->col, &pda->startSector, RF_REMAP);
    949 			} else {
    950 				pda->col = scol;
    951 			}
    952 		}
    953 	}
    954 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    955 		if (pda->col == fcol) {
    956 #if RF_DEBUG_DAG
    957 			if (rf_dagDebug) {
    958 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    959 					RF_PANIC();
    960 				}
    961 			}
    962 #endif
    963 		}
    964 		if (ds) {
    965 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    966 		} else {
    967 			pda->col = scol;
    968 		}
    969 	}
    970 }
    971 
    972 
    973 /* this routine allocates read buffers and generates stripe maps for the
    974  * regions of the array from the start of the stripe to the start of the
    975  * access, and from the end of the access to the end of the stripe.  It also
    976  * computes and returns the number of DAG nodes needed to read all this data.
    977  * Note that this routine does the wrong thing if the access is fully
    978  * contained within one stripe unit, so we RF_ASSERT against this case at the
    979  * start.
    980  *
    981  * layoutPtr - in: layout information
    982  * asmap     - in: access stripe map
    983  * dag_h     - in: header of the dag to create
    984  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    985  * nRodNodes - out: num nodes to be generated to read unaccessed data
    986  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    987  */
    988 void
    989 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    990 				RF_RaidLayout_t *layoutPtr,
    991 				RF_AccessStripeMap_t *asmap,
    992 				RF_DagHeader_t *dag_h,
    993 				RF_AccessStripeMapHeader_t **new_asm_h,
    994 				int *nRodNodes,
    995 				char **sosBuffer, char **eosBuffer,
    996 				RF_AllocListElem_t *allocList)
    997 {
    998 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    999 	RF_SectorNum_t sosNumSector, eosNumSector;
   1000 
   1001 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
   1002 	/* generate an access map for the region of the array from start of
   1003 	 * stripe to start of access */
   1004 	new_asm_h[0] = new_asm_h[1] = NULL;
   1005 	*nRodNodes = 0;
   1006 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
   1007 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1008 		sosNumSector = asmap->raidAddress - sosRaidAddress;
   1009 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
   1010 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
   1011 		new_asm_h[0]->next = dag_h->asmList;
   1012 		dag_h->asmList = new_asm_h[0];
   1013 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1014 
   1015 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1016 		/* we're totally within one stripe here */
   1017 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1018 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1019 	}
   1020 	/* generate an access map for the region of the array from end of
   1021 	 * access to end of stripe */
   1022 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1023 		eosRaidAddress = asmap->endRaidAddress;
   1024 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1025 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1026 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1027 		new_asm_h[1]->next = dag_h->asmList;
   1028 		dag_h->asmList = new_asm_h[1];
   1029 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1030 
   1031 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1032 		/* we're totally within one stripe here */
   1033 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1034 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1035 	}
   1036 }
   1037 
   1038 
   1039 
   1040 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1041 int
   1042 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1043 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1044 {
   1045 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1046 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1047 	/* use -1 to be sure we stay within SU */
   1048 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1049 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1050 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1051 }
   1052 
   1053 
   1054 /* GenerateFailedAccessASMs
   1055  *
   1056  * this routine figures out what portion of the stripe needs to be read
   1057  * to effect the degraded read or write operation.  It's primary function
   1058  * is to identify everything required to recover the data, and then
   1059  * eliminate anything that is already being accessed by the user.
   1060  *
   1061  * The main result is two new ASMs, one for the region from the start of the
   1062  * stripe to the start of the access, and one for the region from the end of
   1063  * the access to the end of the stripe.  These ASMs describe everything that
   1064  * needs to be read to effect the degraded access.  Other results are:
   1065  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1066  *                recover the lost data,
   1067  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1068  *                at entry, not allocated.
   1069  *    overlappingPDAs --
   1070  *                describes which of the non-failed PDAs in the user access
   1071  *                overlap data that needs to be read to effect recovery.
   1072  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1073  *                PDA, the ith pda in the input asm overlaps data that needs
   1074  *                to be read for recovery.
   1075  */
   1076  /* in: asm - ASM for the actual access, one stripe only */
   1077  /* in: failedPDA - which component of the access has failed */
   1078  /* in: dag_h - header of the DAG we're going to create */
   1079  /* out: new_asm_h - the two new ASMs */
   1080  /* out: nXorBufs - the total number of xor bufs required */
   1081  /* out: rpBufPtr - a buffer for the parity read */
   1082 void
   1083 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1084 			    RF_PhysDiskAddr_t *failedPDA,
   1085 			    RF_DagHeader_t *dag_h,
   1086 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1087 			    int *nXorBufs, char **rpBufPtr,
   1088 			    char *overlappingPDAs,
   1089 			    RF_AllocListElem_t *allocList)
   1090 {
   1091 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1092 
   1093 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1094 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1095 	RF_PhysDiskAddr_t *pda;
   1096 	int     foundit, i;
   1097 
   1098 	foundit = 0;
   1099 	/* first compute the following raid addresses: start of stripe,
   1100 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1101 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1102 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1103 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1104 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1105 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1106 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1107 
   1108 	/* now generate access stripe maps for each of the above regions of
   1109 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1110 
   1111 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1112 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1113 
   1114 	/* walk through the PDAs and range-restrict each SU to the region of
   1115 	 * the SU touched on the failed PDA.  also compute total data buffer
   1116 	 * space requirements in this step.  Ignore the parity for now. */
   1117 	/* Also count nodes to find out how many bufs need to be xored together */
   1118 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1119 				 * case, 1 is for failed data */
   1120 
   1121 	if (new_asm_h[0]) {
   1122 		new_asm_h[0]->next = dag_h->asmList;
   1123 		dag_h->asmList = new_asm_h[0];
   1124 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1125 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1126 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1127 		}
   1128 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1129 	}
   1130 	if (new_asm_h[1]) {
   1131 		new_asm_h[1]->next = dag_h->asmList;
   1132 		dag_h->asmList = new_asm_h[1];
   1133 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1134 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1135 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1136 		}
   1137 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1138 	}
   1139 
   1140 	/* allocate a buffer for parity */
   1141 	if (rpBufPtr)
   1142 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1143 
   1144 	/* the last step is to figure out how many more distinct buffers need
   1145 	 * to get xor'd to produce the missing unit.  there's one for each
   1146 	 * user-data read node that overlaps the portion of the failed unit
   1147 	 * being accessed */
   1148 
   1149 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1150 		if (pda == failedPDA) {
   1151 			i--;
   1152 			foundit = 1;
   1153 			continue;
   1154 		}
   1155 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1156 			overlappingPDAs[i] = 1;
   1157 			(*nXorBufs)++;
   1158 		}
   1159 	}
   1160 	if (!foundit) {
   1161 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1162 		RF_ASSERT(0);
   1163 	}
   1164 #if RF_DEBUG_DAG
   1165 	if (rf_degDagDebug) {
   1166 		if (new_asm_h[0]) {
   1167 			printf("First asm:\n");
   1168 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1169 		}
   1170 		if (new_asm_h[1]) {
   1171 			printf("Second asm:\n");
   1172 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1173 		}
   1174 	}
   1175 #endif
   1176 }
   1177 
   1178 
   1179 /* adjusts the offset and number of sectors in the destination pda so that
   1180  * it covers at most the region of the SU covered by the source PDA.  This
   1181  * is exclusively a restriction:  the number of sectors indicated by the
   1182  * target PDA can only shrink.
   1183  *
   1184  * For example:  s = sectors within SU indicated by source PDA
   1185  *               d = sectors within SU indicated by dest PDA
   1186  *               r = results, stored in dest PDA
   1187  *
   1188  * |--------------- one stripe unit ---------------------|
   1189  * |           sssssssssssssssssssssssssssssssss         |
   1190  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1191  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1192  *
   1193  * Another example:
   1194  *
   1195  * |--------------- one stripe unit ---------------------|
   1196  * |           sssssssssssssssssssssssssssssssss         |
   1197  * |    ddddddddddddddddddddddd                          |
   1198  * |           rrrrrrrrrrrrrrrr                          |
   1199  *
   1200  */
   1201 void
   1202 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1203 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1204 {
   1205 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1206 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1207 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1208 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1209 													 * stay within SU */
   1210 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1211 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1212 
   1213 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1214 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1215 
   1216 	if (dobuffer)
   1217 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1218 	if (doraidaddr) {
   1219 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1220 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1221 	}
   1222 }
   1223 
   1224 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1225 
   1226 /*
   1227  * Want the highest of these primes to be the largest one
   1228  * less than the max expected number of columns (won't hurt
   1229  * to be too small or too large, but won't be optimal, either)
   1230  * --jimz
   1231  */
   1232 #define NLOWPRIMES 8
   1233 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1234 /*****************************************************************************
   1235  * compute the workload shift factor.  (chained declustering)
   1236  *
   1237  * return nonzero if access should shift to secondary, otherwise,
   1238  * access is to primary
   1239  *****************************************************************************/
   1240 int
   1241 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1242 {
   1243 	/*
   1244          * variables:
   1245          *  d   = column of disk containing primary
   1246          *  f   = column of failed disk
   1247          *  n   = number of disks in array
   1248          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1249          *  v   = numerator of redirection ratio
   1250          *  k   = denominator of redirection ratio
   1251          */
   1252 	RF_RowCol_t d, f, sd, n;
   1253 	int     k, v, ret, i;
   1254 
   1255 	n = raidPtr->numCol;
   1256 
   1257 	/* assign column of primary copy to d */
   1258 	d = pda->col;
   1259 
   1260 	/* assign column of dead disk to f */
   1261 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
   1262 
   1263 	RF_ASSERT(f < n);
   1264 	RF_ASSERT(f != d);
   1265 
   1266 	sd = (f > d) ? (n + d - f) : (d - f);
   1267 	RF_ASSERT(sd < n);
   1268 
   1269 	/*
   1270          * v of every k accesses should be redirected
   1271          *
   1272          * v/k := (n-1-sd)/(n-1)
   1273          */
   1274 	v = (n - 1 - sd);
   1275 	k = (n - 1);
   1276 
   1277 #if 1
   1278 	/*
   1279          * XXX
   1280          * Is this worth it?
   1281          *
   1282          * Now reduce the fraction, by repeatedly factoring
   1283          * out primes (just like they teach in elementary school!)
   1284          */
   1285 	for (i = 0; i < NLOWPRIMES; i++) {
   1286 		if (lowprimes[i] > v)
   1287 			break;
   1288 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1289 			v /= lowprimes[i];
   1290 			k /= lowprimes[i];
   1291 		}
   1292 	}
   1293 #endif
   1294 
   1295 	raidPtr->hist_diskreq[d]++;
   1296 	if (raidPtr->hist_diskreq[d] > v) {
   1297 		ret = 0;	/* do not redirect */
   1298 	} else {
   1299 		ret = 1;	/* redirect */
   1300 	}
   1301 
   1302 #if 0
   1303 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1304 	    raidPtr->hist_diskreq[d]);
   1305 #endif
   1306 
   1307 	if (raidPtr->hist_diskreq[d] >= k) {
   1308 		/* reset counter */
   1309 		raidPtr->hist_diskreq[d] = 0;
   1310 	}
   1311 	return (ret);
   1312 }
   1313 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1314 
   1315 /*
   1316  * Disk selection routines
   1317  */
   1318 
   1319 /*
   1320  * Selects the disk with the shortest queue from a mirror pair.
   1321  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1322  * disk are counted as members of the "queue"
   1323  */
   1324 void
   1325 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1326 {
   1327 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1328 	RF_RowCol_t colData, colMirror;
   1329 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1330 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1331 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1332 	RF_PhysDiskAddr_t *tmp_pda;
   1333 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1334 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1335 
   1336 	/* return the [row col] of the disk with the shortest queue */
   1337 	colData = data_pda->col;
   1338 	colMirror = mirror_pda->col;
   1339 	dataQueue = &(dqs[colData]);
   1340 	mirrorQueue = &(dqs[colMirror]);
   1341 
   1342 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1343 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1344 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1345 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1346 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1347 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1348 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1349 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1350 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1351 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1352 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1353 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1354 
   1355 	usemirror = 0;
   1356 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1357 		usemirror = 0;
   1358 	} else
   1359 		if (RF_DEAD_DISK(disks[colData].status)) {
   1360 			usemirror = 1;
   1361 		} else
   1362 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1363 				/* Trust only the main disk */
   1364 				usemirror = 0;
   1365 			} else
   1366 				if (dataQueueLength < mirrorQueueLength) {
   1367 					usemirror = 0;
   1368 				} else
   1369 					if (mirrorQueueLength < dataQueueLength) {
   1370 						usemirror = 1;
   1371 					} else {
   1372 						/* queues are equal length. attempt
   1373 						 * cleverness. */
   1374 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1375 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1376 							usemirror = 0;
   1377 						} else {
   1378 							usemirror = 1;
   1379 						}
   1380 					}
   1381 
   1382 	if (usemirror) {
   1383 		/* use mirror (parity) disk, swap params 0 & 4 */
   1384 		tmp_pda = data_pda;
   1385 		node->params[0].p = mirror_pda;
   1386 		node->params[4].p = tmp_pda;
   1387 	} else {
   1388 		/* use data disk, leave param 0 unchanged */
   1389 	}
   1390 	/* printf("dataQueueLength %d, mirrorQueueLength
   1391 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1392 }
   1393 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1394 /*
   1395  * Do simple partitioning. This assumes that
   1396  * the data and parity disks are laid out identically.
   1397  */
   1398 void
   1399 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1400 {
   1401 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1402 	RF_RowCol_t colData, colMirror;
   1403 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1404 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1405 	RF_PhysDiskAddr_t *tmp_pda;
   1406 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1407 	int     usemirror;
   1408 
   1409 	/* return the [row col] of the disk with the shortest queue */
   1410 	colData = data_pda->col;
   1411 	colMirror = mirror_pda->col;
   1412 
   1413 	usemirror = 0;
   1414 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1415 		usemirror = 0;
   1416 	} else
   1417 		if (RF_DEAD_DISK(disks[colData].status)) {
   1418 			usemirror = 1;
   1419 		} else
   1420 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1421 				/* Trust only the main disk */
   1422 				usemirror = 0;
   1423 			} else
   1424 				if (data_pda->startSector <
   1425 				    (disks[colData].numBlocks / 2)) {
   1426 					usemirror = 0;
   1427 				} else {
   1428 					usemirror = 1;
   1429 				}
   1430 
   1431 	if (usemirror) {
   1432 		/* use mirror (parity) disk, swap params 0 & 4 */
   1433 		tmp_pda = data_pda;
   1434 		node->params[0].p = mirror_pda;
   1435 		node->params[4].p = tmp_pda;
   1436 	} else {
   1437 		/* use data disk, leave param 0 unchanged */
   1438 	}
   1439 }
   1440 #endif
   1441