Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.55
      1 /*	$NetBSD: rf_dagutils.c,v 1.55 2019/02/09 03:34:00 christos Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.55 2019/02/09 03:34:00 christos Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_map.h"
     48 #include "rf_shutdown.h"
     49 
     50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51 
     52 const RF_RedFuncs_t rf_xorFuncs = {
     53 	rf_RegularXorFunc, "Reg Xr",
     54 	rf_SimpleXorFunc, "Simple Xr"};
     55 
     56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57 	rf_RecoveryXorFunc, "Recovery Xr",
     58 	rf_RecoveryXorFunc, "Recovery Xr"};
     59 
     60 #if RF_DEBUG_VALIDATE_DAG
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64 			     RF_DagNode_t **, int);
     65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67 #endif /* RF_DEBUG_VALIDATE_DAG */
     68 
     69 /* The maximum number of nodes in a DAG is bounded by
     70 
     71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72 	(1 * 2 * layoutPtr->numParityCol) + 3
     73 
     74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75 
     76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79 have a few kicking around.
     80 */
     81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82 
     83 
     84 /******************************************************************************
     85  *
     86  * InitNode - initialize a dag node
     87  *
     88  * the size of the propList array is always the same as that of the
     89  * successors array.
     90  *
     91  *****************************************************************************/
     92 void
     93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94     int (*doFunc) (RF_DagNode_t *node),
     95     int (*undoFunc) (RF_DagNode_t *node),
     96     int (*wakeFunc) (RF_DagNode_t *node, int status),
     97     int nSucc, int nAnte, int nParam, int nResult,
     98     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99 {
    100 	void  **ptrs;
    101 	int     nptrs;
    102 
    103 	if (nAnte > RF_MAX_ANTECEDENTS)
    104 		RF_PANIC();
    105 	node->status = initstatus;
    106 	node->commitNode = commit;
    107 	node->doFunc = doFunc;
    108 	node->undoFunc = undoFunc;
    109 	node->wakeFunc = wakeFunc;
    110 	node->numParams = nParam;
    111 	node->numResults = nResult;
    112 	node->numAntecedents = nAnte;
    113 	node->numAntDone = 0;
    114 	node->next = NULL;
    115 	/* node->list_next = NULL */  /* Don't touch this here!
    116 	                                 It may already be
    117 					 in use by the caller! */
    118 	node->numSuccedents = nSucc;
    119 	node->name = name;
    120 	node->dagHdr = hdr;
    121 	node->big_dag_ptrs = NULL;
    122 	node->big_dag_params = NULL;
    123 	node->visited = 0;
    124 
    125 	/* allocate all the pointers with one call to malloc */
    126 	nptrs = nSucc + nAnte + nResult + nSucc;
    127 
    128 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    129 		/*
    130 	         * The dag_ptrs field of the node is basically some scribble
    131 	         * space to be used here. We could get rid of it, and always
    132 	         * allocate the range of pointers, but that's expensive. So,
    133 	         * we pick a "common case" size for the pointer cache. Hopefully,
    134 	         * we'll find that:
    135 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    136 	         *     only a little bit (least efficient case)
    137 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    138 	         *     (wasted memory)
    139 	         */
    140 		ptrs = (void **) node->dag_ptrs;
    141 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    142 		node->big_dag_ptrs = rf_AllocDAGPCache();
    143 		ptrs = (void **) node->big_dag_ptrs;
    144 	} else {
    145 		ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
    146 	}
    147 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    148 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    149 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    150 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    151 
    152 	if (nParam) {
    153 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    154 			node->params = (RF_DagParam_t *) node->dag_params;
    155 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    156 			node->big_dag_params = rf_AllocDAGPCache();
    157 			node->params = node->big_dag_params;
    158 		} else {
    159 			node->params = RF_MallocAndAdd(
    160 			    nParam * sizeof(*node->params), alist);
    161 		}
    162 	} else {
    163 		node->params = NULL;
    164 	}
    165 }
    166 
    167 
    168 
    169 /******************************************************************************
    170  *
    171  * allocation and deallocation routines
    172  *
    173  *****************************************************************************/
    174 
    175 void
    176 rf_FreeDAG(RF_DagHeader_t *dag_h)
    177 {
    178 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    179 	RF_PhysDiskAddr_t *pda;
    180 	RF_DagNode_t *tmpnode;
    181 	RF_DagHeader_t *nextDag;
    182 
    183 	while (dag_h) {
    184 		nextDag = dag_h->next;
    185 		rf_FreeAllocList(dag_h->allocList);
    186 		for (asmap = dag_h->asmList; asmap;) {
    187 			t_asmap = asmap;
    188 			asmap = asmap->next;
    189 			rf_FreeAccessStripeMap(t_asmap);
    190 		}
    191 		while (dag_h->pda_cleanup_list) {
    192 			pda = dag_h->pda_cleanup_list;
    193 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    194 			rf_FreePhysDiskAddr(pda);
    195 		}
    196 		while (dag_h->nodes) {
    197 			tmpnode = dag_h->nodes;
    198 			dag_h->nodes = dag_h->nodes->list_next;
    199 			rf_FreeDAGNode(tmpnode);
    200 		}
    201 		rf_FreeDAGHeader(dag_h);
    202 		dag_h = nextDag;
    203 	}
    204 }
    205 
    206 #define RF_MAX_FREE_DAGH 128
    207 #define RF_MIN_FREE_DAGH  32
    208 
    209 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    210 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    211 
    212 #define RF_MAX_FREE_DAGLIST 128
    213 #define RF_MIN_FREE_DAGLIST  32
    214 
    215 #define RF_MAX_FREE_DAGPCACHE 128
    216 #define RF_MIN_FREE_DAGPCACHE   8
    217 
    218 #define RF_MAX_FREE_FUNCLIST 128
    219 #define RF_MIN_FREE_FUNCLIST  32
    220 
    221 #define RF_MAX_FREE_BUFFERS 128
    222 #define RF_MIN_FREE_BUFFERS  32
    223 
    224 static void rf_ShutdownDAGs(void *);
    225 static void
    226 rf_ShutdownDAGs(void *ignored)
    227 {
    228 	pool_destroy(&rf_pools.dagh);
    229 	pool_destroy(&rf_pools.dagnode);
    230 	pool_destroy(&rf_pools.daglist);
    231 	pool_destroy(&rf_pools.dagpcache);
    232 	pool_destroy(&rf_pools.funclist);
    233 }
    234 
    235 int
    236 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
    237 {
    238 
    239 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
    240 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    241 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
    242 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    243 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
    244 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    245 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
    246 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    247 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
    248 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    249 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    250 
    251 	return (0);
    252 }
    253 
    254 RF_DagHeader_t *
    255 rf_AllocDAGHeader(void)
    256 {
    257 	RF_DagHeader_t *dh;
    258 
    259 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
    260 	memset(dh, 0, sizeof(*dh));
    261 	return (dh);
    262 }
    263 
    264 void
    265 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    266 {
    267 	pool_put(&rf_pools.dagh, dh);
    268 }
    269 
    270 RF_DagNode_t *
    271 rf_AllocDAGNode(void)
    272 {
    273 	RF_DagNode_t *node;
    274 
    275 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
    276 	memset(node, 0, sizeof(*node));
    277 	return (node);
    278 }
    279 
    280 void
    281 rf_FreeDAGNode(RF_DagNode_t *node)
    282 {
    283 	if (node->big_dag_ptrs) {
    284 		rf_FreeDAGPCache(node->big_dag_ptrs);
    285 	}
    286 	if (node->big_dag_params) {
    287 		rf_FreeDAGPCache(node->big_dag_params);
    288 	}
    289 	pool_put(&rf_pools.dagnode, node);
    290 }
    291 
    292 RF_DagList_t *
    293 rf_AllocDAGList(void)
    294 {
    295 	RF_DagList_t *dagList;
    296 
    297 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
    298 	memset(dagList, 0, sizeof(*dagList));
    299 
    300 	return (dagList);
    301 }
    302 
    303 void
    304 rf_FreeDAGList(RF_DagList_t *dagList)
    305 {
    306 	pool_put(&rf_pools.daglist, dagList);
    307 }
    308 
    309 void *
    310 rf_AllocDAGPCache(void)
    311 {
    312 	void *p;
    313 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
    314 	memset(p, 0, RF_DAGPCACHE_SIZE);
    315 
    316 	return (p);
    317 }
    318 
    319 void
    320 rf_FreeDAGPCache(void *p)
    321 {
    322 	pool_put(&rf_pools.dagpcache, p);
    323 }
    324 
    325 RF_FuncList_t *
    326 rf_AllocFuncList(void)
    327 {
    328 	RF_FuncList_t *funcList;
    329 
    330 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
    331 	memset(funcList, 0, sizeof(*funcList));
    332 
    333 	return (funcList);
    334 }
    335 
    336 void
    337 rf_FreeFuncList(RF_FuncList_t *funcList)
    338 {
    339 	pool_put(&rf_pools.funclist, funcList);
    340 }
    341 
    342 /* allocates a stripe buffer -- a buffer large enough to hold all the data
    343    in an entire stripe.
    344 */
    345 
    346 void *
    347 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    348     int size)
    349 {
    350 	RF_VoidPointerListElem_t *vple;
    351 	void *p;
    352 
    353 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    354 					       raidPtr->logBytesPerSector))));
    355 
    356 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    357 					raidPtr->logBytesPerSector),
    358 		     M_RAIDFRAME, M_NOWAIT);
    359 	if (!p) {
    360 		rf_lock_mutex2(raidPtr->mutex);
    361 		if (raidPtr->stripebuf_count > 0) {
    362 			vple = raidPtr->stripebuf;
    363 			raidPtr->stripebuf = vple->next;
    364 			p = vple->p;
    365 			rf_FreeVPListElem(vple);
    366 			raidPtr->stripebuf_count--;
    367 		} else {
    368 #ifdef DIAGNOSTIC
    369 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    370 #endif
    371 		}
    372 		rf_unlock_mutex2(raidPtr->mutex);
    373 		if (!p) {
    374 			/* We didn't get a buffer... not much we can do other than wait,
    375 			   and hope that someone frees up memory for us.. */
    376 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    377 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    378 		}
    379 	}
    380 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    381 
    382 	vple = rf_AllocVPListElem();
    383 	vple->p = p;
    384         vple->next = dag_h->desc->stripebufs;
    385         dag_h->desc->stripebufs = vple;
    386 
    387 	return (p);
    388 }
    389 
    390 
    391 void
    392 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    393 {
    394 	rf_lock_mutex2(raidPtr->mutex);
    395 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    396 		/* just tack it in */
    397 		vple->next = raidPtr->stripebuf;
    398 		raidPtr->stripebuf = vple;
    399 		raidPtr->stripebuf_count++;
    400 	} else {
    401 		free(vple->p, M_RAIDFRAME);
    402 		rf_FreeVPListElem(vple);
    403 	}
    404 	rf_unlock_mutex2(raidPtr->mutex);
    405 }
    406 
    407 /* allocates a buffer big enough to hold the data described by the
    408 caller (ie. the data of the associated PDA).  Glue this buffer
    409 into our dag_h cleanup structure. */
    410 
    411 void *
    412 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    413 {
    414 	RF_VoidPointerListElem_t *vple;
    415 	void *p;
    416 
    417 	p = rf_AllocIOBuffer(raidPtr, size);
    418 	vple = rf_AllocVPListElem();
    419 	vple->p = p;
    420 	vple->next = dag_h->desc->iobufs;
    421 	dag_h->desc->iobufs = vple;
    422 
    423 	return (p);
    424 }
    425 
    426 void *
    427 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    428 {
    429 	RF_VoidPointerListElem_t *vple;
    430 	void *p;
    431 
    432 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    433 			   raidPtr->logBytesPerSector)));
    434 
    435 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    436 				 raidPtr->logBytesPerSector,
    437 				 M_RAIDFRAME, M_NOWAIT);
    438 	if (!p) {
    439 		rf_lock_mutex2(raidPtr->mutex);
    440 		if (raidPtr->iobuf_count > 0) {
    441 			vple = raidPtr->iobuf;
    442 			raidPtr->iobuf = vple->next;
    443 			p = vple->p;
    444 			rf_FreeVPListElem(vple);
    445 			raidPtr->iobuf_count--;
    446 		} else {
    447 #ifdef DIAGNOSTIC
    448 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    449 #endif
    450 		}
    451 		rf_unlock_mutex2(raidPtr->mutex);
    452 		if (!p) {
    453 			/* We didn't get a buffer... not much we can do other than wait,
    454 			   and hope that someone frees up memory for us.. */
    455 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    456 				    raidPtr->logBytesPerSector,
    457 				    M_RAIDFRAME, M_WAITOK);
    458 		}
    459 	}
    460 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    461 	return (p);
    462 }
    463 
    464 void
    465 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    466 {
    467 	rf_lock_mutex2(raidPtr->mutex);
    468 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    469 		/* just tack it in */
    470 		vple->next = raidPtr->iobuf;
    471 		raidPtr->iobuf = vple;
    472 		raidPtr->iobuf_count++;
    473 	} else {
    474 		free(vple->p, M_RAIDFRAME);
    475 		rf_FreeVPListElem(vple);
    476 	}
    477 	rf_unlock_mutex2(raidPtr->mutex);
    478 }
    479 
    480 
    481 
    482 #if RF_DEBUG_VALIDATE_DAG
    483 /******************************************************************************
    484  *
    485  * debug routines
    486  *
    487  *****************************************************************************/
    488 
    489 char   *
    490 rf_NodeStatusString(RF_DagNode_t *node)
    491 {
    492 	switch (node->status) {
    493 	case rf_wait:
    494 		return ("wait");
    495 	case rf_fired:
    496 		return ("fired");
    497 	case rf_good:
    498 		return ("good");
    499 	case rf_bad:
    500 		return ("bad");
    501 	default:
    502 		return ("?");
    503 	}
    504 }
    505 
    506 void
    507 rf_PrintNodeInfoString(RF_DagNode_t *node)
    508 {
    509 	RF_PhysDiskAddr_t *pda;
    510 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    511 	int     i, lk, unlk;
    512 	void   *bufPtr;
    513 
    514 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    515 	    || (df == rf_DiskReadMirrorIdleFunc)
    516 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    517 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    518 		bufPtr = (void *) node->params[1].p;
    519 		lk = 0;
    520 		unlk = 0;
    521 		RF_ASSERT(!(lk && unlk));
    522 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    523 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    524 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    525 		return;
    526 	}
    527 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    528 	    || (df == rf_RecoveryXorFunc)) {
    529 		printf("result buf 0x%lx\n", (long) node->results[0]);
    530 		for (i = 0; i < node->numParams - 1; i += 2) {
    531 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    532 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    533 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    534 			    (long) bufPtr, pda->col,
    535 			    (long) pda->startSector, (int) pda->numSector);
    536 		}
    537 		return;
    538 	}
    539 #if RF_INCLUDE_PARITYLOGGING > 0
    540 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    541 		for (i = 0; i < node->numParams - 1; i += 2) {
    542 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    543 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    544 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    545 			    pda->col, (long) pda->startSector,
    546 			    (int) pda->numSector, (long) bufPtr);
    547 		}
    548 		return;
    549 	}
    550 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    551 
    552 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    553 		printf("\n");
    554 		return;
    555 	}
    556 	printf("?\n");
    557 }
    558 #ifdef DEBUG
    559 static void
    560 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    561 {
    562 	char   *anttype;
    563 	int     i;
    564 
    565 	node->visited = (unvisited) ? 0 : 1;
    566 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    567 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    568 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    569 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    570 	for (i = 0; i < node->numSuccedents; i++) {
    571 		printf("%d%s", node->succedents[i]->nodeNum,
    572 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    573 	}
    574 	printf("} A{");
    575 	for (i = 0; i < node->numAntecedents; i++) {
    576 		switch (node->antType[i]) {
    577 		case rf_trueData:
    578 			anttype = "T";
    579 			break;
    580 		case rf_antiData:
    581 			anttype = "A";
    582 			break;
    583 		case rf_outputData:
    584 			anttype = "O";
    585 			break;
    586 		case rf_control:
    587 			anttype = "C";
    588 			break;
    589 		default:
    590 			anttype = "?";
    591 			break;
    592 		}
    593 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    594 	}
    595 	printf("}; ");
    596 	rf_PrintNodeInfoString(node);
    597 	for (i = 0; i < node->numSuccedents; i++) {
    598 		if (node->succedents[i]->visited == unvisited)
    599 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    600 	}
    601 }
    602 
    603 static void
    604 rf_PrintDAG(RF_DagHeader_t *dag_h)
    605 {
    606 	int     unvisited, i;
    607 	char   *status;
    608 
    609 	/* set dag status */
    610 	switch (dag_h->status) {
    611 	case rf_enable:
    612 		status = "enable";
    613 		break;
    614 	case rf_rollForward:
    615 		status = "rollForward";
    616 		break;
    617 	case rf_rollBackward:
    618 		status = "rollBackward";
    619 		break;
    620 	default:
    621 		status = "illegal!";
    622 		break;
    623 	}
    624 	/* find out if visited bits are currently set or clear */
    625 	unvisited = dag_h->succedents[0]->visited;
    626 
    627 	printf("DAG type:  %s\n", dag_h->creator);
    628 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    629 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    630 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    631 	for (i = 0; i < dag_h->numSuccedents; i++) {
    632 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    633 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    634 	}
    635 	printf("};\n");
    636 	for (i = 0; i < dag_h->numSuccedents; i++) {
    637 		if (dag_h->succedents[i]->visited == unvisited)
    638 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    639 	}
    640 }
    641 #endif
    642 /* assigns node numbers */
    643 int
    644 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    645 {
    646 	int     unvisited, i, nnum;
    647 	RF_DagNode_t *node;
    648 
    649 	nnum = 0;
    650 	unvisited = dag_h->succedents[0]->visited;
    651 
    652 	dag_h->nodeNum = nnum++;
    653 	for (i = 0; i < dag_h->numSuccedents; i++) {
    654 		node = dag_h->succedents[i];
    655 		if (node->visited == unvisited) {
    656 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    657 		}
    658 	}
    659 	return (nnum);
    660 }
    661 
    662 int
    663 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    664 {
    665 	int     i;
    666 
    667 	node->visited = (unvisited) ? 0 : 1;
    668 
    669 	node->nodeNum = num++;
    670 	for (i = 0; i < node->numSuccedents; i++) {
    671 		if (node->succedents[i]->visited == unvisited) {
    672 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    673 		}
    674 	}
    675 	return (num);
    676 }
    677 /* set the header pointers in each node to "newptr" */
    678 void
    679 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    680 {
    681 	int     i;
    682 	for (i = 0; i < dag_h->numSuccedents; i++)
    683 		if (dag_h->succedents[i]->dagHdr != newptr)
    684 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    685 }
    686 
    687 void
    688 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    689 {
    690 	int     i;
    691 	node->dagHdr = newptr;
    692 	for (i = 0; i < node->numSuccedents; i++)
    693 		if (node->succedents[i]->dagHdr != newptr)
    694 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    695 }
    696 
    697 
    698 void
    699 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    700 {
    701 	int     i = 0;
    702 
    703 	for (; dag_h; dag_h = dag_h->next) {
    704 		rf_AssignNodeNums(dag_h);
    705 		printf("\n\nDAG %d IN LIST:\n", i++);
    706 		rf_PrintDAG(dag_h);
    707 	}
    708 }
    709 
    710 static int
    711 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    712 		  RF_DagNode_t **nodes, int unvisited)
    713 {
    714 	int     i, retcode = 0;
    715 
    716 	/* construct an array of node pointers indexed by node num */
    717 	node->visited = (unvisited) ? 0 : 1;
    718 	nodes[node->nodeNum] = node;
    719 
    720 	if (node->next != NULL) {
    721 		printf("INVALID DAG: next pointer in node is not NULL\n");
    722 		retcode = 1;
    723 	}
    724 	if (node->status != rf_wait) {
    725 		printf("INVALID DAG: Node status is not wait\n");
    726 		retcode = 1;
    727 	}
    728 	if (node->numAntDone != 0) {
    729 		printf("INVALID DAG: numAntDone is not zero\n");
    730 		retcode = 1;
    731 	}
    732 	if (node->doFunc == rf_TerminateFunc) {
    733 		if (node->numSuccedents != 0) {
    734 			printf("INVALID DAG: Terminator node has succedents\n");
    735 			retcode = 1;
    736 		}
    737 	} else {
    738 		if (node->numSuccedents == 0) {
    739 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    740 			retcode = 1;
    741 		}
    742 	}
    743 	for (i = 0; i < node->numSuccedents; i++) {
    744 		if (!node->succedents[i]) {
    745 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    746 			retcode = 1;
    747 		}
    748 		scount[node->succedents[i]->nodeNum]++;
    749 	}
    750 	for (i = 0; i < node->numAntecedents; i++) {
    751 		if (!node->antecedents[i]) {
    752 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    753 			retcode = 1;
    754 		}
    755 		acount[node->antecedents[i]->nodeNum]++;
    756 	}
    757 	for (i = 0; i < node->numSuccedents; i++) {
    758 		if (node->succedents[i]->visited == unvisited) {
    759 			if (rf_ValidateBranch(node->succedents[i], scount,
    760 				acount, nodes, unvisited)) {
    761 				retcode = 1;
    762 			}
    763 		}
    764 	}
    765 	return (retcode);
    766 }
    767 
    768 static void
    769 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    770 {
    771 	int     i;
    772 
    773 	RF_ASSERT(node->visited == unvisited);
    774 	for (i = 0; i < node->numSuccedents; i++) {
    775 		if (node->succedents[i] == NULL) {
    776 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    777 			RF_ASSERT(0);
    778 		}
    779 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    780 	}
    781 }
    782 /* NOTE:  never call this on a big dag, because it is exponential
    783  * in execution time
    784  */
    785 static void
    786 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    787 {
    788 	int     i, unvisited;
    789 
    790 	unvisited = dag->succedents[0]->visited;
    791 
    792 	for (i = 0; i < dag->numSuccedents; i++) {
    793 		if (dag->succedents[i] == NULL) {
    794 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    795 			RF_ASSERT(0);
    796 		}
    797 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    798 	}
    799 }
    800 /* validate a DAG.  _at entry_ verify that:
    801  *   -- numNodesCompleted is zero
    802  *   -- node queue is null
    803  *   -- dag status is rf_enable
    804  *   -- next pointer is null on every node
    805  *   -- all nodes have status wait
    806  *   -- numAntDone is zero in all nodes
    807  *   -- terminator node has zero successors
    808  *   -- no other node besides terminator has zero successors
    809  *   -- no successor or antecedent pointer in a node is NULL
    810  *   -- number of times that each node appears as a successor of another node
    811  *      is equal to the antecedent count on that node
    812  *   -- number of times that each node appears as an antecedent of another node
    813  *      is equal to the succedent count on that node
    814  *   -- what else?
    815  */
    816 int
    817 rf_ValidateDAG(RF_DagHeader_t *dag_h)
    818 {
    819 	int     i, nodecount;
    820 	int    *scount, *acount;/* per-node successor and antecedent counts */
    821 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    822 	int     retcode = 0;
    823 	int     unvisited;
    824 	int     commitNodeCount = 0;
    825 
    826 	if (rf_validateVisitedDebug)
    827 		rf_ValidateVisitedBits(dag_h);
    828 
    829 	if (dag_h->numNodesCompleted != 0) {
    830 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    831 		retcode = 1;
    832 		goto validate_dag_bad;
    833 	}
    834 	if (dag_h->status != rf_enable) {
    835 		printf("INVALID DAG: not enabled\n");
    836 		retcode = 1;
    837 		goto validate_dag_bad;
    838 	}
    839 	if (dag_h->numCommits != 0) {
    840 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    841 		retcode = 1;
    842 		goto validate_dag_bad;
    843 	}
    844 	if (dag_h->numSuccedents != 1) {
    845 		/* currently, all dags must have only one succedent */
    846 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    847 		retcode = 1;
    848 		goto validate_dag_bad;
    849 	}
    850 	nodecount = rf_AssignNodeNums(dag_h);
    851 
    852 	unvisited = dag_h->succedents[0]->visited;
    853 
    854 	scount = RF_Malloc(nodecount * sizeof(*scount));
    855 	acount = RF_Malloc(nodecount * sizeof(*acount));
    856 	nodes = RF_Malloc(nodecount * sizeof(*nodes));
    857 	for (i = 0; i < dag_h->numSuccedents; i++) {
    858 		if ((dag_h->succedents[i]->visited == unvisited)
    859 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    860 			acount, nodes, unvisited)) {
    861 			retcode = 1;
    862 		}
    863 	}
    864 	/* start at 1 to skip the header node */
    865 	for (i = 1; i < nodecount; i++) {
    866 		if (nodes[i]->commitNode)
    867 			commitNodeCount++;
    868 		if (nodes[i]->doFunc == NULL) {
    869 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    870 			retcode = 1;
    871 			goto validate_dag_out;
    872 		}
    873 		if (nodes[i]->undoFunc == NULL) {
    874 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    875 			retcode = 1;
    876 			goto validate_dag_out;
    877 		}
    878 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    879 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    880 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    881 			retcode = 1;
    882 			goto validate_dag_out;
    883 		}
    884 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    885 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    886 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    887 			retcode = 1;
    888 			goto validate_dag_out;
    889 		}
    890 	}
    891 
    892 	if (dag_h->numCommitNodes != commitNodeCount) {
    893 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    894 		    dag_h->numCommitNodes, commitNodeCount);
    895 		retcode = 1;
    896 		goto validate_dag_out;
    897 	}
    898 validate_dag_out:
    899 	RF_Free(scount, nodecount * sizeof(int));
    900 	RF_Free(acount, nodecount * sizeof(int));
    901 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    902 	if (retcode)
    903 		rf_PrintDAGList(dag_h);
    904 
    905 	if (rf_validateVisitedDebug)
    906 		rf_ValidateVisitedBits(dag_h);
    907 
    908 	return (retcode);
    909 
    910 validate_dag_bad:
    911 	rf_PrintDAGList(dag_h);
    912 	return (retcode);
    913 }
    914 
    915 #endif /* RF_DEBUG_VALIDATE_DAG */
    916 
    917 /******************************************************************************
    918  *
    919  * misc construction routines
    920  *
    921  *****************************************************************************/
    922 
    923 void
    924 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    925 {
    926 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    927 	int     fcol = raidPtr->reconControl->fcol;
    928 	int     scol = raidPtr->reconControl->spareCol;
    929 	RF_PhysDiskAddr_t *pda;
    930 
    931 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    932 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    933 		if (pda->col == fcol) {
    934 #if RF_DEBUG_DAG
    935 			if (rf_dagDebug) {
    936 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    937 					pda->startSector)) {
    938 					RF_PANIC();
    939 				}
    940 			}
    941 #endif
    942 			/* printf("Remapped data for large write\n"); */
    943 			if (ds) {
    944 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    945 				    &pda->col, &pda->startSector, RF_REMAP);
    946 			} else {
    947 				pda->col = scol;
    948 			}
    949 		}
    950 	}
    951 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    952 		if (pda->col == fcol) {
    953 #if RF_DEBUG_DAG
    954 			if (rf_dagDebug) {
    955 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    956 					RF_PANIC();
    957 				}
    958 			}
    959 #endif
    960 		}
    961 		if (ds) {
    962 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    963 		} else {
    964 			pda->col = scol;
    965 		}
    966 	}
    967 }
    968 
    969 
    970 /* this routine allocates read buffers and generates stripe maps for the
    971  * regions of the array from the start of the stripe to the start of the
    972  * access, and from the end of the access to the end of the stripe.  It also
    973  * computes and returns the number of DAG nodes needed to read all this data.
    974  * Note that this routine does the wrong thing if the access is fully
    975  * contained within one stripe unit, so we RF_ASSERT against this case at the
    976  * start.
    977  *
    978  * layoutPtr - in: layout information
    979  * asmap     - in: access stripe map
    980  * dag_h     - in: header of the dag to create
    981  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    982  * nRodNodes - out: num nodes to be generated to read unaccessed data
    983  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    984  */
    985 void
    986 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    987 				RF_RaidLayout_t *layoutPtr,
    988 				RF_AccessStripeMap_t *asmap,
    989 				RF_DagHeader_t *dag_h,
    990 				RF_AccessStripeMapHeader_t **new_asm_h,
    991 				int *nRodNodes,
    992 				char **sosBuffer, char **eosBuffer,
    993 				RF_AllocListElem_t *allocList)
    994 {
    995 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    996 	RF_SectorNum_t sosNumSector, eosNumSector;
    997 
    998 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    999 	/* generate an access map for the region of the array from start of
   1000 	 * stripe to start of access */
   1001 	new_asm_h[0] = new_asm_h[1] = NULL;
   1002 	*nRodNodes = 0;
   1003 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
   1004 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1005 		sosNumSector = asmap->raidAddress - sosRaidAddress;
   1006 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
   1007 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
   1008 		new_asm_h[0]->next = dag_h->asmList;
   1009 		dag_h->asmList = new_asm_h[0];
   1010 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1011 
   1012 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1013 		/* we're totally within one stripe here */
   1014 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1015 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1016 	}
   1017 	/* generate an access map for the region of the array from end of
   1018 	 * access to end of stripe */
   1019 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1020 		eosRaidAddress = asmap->endRaidAddress;
   1021 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1022 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1023 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1024 		new_asm_h[1]->next = dag_h->asmList;
   1025 		dag_h->asmList = new_asm_h[1];
   1026 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1027 
   1028 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1029 		/* we're totally within one stripe here */
   1030 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1031 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1032 	}
   1033 }
   1034 
   1035 
   1036 
   1037 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1038 int
   1039 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1040 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1041 {
   1042 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1043 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1044 	/* use -1 to be sure we stay within SU */
   1045 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1046 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1047 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1048 }
   1049 
   1050 
   1051 /* GenerateFailedAccessASMs
   1052  *
   1053  * this routine figures out what portion of the stripe needs to be read
   1054  * to effect the degraded read or write operation.  It's primary function
   1055  * is to identify everything required to recover the data, and then
   1056  * eliminate anything that is already being accessed by the user.
   1057  *
   1058  * The main result is two new ASMs, one for the region from the start of the
   1059  * stripe to the start of the access, and one for the region from the end of
   1060  * the access to the end of the stripe.  These ASMs describe everything that
   1061  * needs to be read to effect the degraded access.  Other results are:
   1062  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1063  *                recover the lost data,
   1064  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1065  *                at entry, not allocated.
   1066  *    overlappingPDAs --
   1067  *                describes which of the non-failed PDAs in the user access
   1068  *                overlap data that needs to be read to effect recovery.
   1069  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1070  *                PDA, the ith pda in the input asm overlaps data that needs
   1071  *                to be read for recovery.
   1072  */
   1073  /* in: asm - ASM for the actual access, one stripe only */
   1074  /* in: failedPDA - which component of the access has failed */
   1075  /* in: dag_h - header of the DAG we're going to create */
   1076  /* out: new_asm_h - the two new ASMs */
   1077  /* out: nXorBufs - the total number of xor bufs required */
   1078  /* out: rpBufPtr - a buffer for the parity read */
   1079 void
   1080 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1081 			    RF_PhysDiskAddr_t *failedPDA,
   1082 			    RF_DagHeader_t *dag_h,
   1083 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1084 			    int *nXorBufs, char **rpBufPtr,
   1085 			    char *overlappingPDAs,
   1086 			    RF_AllocListElem_t *allocList)
   1087 {
   1088 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1089 
   1090 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1091 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1092 	RF_PhysDiskAddr_t *pda;
   1093 	int     foundit, i;
   1094 
   1095 	foundit = 0;
   1096 	/* first compute the following raid addresses: start of stripe,
   1097 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1098 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1099 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1100 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1101 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1102 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1103 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1104 
   1105 	/* now generate access stripe maps for each of the above regions of
   1106 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1107 
   1108 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1109 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1110 
   1111 	/* walk through the PDAs and range-restrict each SU to the region of
   1112 	 * the SU touched on the failed PDA.  also compute total data buffer
   1113 	 * space requirements in this step.  Ignore the parity for now. */
   1114 	/* Also count nodes to find out how many bufs need to be xored together */
   1115 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1116 				 * case, 1 is for failed data */
   1117 
   1118 	if (new_asm_h[0]) {
   1119 		new_asm_h[0]->next = dag_h->asmList;
   1120 		dag_h->asmList = new_asm_h[0];
   1121 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1122 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1123 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1124 		}
   1125 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1126 	}
   1127 	if (new_asm_h[1]) {
   1128 		new_asm_h[1]->next = dag_h->asmList;
   1129 		dag_h->asmList = new_asm_h[1];
   1130 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1131 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1132 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1133 		}
   1134 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1135 	}
   1136 
   1137 	/* allocate a buffer for parity */
   1138 	if (rpBufPtr)
   1139 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1140 
   1141 	/* the last step is to figure out how many more distinct buffers need
   1142 	 * to get xor'd to produce the missing unit.  there's one for each
   1143 	 * user-data read node that overlaps the portion of the failed unit
   1144 	 * being accessed */
   1145 
   1146 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1147 		if (pda == failedPDA) {
   1148 			i--;
   1149 			foundit = 1;
   1150 			continue;
   1151 		}
   1152 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1153 			overlappingPDAs[i] = 1;
   1154 			(*nXorBufs)++;
   1155 		}
   1156 	}
   1157 	if (!foundit) {
   1158 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1159 		RF_ASSERT(0);
   1160 	}
   1161 #if RF_DEBUG_DAG
   1162 	if (rf_degDagDebug) {
   1163 		if (new_asm_h[0]) {
   1164 			printf("First asm:\n");
   1165 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1166 		}
   1167 		if (new_asm_h[1]) {
   1168 			printf("Second asm:\n");
   1169 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1170 		}
   1171 	}
   1172 #endif
   1173 }
   1174 
   1175 
   1176 /* adjusts the offset and number of sectors in the destination pda so that
   1177  * it covers at most the region of the SU covered by the source PDA.  This
   1178  * is exclusively a restriction:  the number of sectors indicated by the
   1179  * target PDA can only shrink.
   1180  *
   1181  * For example:  s = sectors within SU indicated by source PDA
   1182  *               d = sectors within SU indicated by dest PDA
   1183  *               r = results, stored in dest PDA
   1184  *
   1185  * |--------------- one stripe unit ---------------------|
   1186  * |           sssssssssssssssssssssssssssssssss         |
   1187  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1188  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1189  *
   1190  * Another example:
   1191  *
   1192  * |--------------- one stripe unit ---------------------|
   1193  * |           sssssssssssssssssssssssssssssssss         |
   1194  * |    ddddddddddddddddddddddd                          |
   1195  * |           rrrrrrrrrrrrrrrr                          |
   1196  *
   1197  */
   1198 void
   1199 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1200 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1201 {
   1202 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1203 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1204 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1205 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1206 													 * stay within SU */
   1207 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1208 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1209 
   1210 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1211 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1212 
   1213 	if (dobuffer)
   1214 		dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
   1215 	if (doraidaddr) {
   1216 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1217 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1218 	}
   1219 }
   1220 
   1221 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1222 
   1223 /*
   1224  * Want the highest of these primes to be the largest one
   1225  * less than the max expected number of columns (won't hurt
   1226  * to be too small or too large, but won't be optimal, either)
   1227  * --jimz
   1228  */
   1229 #define NLOWPRIMES 8
   1230 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1231 /*****************************************************************************
   1232  * compute the workload shift factor.  (chained declustering)
   1233  *
   1234  * return nonzero if access should shift to secondary, otherwise,
   1235  * access is to primary
   1236  *****************************************************************************/
   1237 int
   1238 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1239 {
   1240 	/*
   1241          * variables:
   1242          *  d   = column of disk containing primary
   1243          *  f   = column of failed disk
   1244          *  n   = number of disks in array
   1245          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1246          *  v   = numerator of redirection ratio
   1247          *  k   = denominator of redirection ratio
   1248          */
   1249 	RF_RowCol_t d, f, sd, n;
   1250 	int     k, v, ret, i;
   1251 
   1252 	n = raidPtr->numCol;
   1253 
   1254 	/* assign column of primary copy to d */
   1255 	d = pda->col;
   1256 
   1257 	/* assign column of dead disk to f */
   1258 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
   1259 		continue;
   1260 
   1261 	RF_ASSERT(f < n);
   1262 	RF_ASSERT(f != d);
   1263 
   1264 	sd = (f > d) ? (n + d - f) : (d - f);
   1265 	RF_ASSERT(sd < n);
   1266 
   1267 	/*
   1268          * v of every k accesses should be redirected
   1269          *
   1270          * v/k := (n-1-sd)/(n-1)
   1271          */
   1272 	v = (n - 1 - sd);
   1273 	k = (n - 1);
   1274 
   1275 #if 1
   1276 	/*
   1277          * XXX
   1278          * Is this worth it?
   1279          *
   1280          * Now reduce the fraction, by repeatedly factoring
   1281          * out primes (just like they teach in elementary school!)
   1282          */
   1283 	for (i = 0; i < NLOWPRIMES; i++) {
   1284 		if (lowprimes[i] > v)
   1285 			break;
   1286 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1287 			v /= lowprimes[i];
   1288 			k /= lowprimes[i];
   1289 		}
   1290 	}
   1291 #endif
   1292 
   1293 	raidPtr->hist_diskreq[d]++;
   1294 	if (raidPtr->hist_diskreq[d] > v) {
   1295 		ret = 0;	/* do not redirect */
   1296 	} else {
   1297 		ret = 1;	/* redirect */
   1298 	}
   1299 
   1300 #if 0
   1301 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1302 	    raidPtr->hist_diskreq[d]);
   1303 #endif
   1304 
   1305 	if (raidPtr->hist_diskreq[d] >= k) {
   1306 		/* reset counter */
   1307 		raidPtr->hist_diskreq[d] = 0;
   1308 	}
   1309 	return (ret);
   1310 }
   1311 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1312 
   1313 /*
   1314  * Disk selection routines
   1315  */
   1316 
   1317 /*
   1318  * Selects the disk with the shortest queue from a mirror pair.
   1319  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1320  * disk are counted as members of the "queue"
   1321  */
   1322 void
   1323 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1324 {
   1325 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1326 	RF_RowCol_t colData, colMirror;
   1327 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1328 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1329 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1330 	RF_PhysDiskAddr_t *tmp_pda;
   1331 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1332 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1333 
   1334 	/* return the [row col] of the disk with the shortest queue */
   1335 	colData = data_pda->col;
   1336 	colMirror = mirror_pda->col;
   1337 	dataQueue = &(dqs[colData]);
   1338 	mirrorQueue = &(dqs[colMirror]);
   1339 
   1340 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1341 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1342 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1343 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1344 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1345 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1346 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1347 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1348 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1349 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1350 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1351 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1352 
   1353 	usemirror = 0;
   1354 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1355 		usemirror = 0;
   1356 	} else
   1357 		if (RF_DEAD_DISK(disks[colData].status)) {
   1358 			usemirror = 1;
   1359 		} else
   1360 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1361 				/* Trust only the main disk */
   1362 				usemirror = 0;
   1363 			} else
   1364 				if (dataQueueLength < mirrorQueueLength) {
   1365 					usemirror = 0;
   1366 				} else
   1367 					if (mirrorQueueLength < dataQueueLength) {
   1368 						usemirror = 1;
   1369 					} else {
   1370 						/* queues are equal length. attempt
   1371 						 * cleverness. */
   1372 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1373 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1374 							usemirror = 0;
   1375 						} else {
   1376 							usemirror = 1;
   1377 						}
   1378 					}
   1379 
   1380 	if (usemirror) {
   1381 		/* use mirror (parity) disk, swap params 0 & 4 */
   1382 		tmp_pda = data_pda;
   1383 		node->params[0].p = mirror_pda;
   1384 		node->params[4].p = tmp_pda;
   1385 	} else {
   1386 		/* use data disk, leave param 0 unchanged */
   1387 	}
   1388 	/* printf("dataQueueLength %d, mirrorQueueLength
   1389 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1390 }
   1391 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1392 /*
   1393  * Do simple partitioning. This assumes that
   1394  * the data and parity disks are laid out identically.
   1395  */
   1396 void
   1397 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1398 {
   1399 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1400 	RF_RowCol_t colData, colMirror;
   1401 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1402 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1403 	RF_PhysDiskAddr_t *tmp_pda;
   1404 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1405 	int     usemirror;
   1406 
   1407 	/* return the [row col] of the disk with the shortest queue */
   1408 	colData = data_pda->col;
   1409 	colMirror = mirror_pda->col;
   1410 
   1411 	usemirror = 0;
   1412 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1413 		usemirror = 0;
   1414 	} else
   1415 		if (RF_DEAD_DISK(disks[colData].status)) {
   1416 			usemirror = 1;
   1417 		} else
   1418 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1419 				/* Trust only the main disk */
   1420 				usemirror = 0;
   1421 			} else
   1422 				if (data_pda->startSector <
   1423 				    (disks[colData].numBlocks / 2)) {
   1424 					usemirror = 0;
   1425 				} else {
   1426 					usemirror = 1;
   1427 				}
   1428 
   1429 	if (usemirror) {
   1430 		/* use mirror (parity) disk, swap params 0 & 4 */
   1431 		tmp_pda = data_pda;
   1432 		node->params[0].p = mirror_pda;
   1433 		node->params[4].p = tmp_pda;
   1434 	} else {
   1435 		/* use data disk, leave param 0 unchanged */
   1436 	}
   1437 }
   1438 #endif
   1439