rf_dagutils.c revision 1.56 1 /* $NetBSD: rf_dagutils.c,v 1.56 2019/02/10 17:13:33 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.56 2019/02/10 17:13:33 christos Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51
52 const RF_RedFuncs_t rf_xorFuncs = {
53 rf_RegularXorFunc, "Reg Xr",
54 rf_SimpleXorFunc, "Simple Xr"};
55
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 rf_RecoveryXorFunc, "Recovery Xr",
58 rf_RecoveryXorFunc, "Recovery Xr"};
59
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68
69 /* The maximum number of nodes in a DAG is bounded by
70
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 (1 * 2 * layoutPtr->numParityCol) + 3
73
74 which is: 2*RF_MAXCOL+1*2+1*2*2+3
75
76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82
83
84 /******************************************************************************
85 *
86 * InitNode - initialize a dag node
87 *
88 * the size of the propList array is always the same as that of the
89 * successors array.
90 *
91 *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94 int (*doFunc) (RF_DagNode_t *node),
95 int (*undoFunc) (RF_DagNode_t *node),
96 int (*wakeFunc) (RF_DagNode_t *node, int status),
97 int nSucc, int nAnte, int nParam, int nResult,
98 RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 {
100 void **ptrs;
101 int nptrs;
102
103 if (nAnte > RF_MAX_ANTECEDENTS)
104 RF_PANIC();
105 node->status = initstatus;
106 node->commitNode = commit;
107 node->doFunc = doFunc;
108 node->undoFunc = undoFunc;
109 node->wakeFunc = wakeFunc;
110 node->numParams = nParam;
111 node->numResults = nResult;
112 node->numAntecedents = nAnte;
113 node->numAntDone = 0;
114 node->next = NULL;
115 /* node->list_next = NULL */ /* Don't touch this here!
116 It may already be
117 in use by the caller! */
118 node->numSuccedents = nSucc;
119 node->name = name;
120 node->dagHdr = hdr;
121 node->big_dag_ptrs = NULL;
122 node->big_dag_params = NULL;
123 node->visited = 0;
124
125 /* allocate all the pointers with one call to malloc */
126 nptrs = nSucc + nAnte + nResult + nSucc;
127
128 if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 /*
130 * The dag_ptrs field of the node is basically some scribble
131 * space to be used here. We could get rid of it, and always
132 * allocate the range of pointers, but that's expensive. So,
133 * we pick a "common case" size for the pointer cache. Hopefully,
134 * we'll find that:
135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 * only a little bit (least efficient case)
137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 * (wasted memory)
139 */
140 ptrs = (void **) node->dag_ptrs;
141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 node->big_dag_ptrs = rf_AllocDAGPCache();
143 ptrs = (void **) node->big_dag_ptrs;
144 } else {
145 ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
146 }
147 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
148 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
149 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
150 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
151
152 if (nParam) {
153 if (nParam <= RF_DAG_PARAMCACHESIZE) {
154 node->params = (RF_DagParam_t *) node->dag_params;
155 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
156 node->big_dag_params = rf_AllocDAGPCache();
157 node->params = node->big_dag_params;
158 } else {
159 node->params = RF_MallocAndAdd(
160 nParam * sizeof(*node->params), alist);
161 }
162 } else {
163 node->params = NULL;
164 }
165 }
166
167
168
169 /******************************************************************************
170 *
171 * allocation and deallocation routines
172 *
173 *****************************************************************************/
174
175 void
176 rf_FreeDAG(RF_DagHeader_t *dag_h)
177 {
178 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
179 RF_PhysDiskAddr_t *pda;
180 RF_DagNode_t *tmpnode;
181 RF_DagHeader_t *nextDag;
182
183 while (dag_h) {
184 nextDag = dag_h->next;
185 rf_FreeAllocList(dag_h->allocList);
186 for (asmap = dag_h->asmList; asmap;) {
187 t_asmap = asmap;
188 asmap = asmap->next;
189 rf_FreeAccessStripeMap(t_asmap);
190 }
191 while (dag_h->pda_cleanup_list) {
192 pda = dag_h->pda_cleanup_list;
193 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
194 rf_FreePhysDiskAddr(pda);
195 }
196 while (dag_h->nodes) {
197 tmpnode = dag_h->nodes;
198 dag_h->nodes = dag_h->nodes->list_next;
199 rf_FreeDAGNode(tmpnode);
200 }
201 rf_FreeDAGHeader(dag_h);
202 dag_h = nextDag;
203 }
204 }
205
206 #define RF_MAX_FREE_DAGH 128
207 #define RF_MIN_FREE_DAGH 32
208
209 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
210 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
211
212 #define RF_MAX_FREE_DAGLIST 128
213 #define RF_MIN_FREE_DAGLIST 32
214
215 #define RF_MAX_FREE_DAGPCACHE 128
216 #define RF_MIN_FREE_DAGPCACHE 8
217
218 #define RF_MAX_FREE_FUNCLIST 128
219 #define RF_MIN_FREE_FUNCLIST 32
220
221 #define RF_MAX_FREE_BUFFERS 128
222 #define RF_MIN_FREE_BUFFERS 32
223
224 static void rf_ShutdownDAGs(void *);
225 static void
226 rf_ShutdownDAGs(void *ignored)
227 {
228 pool_destroy(&rf_pools.dagh);
229 pool_destroy(&rf_pools.dagnode);
230 pool_destroy(&rf_pools.daglist);
231 pool_destroy(&rf_pools.dagpcache);
232 pool_destroy(&rf_pools.funclist);
233 }
234
235 int
236 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
237 {
238
239 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
240 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
241 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
242 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
243 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
244 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
245 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
246 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
247 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
248 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
249 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
250
251 return (0);
252 }
253
254 RF_DagHeader_t *
255 rf_AllocDAGHeader(void)
256 {
257 return pool_get(&rf_pools.dagh, PR_WAITOK | PR_ZERO);
258 }
259
260 void
261 rf_FreeDAGHeader(RF_DagHeader_t * dh)
262 {
263 pool_put(&rf_pools.dagh, dh);
264 }
265
266 RF_DagNode_t *
267 rf_AllocDAGNode(void)
268 {
269 return pool_get(&rf_pools.dagnode, PR_WAITOK | PR_ZERO);
270 }
271
272 void
273 rf_FreeDAGNode(RF_DagNode_t *node)
274 {
275 if (node->big_dag_ptrs) {
276 rf_FreeDAGPCache(node->big_dag_ptrs);
277 }
278 if (node->big_dag_params) {
279 rf_FreeDAGPCache(node->big_dag_params);
280 }
281 pool_put(&rf_pools.dagnode, node);
282 }
283
284 RF_DagList_t *
285 rf_AllocDAGList(void)
286 {
287 return pool_get(&rf_pools.daglist, PR_WAITOK | PR_ZERO);
288 }
289
290 void
291 rf_FreeDAGList(RF_DagList_t *dagList)
292 {
293 pool_put(&rf_pools.daglist, dagList);
294 }
295
296 void *
297 rf_AllocDAGPCache(void)
298 {
299 return pool_get(&rf_pools.dagpcache, PR_WAITOK | PR_ZERO);
300 }
301
302 void
303 rf_FreeDAGPCache(void *p)
304 {
305 pool_put(&rf_pools.dagpcache, p);
306 }
307
308 RF_FuncList_t *
309 rf_AllocFuncList(void)
310 {
311 return pool_get(&rf_pools.funclist, PR_WAITOK | PR_ZERO);
312 }
313
314 void
315 rf_FreeFuncList(RF_FuncList_t *funcList)
316 {
317 pool_put(&rf_pools.funclist, funcList);
318 }
319
320 /* allocates a stripe buffer -- a buffer large enough to hold all the data
321 in an entire stripe.
322 */
323
324 void *
325 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
326 int size)
327 {
328 RF_VoidPointerListElem_t *vple;
329 void *p;
330
331 RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
332 raidPtr->logBytesPerSector))));
333
334 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
335 raidPtr->logBytesPerSector),
336 M_RAIDFRAME, M_NOWAIT);
337 if (!p) {
338 rf_lock_mutex2(raidPtr->mutex);
339 if (raidPtr->stripebuf_count > 0) {
340 vple = raidPtr->stripebuf;
341 raidPtr->stripebuf = vple->next;
342 p = vple->p;
343 rf_FreeVPListElem(vple);
344 raidPtr->stripebuf_count--;
345 } else {
346 #ifdef DIAGNOSTIC
347 printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
348 #endif
349 }
350 rf_unlock_mutex2(raidPtr->mutex);
351 if (!p) {
352 /* We didn't get a buffer... not much we can do other than wait,
353 and hope that someone frees up memory for us.. */
354 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
356 }
357 }
358 memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
359
360 vple = rf_AllocVPListElem();
361 vple->p = p;
362 vple->next = dag_h->desc->stripebufs;
363 dag_h->desc->stripebufs = vple;
364
365 return (p);
366 }
367
368
369 void
370 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
371 {
372 rf_lock_mutex2(raidPtr->mutex);
373 if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
374 /* just tack it in */
375 vple->next = raidPtr->stripebuf;
376 raidPtr->stripebuf = vple;
377 raidPtr->stripebuf_count++;
378 } else {
379 free(vple->p, M_RAIDFRAME);
380 rf_FreeVPListElem(vple);
381 }
382 rf_unlock_mutex2(raidPtr->mutex);
383 }
384
385 /* allocates a buffer big enough to hold the data described by the
386 caller (ie. the data of the associated PDA). Glue this buffer
387 into our dag_h cleanup structure. */
388
389 void *
390 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
391 {
392 RF_VoidPointerListElem_t *vple;
393 void *p;
394
395 p = rf_AllocIOBuffer(raidPtr, size);
396 vple = rf_AllocVPListElem();
397 vple->p = p;
398 vple->next = dag_h->desc->iobufs;
399 dag_h->desc->iobufs = vple;
400
401 return (p);
402 }
403
404 void *
405 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
406 {
407 RF_VoidPointerListElem_t *vple;
408 void *p;
409
410 RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
411 raidPtr->logBytesPerSector)));
412
413 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
414 raidPtr->logBytesPerSector,
415 M_RAIDFRAME, M_NOWAIT);
416 if (!p) {
417 rf_lock_mutex2(raidPtr->mutex);
418 if (raidPtr->iobuf_count > 0) {
419 vple = raidPtr->iobuf;
420 raidPtr->iobuf = vple->next;
421 p = vple->p;
422 rf_FreeVPListElem(vple);
423 raidPtr->iobuf_count--;
424 } else {
425 #ifdef DIAGNOSTIC
426 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
427 #endif
428 }
429 rf_unlock_mutex2(raidPtr->mutex);
430 if (!p) {
431 /* We didn't get a buffer... not much we can do other than wait,
432 and hope that someone frees up memory for us.. */
433 p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
434 raidPtr->logBytesPerSector,
435 M_RAIDFRAME, M_WAITOK);
436 }
437 }
438 memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
439 return (p);
440 }
441
442 void
443 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
444 {
445 rf_lock_mutex2(raidPtr->mutex);
446 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
447 /* just tack it in */
448 vple->next = raidPtr->iobuf;
449 raidPtr->iobuf = vple;
450 raidPtr->iobuf_count++;
451 } else {
452 free(vple->p, M_RAIDFRAME);
453 rf_FreeVPListElem(vple);
454 }
455 rf_unlock_mutex2(raidPtr->mutex);
456 }
457
458
459
460 #if RF_DEBUG_VALIDATE_DAG
461 /******************************************************************************
462 *
463 * debug routines
464 *
465 *****************************************************************************/
466
467 char *
468 rf_NodeStatusString(RF_DagNode_t *node)
469 {
470 switch (node->status) {
471 case rf_wait:
472 return ("wait");
473 case rf_fired:
474 return ("fired");
475 case rf_good:
476 return ("good");
477 case rf_bad:
478 return ("bad");
479 default:
480 return ("?");
481 }
482 }
483
484 void
485 rf_PrintNodeInfoString(RF_DagNode_t *node)
486 {
487 RF_PhysDiskAddr_t *pda;
488 int (*df) (RF_DagNode_t *) = node->doFunc;
489 int i, lk, unlk;
490 void *bufPtr;
491
492 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
493 || (df == rf_DiskReadMirrorIdleFunc)
494 || (df == rf_DiskReadMirrorPartitionFunc)) {
495 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
496 bufPtr = (void *) node->params[1].p;
497 lk = 0;
498 unlk = 0;
499 RF_ASSERT(!(lk && unlk));
500 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
501 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
502 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
503 return;
504 }
505 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
506 || (df == rf_RecoveryXorFunc)) {
507 printf("result buf 0x%lx\n", (long) node->results[0]);
508 for (i = 0; i < node->numParams - 1; i += 2) {
509 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
510 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
511 printf(" buf 0x%lx c%d offs %ld nsect %d\n",
512 (long) bufPtr, pda->col,
513 (long) pda->startSector, (int) pda->numSector);
514 }
515 return;
516 }
517 #if RF_INCLUDE_PARITYLOGGING > 0
518 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
519 for (i = 0; i < node->numParams - 1; i += 2) {
520 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
521 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
522 printf(" c%d offs %ld nsect %d buf 0x%lx\n",
523 pda->col, (long) pda->startSector,
524 (int) pda->numSector, (long) bufPtr);
525 }
526 return;
527 }
528 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
529
530 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
531 printf("\n");
532 return;
533 }
534 printf("?\n");
535 }
536 #ifdef DEBUG
537 static void
538 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
539 {
540 char *anttype;
541 int i;
542
543 node->visited = (unvisited) ? 0 : 1;
544 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
545 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
546 node->numSuccedents, node->numSuccFired, node->numSuccDone,
547 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
548 for (i = 0; i < node->numSuccedents; i++) {
549 printf("%d%s", node->succedents[i]->nodeNum,
550 ((i == node->numSuccedents - 1) ? "\0" : " "));
551 }
552 printf("} A{");
553 for (i = 0; i < node->numAntecedents; i++) {
554 switch (node->antType[i]) {
555 case rf_trueData:
556 anttype = "T";
557 break;
558 case rf_antiData:
559 anttype = "A";
560 break;
561 case rf_outputData:
562 anttype = "O";
563 break;
564 case rf_control:
565 anttype = "C";
566 break;
567 default:
568 anttype = "?";
569 break;
570 }
571 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
572 }
573 printf("}; ");
574 rf_PrintNodeInfoString(node);
575 for (i = 0; i < node->numSuccedents; i++) {
576 if (node->succedents[i]->visited == unvisited)
577 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
578 }
579 }
580
581 static void
582 rf_PrintDAG(RF_DagHeader_t *dag_h)
583 {
584 int unvisited, i;
585 char *status;
586
587 /* set dag status */
588 switch (dag_h->status) {
589 case rf_enable:
590 status = "enable";
591 break;
592 case rf_rollForward:
593 status = "rollForward";
594 break;
595 case rf_rollBackward:
596 status = "rollBackward";
597 break;
598 default:
599 status = "illegal!";
600 break;
601 }
602 /* find out if visited bits are currently set or clear */
603 unvisited = dag_h->succedents[0]->visited;
604
605 printf("DAG type: %s\n", dag_h->creator);
606 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
607 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
608 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
609 for (i = 0; i < dag_h->numSuccedents; i++) {
610 printf("%d%s", dag_h->succedents[i]->nodeNum,
611 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
612 }
613 printf("};\n");
614 for (i = 0; i < dag_h->numSuccedents; i++) {
615 if (dag_h->succedents[i]->visited == unvisited)
616 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
617 }
618 }
619 #endif
620 /* assigns node numbers */
621 int
622 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
623 {
624 int unvisited, i, nnum;
625 RF_DagNode_t *node;
626
627 nnum = 0;
628 unvisited = dag_h->succedents[0]->visited;
629
630 dag_h->nodeNum = nnum++;
631 for (i = 0; i < dag_h->numSuccedents; i++) {
632 node = dag_h->succedents[i];
633 if (node->visited == unvisited) {
634 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
635 }
636 }
637 return (nnum);
638 }
639
640 int
641 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
642 {
643 int i;
644
645 node->visited = (unvisited) ? 0 : 1;
646
647 node->nodeNum = num++;
648 for (i = 0; i < node->numSuccedents; i++) {
649 if (node->succedents[i]->visited == unvisited) {
650 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
651 }
652 }
653 return (num);
654 }
655 /* set the header pointers in each node to "newptr" */
656 void
657 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
658 {
659 int i;
660 for (i = 0; i < dag_h->numSuccedents; i++)
661 if (dag_h->succedents[i]->dagHdr != newptr)
662 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
663 }
664
665 void
666 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
667 {
668 int i;
669 node->dagHdr = newptr;
670 for (i = 0; i < node->numSuccedents; i++)
671 if (node->succedents[i]->dagHdr != newptr)
672 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
673 }
674
675
676 void
677 rf_PrintDAGList(RF_DagHeader_t * dag_h)
678 {
679 int i = 0;
680
681 for (; dag_h; dag_h = dag_h->next) {
682 rf_AssignNodeNums(dag_h);
683 printf("\n\nDAG %d IN LIST:\n", i++);
684 rf_PrintDAG(dag_h);
685 }
686 }
687
688 static int
689 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
690 RF_DagNode_t **nodes, int unvisited)
691 {
692 int i, retcode = 0;
693
694 /* construct an array of node pointers indexed by node num */
695 node->visited = (unvisited) ? 0 : 1;
696 nodes[node->nodeNum] = node;
697
698 if (node->next != NULL) {
699 printf("INVALID DAG: next pointer in node is not NULL\n");
700 retcode = 1;
701 }
702 if (node->status != rf_wait) {
703 printf("INVALID DAG: Node status is not wait\n");
704 retcode = 1;
705 }
706 if (node->numAntDone != 0) {
707 printf("INVALID DAG: numAntDone is not zero\n");
708 retcode = 1;
709 }
710 if (node->doFunc == rf_TerminateFunc) {
711 if (node->numSuccedents != 0) {
712 printf("INVALID DAG: Terminator node has succedents\n");
713 retcode = 1;
714 }
715 } else {
716 if (node->numSuccedents == 0) {
717 printf("INVALID DAG: Non-terminator node has no succedents\n");
718 retcode = 1;
719 }
720 }
721 for (i = 0; i < node->numSuccedents; i++) {
722 if (!node->succedents[i]) {
723 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
724 retcode = 1;
725 }
726 scount[node->succedents[i]->nodeNum]++;
727 }
728 for (i = 0; i < node->numAntecedents; i++) {
729 if (!node->antecedents[i]) {
730 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
731 retcode = 1;
732 }
733 acount[node->antecedents[i]->nodeNum]++;
734 }
735 for (i = 0; i < node->numSuccedents; i++) {
736 if (node->succedents[i]->visited == unvisited) {
737 if (rf_ValidateBranch(node->succedents[i], scount,
738 acount, nodes, unvisited)) {
739 retcode = 1;
740 }
741 }
742 }
743 return (retcode);
744 }
745
746 static void
747 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
748 {
749 int i;
750
751 RF_ASSERT(node->visited == unvisited);
752 for (i = 0; i < node->numSuccedents; i++) {
753 if (node->succedents[i] == NULL) {
754 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
755 RF_ASSERT(0);
756 }
757 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
758 }
759 }
760 /* NOTE: never call this on a big dag, because it is exponential
761 * in execution time
762 */
763 static void
764 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
765 {
766 int i, unvisited;
767
768 unvisited = dag->succedents[0]->visited;
769
770 for (i = 0; i < dag->numSuccedents; i++) {
771 if (dag->succedents[i] == NULL) {
772 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
773 RF_ASSERT(0);
774 }
775 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
776 }
777 }
778 /* validate a DAG. _at entry_ verify that:
779 * -- numNodesCompleted is zero
780 * -- node queue is null
781 * -- dag status is rf_enable
782 * -- next pointer is null on every node
783 * -- all nodes have status wait
784 * -- numAntDone is zero in all nodes
785 * -- terminator node has zero successors
786 * -- no other node besides terminator has zero successors
787 * -- no successor or antecedent pointer in a node is NULL
788 * -- number of times that each node appears as a successor of another node
789 * is equal to the antecedent count on that node
790 * -- number of times that each node appears as an antecedent of another node
791 * is equal to the succedent count on that node
792 * -- what else?
793 */
794 int
795 rf_ValidateDAG(RF_DagHeader_t *dag_h)
796 {
797 int i, nodecount;
798 int *scount, *acount;/* per-node successor and antecedent counts */
799 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
800 int retcode = 0;
801 int unvisited;
802 int commitNodeCount = 0;
803
804 if (rf_validateVisitedDebug)
805 rf_ValidateVisitedBits(dag_h);
806
807 if (dag_h->numNodesCompleted != 0) {
808 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
809 retcode = 1;
810 goto validate_dag_bad;
811 }
812 if (dag_h->status != rf_enable) {
813 printf("INVALID DAG: not enabled\n");
814 retcode = 1;
815 goto validate_dag_bad;
816 }
817 if (dag_h->numCommits != 0) {
818 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
819 retcode = 1;
820 goto validate_dag_bad;
821 }
822 if (dag_h->numSuccedents != 1) {
823 /* currently, all dags must have only one succedent */
824 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
825 retcode = 1;
826 goto validate_dag_bad;
827 }
828 nodecount = rf_AssignNodeNums(dag_h);
829
830 unvisited = dag_h->succedents[0]->visited;
831
832 scount = RF_Malloc(nodecount * sizeof(*scount));
833 acount = RF_Malloc(nodecount * sizeof(*acount));
834 nodes = RF_Malloc(nodecount * sizeof(*nodes));
835 for (i = 0; i < dag_h->numSuccedents; i++) {
836 if ((dag_h->succedents[i]->visited == unvisited)
837 && rf_ValidateBranch(dag_h->succedents[i], scount,
838 acount, nodes, unvisited)) {
839 retcode = 1;
840 }
841 }
842 /* start at 1 to skip the header node */
843 for (i = 1; i < nodecount; i++) {
844 if (nodes[i]->commitNode)
845 commitNodeCount++;
846 if (nodes[i]->doFunc == NULL) {
847 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
848 retcode = 1;
849 goto validate_dag_out;
850 }
851 if (nodes[i]->undoFunc == NULL) {
852 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
853 retcode = 1;
854 goto validate_dag_out;
855 }
856 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
857 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
858 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
859 retcode = 1;
860 goto validate_dag_out;
861 }
862 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
863 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
864 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
865 retcode = 1;
866 goto validate_dag_out;
867 }
868 }
869
870 if (dag_h->numCommitNodes != commitNodeCount) {
871 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
872 dag_h->numCommitNodes, commitNodeCount);
873 retcode = 1;
874 goto validate_dag_out;
875 }
876 validate_dag_out:
877 RF_Free(scount, nodecount * sizeof(int));
878 RF_Free(acount, nodecount * sizeof(int));
879 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
880 if (retcode)
881 rf_PrintDAGList(dag_h);
882
883 if (rf_validateVisitedDebug)
884 rf_ValidateVisitedBits(dag_h);
885
886 return (retcode);
887
888 validate_dag_bad:
889 rf_PrintDAGList(dag_h);
890 return (retcode);
891 }
892
893 #endif /* RF_DEBUG_VALIDATE_DAG */
894
895 /******************************************************************************
896 *
897 * misc construction routines
898 *
899 *****************************************************************************/
900
901 void
902 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
903 {
904 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
905 int fcol = raidPtr->reconControl->fcol;
906 int scol = raidPtr->reconControl->spareCol;
907 RF_PhysDiskAddr_t *pda;
908
909 RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
910 for (pda = asmap->physInfo; pda; pda = pda->next) {
911 if (pda->col == fcol) {
912 #if RF_DEBUG_DAG
913 if (rf_dagDebug) {
914 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
915 pda->startSector)) {
916 RF_PANIC();
917 }
918 }
919 #endif
920 /* printf("Remapped data for large write\n"); */
921 if (ds) {
922 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
923 &pda->col, &pda->startSector, RF_REMAP);
924 } else {
925 pda->col = scol;
926 }
927 }
928 }
929 for (pda = asmap->parityInfo; pda; pda = pda->next) {
930 if (pda->col == fcol) {
931 #if RF_DEBUG_DAG
932 if (rf_dagDebug) {
933 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
934 RF_PANIC();
935 }
936 }
937 #endif
938 }
939 if (ds) {
940 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
941 } else {
942 pda->col = scol;
943 }
944 }
945 }
946
947
948 /* this routine allocates read buffers and generates stripe maps for the
949 * regions of the array from the start of the stripe to the start of the
950 * access, and from the end of the access to the end of the stripe. It also
951 * computes and returns the number of DAG nodes needed to read all this data.
952 * Note that this routine does the wrong thing if the access is fully
953 * contained within one stripe unit, so we RF_ASSERT against this case at the
954 * start.
955 *
956 * layoutPtr - in: layout information
957 * asmap - in: access stripe map
958 * dag_h - in: header of the dag to create
959 * new_asm_h - in: ptr to array of 2 headers. to be filled in
960 * nRodNodes - out: num nodes to be generated to read unaccessed data
961 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
962 */
963 void
964 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
965 RF_RaidLayout_t *layoutPtr,
966 RF_AccessStripeMap_t *asmap,
967 RF_DagHeader_t *dag_h,
968 RF_AccessStripeMapHeader_t **new_asm_h,
969 int *nRodNodes,
970 char **sosBuffer, char **eosBuffer,
971 RF_AllocListElem_t *allocList)
972 {
973 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
974 RF_SectorNum_t sosNumSector, eosNumSector;
975
976 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
977 /* generate an access map for the region of the array from start of
978 * stripe to start of access */
979 new_asm_h[0] = new_asm_h[1] = NULL;
980 *nRodNodes = 0;
981 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
982 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
983 sosNumSector = asmap->raidAddress - sosRaidAddress;
984 *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
985 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
986 new_asm_h[0]->next = dag_h->asmList;
987 dag_h->asmList = new_asm_h[0];
988 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
989
990 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
991 /* we're totally within one stripe here */
992 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
993 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
994 }
995 /* generate an access map for the region of the array from end of
996 * access to end of stripe */
997 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
998 eosRaidAddress = asmap->endRaidAddress;
999 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1000 *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1001 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1002 new_asm_h[1]->next = dag_h->asmList;
1003 dag_h->asmList = new_asm_h[1];
1004 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1005
1006 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1007 /* we're totally within one stripe here */
1008 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1009 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1010 }
1011 }
1012
1013
1014
1015 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1016 int
1017 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1018 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1019 {
1020 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1021 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1022 /* use -1 to be sure we stay within SU */
1023 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1024 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1025 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1026 }
1027
1028
1029 /* GenerateFailedAccessASMs
1030 *
1031 * this routine figures out what portion of the stripe needs to be read
1032 * to effect the degraded read or write operation. It's primary function
1033 * is to identify everything required to recover the data, and then
1034 * eliminate anything that is already being accessed by the user.
1035 *
1036 * The main result is two new ASMs, one for the region from the start of the
1037 * stripe to the start of the access, and one for the region from the end of
1038 * the access to the end of the stripe. These ASMs describe everything that
1039 * needs to be read to effect the degraded access. Other results are:
1040 * nXorBufs -- the total number of buffers that need to be XORed together to
1041 * recover the lost data,
1042 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
1043 * at entry, not allocated.
1044 * overlappingPDAs --
1045 * describes which of the non-failed PDAs in the user access
1046 * overlap data that needs to be read to effect recovery.
1047 * overlappingPDAs[i]==1 if and only if, neglecting the failed
1048 * PDA, the ith pda in the input asm overlaps data that needs
1049 * to be read for recovery.
1050 */
1051 /* in: asm - ASM for the actual access, one stripe only */
1052 /* in: failedPDA - which component of the access has failed */
1053 /* in: dag_h - header of the DAG we're going to create */
1054 /* out: new_asm_h - the two new ASMs */
1055 /* out: nXorBufs - the total number of xor bufs required */
1056 /* out: rpBufPtr - a buffer for the parity read */
1057 void
1058 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1059 RF_PhysDiskAddr_t *failedPDA,
1060 RF_DagHeader_t *dag_h,
1061 RF_AccessStripeMapHeader_t **new_asm_h,
1062 int *nXorBufs, char **rpBufPtr,
1063 char *overlappingPDAs,
1064 RF_AllocListElem_t *allocList)
1065 {
1066 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1067
1068 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1069 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1070 RF_PhysDiskAddr_t *pda;
1071 int foundit, i;
1072
1073 foundit = 0;
1074 /* first compute the following raid addresses: start of stripe,
1075 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
1076 * MAX(end of access, end of failed SU), (eosStartAddr) end of
1077 * stripe (i.e. start of next stripe) (eosAddr) */
1078 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1079 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1080 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1081 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1082
1083 /* now generate access stripe maps for each of the above regions of
1084 * the stripe. Use a dummy (NULL) buf ptr for now */
1085
1086 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1087 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1088
1089 /* walk through the PDAs and range-restrict each SU to the region of
1090 * the SU touched on the failed PDA. also compute total data buffer
1091 * space requirements in this step. Ignore the parity for now. */
1092 /* Also count nodes to find out how many bufs need to be xored together */
1093 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
1094 * case, 1 is for failed data */
1095
1096 if (new_asm_h[0]) {
1097 new_asm_h[0]->next = dag_h->asmList;
1098 dag_h->asmList = new_asm_h[0];
1099 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1100 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1101 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1102 }
1103 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1104 }
1105 if (new_asm_h[1]) {
1106 new_asm_h[1]->next = dag_h->asmList;
1107 dag_h->asmList = new_asm_h[1];
1108 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1109 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1110 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1111 }
1112 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1113 }
1114
1115 /* allocate a buffer for parity */
1116 if (rpBufPtr)
1117 *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1118
1119 /* the last step is to figure out how many more distinct buffers need
1120 * to get xor'd to produce the missing unit. there's one for each
1121 * user-data read node that overlaps the portion of the failed unit
1122 * being accessed */
1123
1124 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1125 if (pda == failedPDA) {
1126 i--;
1127 foundit = 1;
1128 continue;
1129 }
1130 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1131 overlappingPDAs[i] = 1;
1132 (*nXorBufs)++;
1133 }
1134 }
1135 if (!foundit) {
1136 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1137 RF_ASSERT(0);
1138 }
1139 #if RF_DEBUG_DAG
1140 if (rf_degDagDebug) {
1141 if (new_asm_h[0]) {
1142 printf("First asm:\n");
1143 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1144 }
1145 if (new_asm_h[1]) {
1146 printf("Second asm:\n");
1147 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1148 }
1149 }
1150 #endif
1151 }
1152
1153
1154 /* adjusts the offset and number of sectors in the destination pda so that
1155 * it covers at most the region of the SU covered by the source PDA. This
1156 * is exclusively a restriction: the number of sectors indicated by the
1157 * target PDA can only shrink.
1158 *
1159 * For example: s = sectors within SU indicated by source PDA
1160 * d = sectors within SU indicated by dest PDA
1161 * r = results, stored in dest PDA
1162 *
1163 * |--------------- one stripe unit ---------------------|
1164 * | sssssssssssssssssssssssssssssssss |
1165 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1166 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1167 *
1168 * Another example:
1169 *
1170 * |--------------- one stripe unit ---------------------|
1171 * | sssssssssssssssssssssssssssssssss |
1172 * | ddddddddddddddddddddddd |
1173 * | rrrrrrrrrrrrrrrr |
1174 *
1175 */
1176 void
1177 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1178 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1179 {
1180 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1181 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1182 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1183 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1184 * stay within SU */
1185 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1186 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1187
1188 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1189 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1190
1191 if (dobuffer)
1192 dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
1193 if (doraidaddr) {
1194 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1195 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1196 }
1197 }
1198
1199 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1200
1201 /*
1202 * Want the highest of these primes to be the largest one
1203 * less than the max expected number of columns (won't hurt
1204 * to be too small or too large, but won't be optimal, either)
1205 * --jimz
1206 */
1207 #define NLOWPRIMES 8
1208 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1209 /*****************************************************************************
1210 * compute the workload shift factor. (chained declustering)
1211 *
1212 * return nonzero if access should shift to secondary, otherwise,
1213 * access is to primary
1214 *****************************************************************************/
1215 int
1216 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1217 {
1218 /*
1219 * variables:
1220 * d = column of disk containing primary
1221 * f = column of failed disk
1222 * n = number of disks in array
1223 * sd = "shift distance" (number of columns that d is to the right of f)
1224 * v = numerator of redirection ratio
1225 * k = denominator of redirection ratio
1226 */
1227 RF_RowCol_t d, f, sd, n;
1228 int k, v, ret, i;
1229
1230 n = raidPtr->numCol;
1231
1232 /* assign column of primary copy to d */
1233 d = pda->col;
1234
1235 /* assign column of dead disk to f */
1236 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
1237 continue;
1238
1239 RF_ASSERT(f < n);
1240 RF_ASSERT(f != d);
1241
1242 sd = (f > d) ? (n + d - f) : (d - f);
1243 RF_ASSERT(sd < n);
1244
1245 /*
1246 * v of every k accesses should be redirected
1247 *
1248 * v/k := (n-1-sd)/(n-1)
1249 */
1250 v = (n - 1 - sd);
1251 k = (n - 1);
1252
1253 #if 1
1254 /*
1255 * XXX
1256 * Is this worth it?
1257 *
1258 * Now reduce the fraction, by repeatedly factoring
1259 * out primes (just like they teach in elementary school!)
1260 */
1261 for (i = 0; i < NLOWPRIMES; i++) {
1262 if (lowprimes[i] > v)
1263 break;
1264 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1265 v /= lowprimes[i];
1266 k /= lowprimes[i];
1267 }
1268 }
1269 #endif
1270
1271 raidPtr->hist_diskreq[d]++;
1272 if (raidPtr->hist_diskreq[d] > v) {
1273 ret = 0; /* do not redirect */
1274 } else {
1275 ret = 1; /* redirect */
1276 }
1277
1278 #if 0
1279 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1280 raidPtr->hist_diskreq[d]);
1281 #endif
1282
1283 if (raidPtr->hist_diskreq[d] >= k) {
1284 /* reset counter */
1285 raidPtr->hist_diskreq[d] = 0;
1286 }
1287 return (ret);
1288 }
1289 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1290
1291 /*
1292 * Disk selection routines
1293 */
1294
1295 /*
1296 * Selects the disk with the shortest queue from a mirror pair.
1297 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1298 * disk are counted as members of the "queue"
1299 */
1300 void
1301 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1302 {
1303 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1304 RF_RowCol_t colData, colMirror;
1305 int dataQueueLength, mirrorQueueLength, usemirror;
1306 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1307 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1308 RF_PhysDiskAddr_t *tmp_pda;
1309 RF_RaidDisk_t *disks = raidPtr->Disks;
1310 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1311
1312 /* return the [row col] of the disk with the shortest queue */
1313 colData = data_pda->col;
1314 colMirror = mirror_pda->col;
1315 dataQueue = &(dqs[colData]);
1316 mirrorQueue = &(dqs[colMirror]);
1317
1318 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1319 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1320 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1321 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1322 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1323 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1324 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1325 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1326 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1327 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1328 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1329 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1330
1331 usemirror = 0;
1332 if (RF_DEAD_DISK(disks[colMirror].status)) {
1333 usemirror = 0;
1334 } else
1335 if (RF_DEAD_DISK(disks[colData].status)) {
1336 usemirror = 1;
1337 } else
1338 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1339 /* Trust only the main disk */
1340 usemirror = 0;
1341 } else
1342 if (dataQueueLength < mirrorQueueLength) {
1343 usemirror = 0;
1344 } else
1345 if (mirrorQueueLength < dataQueueLength) {
1346 usemirror = 1;
1347 } else {
1348 /* queues are equal length. attempt
1349 * cleverness. */
1350 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1351 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1352 usemirror = 0;
1353 } else {
1354 usemirror = 1;
1355 }
1356 }
1357
1358 if (usemirror) {
1359 /* use mirror (parity) disk, swap params 0 & 4 */
1360 tmp_pda = data_pda;
1361 node->params[0].p = mirror_pda;
1362 node->params[4].p = tmp_pda;
1363 } else {
1364 /* use data disk, leave param 0 unchanged */
1365 }
1366 /* printf("dataQueueLength %d, mirrorQueueLength
1367 * %d\n",dataQueueLength, mirrorQueueLength); */
1368 }
1369 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1370 /*
1371 * Do simple partitioning. This assumes that
1372 * the data and parity disks are laid out identically.
1373 */
1374 void
1375 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1376 {
1377 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1378 RF_RowCol_t colData, colMirror;
1379 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1380 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1381 RF_PhysDiskAddr_t *tmp_pda;
1382 RF_RaidDisk_t *disks = raidPtr->Disks;
1383 int usemirror;
1384
1385 /* return the [row col] of the disk with the shortest queue */
1386 colData = data_pda->col;
1387 colMirror = mirror_pda->col;
1388
1389 usemirror = 0;
1390 if (RF_DEAD_DISK(disks[colMirror].status)) {
1391 usemirror = 0;
1392 } else
1393 if (RF_DEAD_DISK(disks[colData].status)) {
1394 usemirror = 1;
1395 } else
1396 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1397 /* Trust only the main disk */
1398 usemirror = 0;
1399 } else
1400 if (data_pda->startSector <
1401 (disks[colData].numBlocks / 2)) {
1402 usemirror = 0;
1403 } else {
1404 usemirror = 1;
1405 }
1406
1407 if (usemirror) {
1408 /* use mirror (parity) disk, swap params 0 & 4 */
1409 tmp_pda = data_pda;
1410 node->params[0].p = mirror_pda;
1411 node->params[4].p = tmp_pda;
1412 } else {
1413 /* use data disk, leave param 0 unchanged */
1414 }
1415 }
1416 #endif
1417