rf_dagutils.c revision 1.8 1 /* $NetBSD: rf_dagutils.c,v 1.8 2001/10/04 15:58:52 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <dev/raidframe/raidframevar.h>
36
37 #include "rf_archs.h"
38 #include "rf_threadstuff.h"
39 #include "rf_raid.h"
40 #include "rf_dag.h"
41 #include "rf_dagutils.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_general.h"
44 #include "rf_freelist.h"
45 #include "rf_map.h"
46 #include "rf_shutdown.h"
47
48 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
49
50 RF_RedFuncs_t rf_xorFuncs = {
51 rf_RegularXorFunc, "Reg Xr",
52 rf_SimpleXorFunc, "Simple Xr"};
53
54 RF_RedFuncs_t rf_xorRecoveryFuncs = {
55 rf_RecoveryXorFunc, "Recovery Xr",
56 rf_RecoveryXorFunc, "Recovery Xr"};
57
58 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
59 static void rf_PrintDAG(RF_DagHeader_t *);
60 static int
61 rf_ValidateBranch(RF_DagNode_t *, int *, int *,
62 RF_DagNode_t **, int);
63 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
64 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
65
66 /******************************************************************************
67 *
68 * InitNode - initialize a dag node
69 *
70 * the size of the propList array is always the same as that of the
71 * successors array.
72 *
73 *****************************************************************************/
74 void
75 rf_InitNode(
76 RF_DagNode_t * node,
77 RF_NodeStatus_t initstatus,
78 int commit,
79 int (*doFunc) (RF_DagNode_t * node),
80 int (*undoFunc) (RF_DagNode_t * node),
81 int (*wakeFunc) (RF_DagNode_t * node, int status),
82 int nSucc,
83 int nAnte,
84 int nParam,
85 int nResult,
86 RF_DagHeader_t * hdr,
87 char *name,
88 RF_AllocListElem_t * alist)
89 {
90 void **ptrs;
91 int nptrs;
92
93 if (nAnte > RF_MAX_ANTECEDENTS)
94 RF_PANIC();
95 node->status = initstatus;
96 node->commitNode = commit;
97 node->doFunc = doFunc;
98 node->undoFunc = undoFunc;
99 node->wakeFunc = wakeFunc;
100 node->numParams = nParam;
101 node->numResults = nResult;
102 node->numAntecedents = nAnte;
103 node->numAntDone = 0;
104 node->next = NULL;
105 node->numSuccedents = nSucc;
106 node->name = name;
107 node->dagHdr = hdr;
108 node->visited = 0;
109
110 /* allocate all the pointers with one call to malloc */
111 nptrs = nSucc + nAnte + nResult + nSucc;
112
113 if (nptrs <= RF_DAG_PTRCACHESIZE) {
114 /*
115 * The dag_ptrs field of the node is basically some scribble
116 * space to be used here. We could get rid of it, and always
117 * allocate the range of pointers, but that's expensive. So,
118 * we pick a "common case" size for the pointer cache. Hopefully,
119 * we'll find that:
120 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
121 * only a little bit (least efficient case)
122 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
123 * (wasted memory)
124 */
125 ptrs = (void **) node->dag_ptrs;
126 } else {
127 RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
128 }
129 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
130 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
131 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
132 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
133
134 if (nParam) {
135 if (nParam <= RF_DAG_PARAMCACHESIZE) {
136 node->params = (RF_DagParam_t *) node->dag_params;
137 } else {
138 RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
139 }
140 } else {
141 node->params = NULL;
142 }
143 }
144
145
146
147 /******************************************************************************
148 *
149 * allocation and deallocation routines
150 *
151 *****************************************************************************/
152
153 void
154 rf_FreeDAG(dag_h)
155 RF_DagHeader_t *dag_h;
156 {
157 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
158 RF_DagHeader_t *nextDag;
159 int i;
160
161 while (dag_h) {
162 nextDag = dag_h->next;
163 for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
164 /* release mem chunks */
165 rf_ReleaseMemChunk(dag_h->memChunk[i]);
166 dag_h->memChunk[i] = NULL;
167 }
168
169 RF_ASSERT(i == dag_h->chunkIndex);
170 if (dag_h->xtraChunkCnt > 0) {
171 /* free xtraMemChunks */
172 for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
173 rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
174 dag_h->xtraMemChunk[i] = NULL;
175 }
176 RF_ASSERT(i == dag_h->xtraChunkIndex);
177 /* free ptrs to xtraMemChunks */
178 RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
179 }
180 rf_FreeAllocList(dag_h->allocList);
181 for (asmap = dag_h->asmList; asmap;) {
182 t_asmap = asmap;
183 asmap = asmap->next;
184 rf_FreeAccessStripeMap(t_asmap);
185 }
186 rf_FreeDAGHeader(dag_h);
187 dag_h = nextDag;
188 }
189 }
190
191 RF_PropHeader_t *
192 rf_MakePropListEntry(
193 RF_DagHeader_t * dag_h,
194 int resultNum,
195 int paramNum,
196 RF_PropHeader_t * next,
197 RF_AllocListElem_t * allocList)
198 {
199 RF_PropHeader_t *p;
200
201 RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
202 (RF_PropHeader_t *), allocList);
203 p->resultNum = resultNum;
204 p->paramNum = paramNum;
205 p->next = next;
206 return (p);
207 }
208
209 static RF_FreeList_t *rf_dagh_freelist;
210
211 #define RF_MAX_FREE_DAGH 128
212 #define RF_DAGH_INC 16
213 #define RF_DAGH_INITIAL 32
214
215 static void rf_ShutdownDAGs(void *);
216 static void
217 rf_ShutdownDAGs(ignored)
218 void *ignored;
219 {
220 RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
221 }
222
223 int
224 rf_ConfigureDAGs(listp)
225 RF_ShutdownList_t **listp;
226 {
227 int rc;
228
229 RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
230 RF_DAGH_INC, sizeof(RF_DagHeader_t));
231 if (rf_dagh_freelist == NULL)
232 return (ENOMEM);
233 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
234 if (rc) {
235 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
236 __FILE__, __LINE__, rc);
237 rf_ShutdownDAGs(NULL);
238 return (rc);
239 }
240 RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
241 (RF_DagHeader_t *));
242 return (0);
243 }
244
245 RF_DagHeader_t *
246 rf_AllocDAGHeader()
247 {
248 RF_DagHeader_t *dh;
249
250 RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
251 if (dh) {
252 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
253 }
254 return (dh);
255 }
256
257 void
258 rf_FreeDAGHeader(RF_DagHeader_t * dh)
259 {
260 RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
261 }
262 /* allocates a buffer big enough to hold the data described by pda */
263 void *
264 rf_AllocBuffer(
265 RF_Raid_t * raidPtr,
266 RF_DagHeader_t * dag_h,
267 RF_PhysDiskAddr_t * pda,
268 RF_AllocListElem_t * allocList)
269 {
270 char *p;
271
272 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
273 (char *), allocList);
274 return ((void *) p);
275 }
276 /******************************************************************************
277 *
278 * debug routines
279 *
280 *****************************************************************************/
281
282 char *
283 rf_NodeStatusString(RF_DagNode_t * node)
284 {
285 switch (node->status) {
286 case rf_wait:return ("wait");
287 case rf_fired:
288 return ("fired");
289 case rf_good:
290 return ("good");
291 case rf_bad:
292 return ("bad");
293 default:
294 return ("?");
295 }
296 }
297
298 void
299 rf_PrintNodeInfoString(RF_DagNode_t * node)
300 {
301 RF_PhysDiskAddr_t *pda;
302 int (*df) (RF_DagNode_t *) = node->doFunc;
303 int i, lk, unlk;
304 void *bufPtr;
305
306 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
307 || (df == rf_DiskReadMirrorIdleFunc)
308 || (df == rf_DiskReadMirrorPartitionFunc)) {
309 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
310 bufPtr = (void *) node->params[1].p;
311 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
312 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
313 RF_ASSERT(!(lk && unlk));
314 printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
315 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
316 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
317 return;
318 }
319 if (df == rf_DiskUnlockFunc) {
320 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
321 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
322 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
323 RF_ASSERT(!(lk && unlk));
324 printf("r %d c %d %s\n", pda->row, pda->col,
325 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
326 return;
327 }
328 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
329 || (df == rf_RecoveryXorFunc)) {
330 printf("result buf 0x%lx\n", (long) node->results[0]);
331 for (i = 0; i < node->numParams - 1; i += 2) {
332 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
333 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
334 printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
335 (long) bufPtr, pda->row, pda->col,
336 (long) pda->startSector, (int) pda->numSector);
337 }
338 return;
339 }
340 #if RF_INCLUDE_PARITYLOGGING > 0
341 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
342 for (i = 0; i < node->numParams - 1; i += 2) {
343 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
344 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
345 printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
346 pda->row, pda->col, (long) pda->startSector,
347 (int) pda->numSector, (long) bufPtr);
348 }
349 return;
350 }
351 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
352
353 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
354 printf("\n");
355 return;
356 }
357 printf("?\n");
358 }
359
360 static void
361 rf_RecurPrintDAG(node, depth, unvisited)
362 RF_DagNode_t *node;
363 int depth;
364 int unvisited;
365 {
366 char *anttype;
367 int i;
368
369 node->visited = (unvisited) ? 0 : 1;
370 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
371 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
372 node->numSuccedents, node->numSuccFired, node->numSuccDone,
373 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
374 for (i = 0; i < node->numSuccedents; i++) {
375 printf("%d%s", node->succedents[i]->nodeNum,
376 ((i == node->numSuccedents - 1) ? "\0" : " "));
377 }
378 printf("} A{");
379 for (i = 0; i < node->numAntecedents; i++) {
380 switch (node->antType[i]) {
381 case rf_trueData:
382 anttype = "T";
383 break;
384 case rf_antiData:
385 anttype = "A";
386 break;
387 case rf_outputData:
388 anttype = "O";
389 break;
390 case rf_control:
391 anttype = "C";
392 break;
393 default:
394 anttype = "?";
395 break;
396 }
397 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
398 }
399 printf("}; ");
400 rf_PrintNodeInfoString(node);
401 for (i = 0; i < node->numSuccedents; i++) {
402 if (node->succedents[i]->visited == unvisited)
403 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
404 }
405 }
406
407 static void
408 rf_PrintDAG(dag_h)
409 RF_DagHeader_t *dag_h;
410 {
411 int unvisited, i;
412 char *status;
413
414 /* set dag status */
415 switch (dag_h->status) {
416 case rf_enable:
417 status = "enable";
418 break;
419 case rf_rollForward:
420 status = "rollForward";
421 break;
422 case rf_rollBackward:
423 status = "rollBackward";
424 break;
425 default:
426 status = "illegal!";
427 break;
428 }
429 /* find out if visited bits are currently set or clear */
430 unvisited = dag_h->succedents[0]->visited;
431
432 printf("DAG type: %s\n", dag_h->creator);
433 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
434 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
435 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
436 for (i = 0; i < dag_h->numSuccedents; i++) {
437 printf("%d%s", dag_h->succedents[i]->nodeNum,
438 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
439 }
440 printf("};\n");
441 for (i = 0; i < dag_h->numSuccedents; i++) {
442 if (dag_h->succedents[i]->visited == unvisited)
443 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
444 }
445 }
446 /* assigns node numbers */
447 int
448 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
449 {
450 int unvisited, i, nnum;
451 RF_DagNode_t *node;
452
453 nnum = 0;
454 unvisited = dag_h->succedents[0]->visited;
455
456 dag_h->nodeNum = nnum++;
457 for (i = 0; i < dag_h->numSuccedents; i++) {
458 node = dag_h->succedents[i];
459 if (node->visited == unvisited) {
460 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
461 }
462 }
463 return (nnum);
464 }
465
466 int
467 rf_RecurAssignNodeNums(node, num, unvisited)
468 RF_DagNode_t *node;
469 int num;
470 int unvisited;
471 {
472 int i;
473
474 node->visited = (unvisited) ? 0 : 1;
475
476 node->nodeNum = num++;
477 for (i = 0; i < node->numSuccedents; i++) {
478 if (node->succedents[i]->visited == unvisited) {
479 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
480 }
481 }
482 return (num);
483 }
484 /* set the header pointers in each node to "newptr" */
485 void
486 rf_ResetDAGHeaderPointers(dag_h, newptr)
487 RF_DagHeader_t *dag_h;
488 RF_DagHeader_t *newptr;
489 {
490 int i;
491 for (i = 0; i < dag_h->numSuccedents; i++)
492 if (dag_h->succedents[i]->dagHdr != newptr)
493 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
494 }
495
496 void
497 rf_RecurResetDAGHeaderPointers(node, newptr)
498 RF_DagNode_t *node;
499 RF_DagHeader_t *newptr;
500 {
501 int i;
502 node->dagHdr = newptr;
503 for (i = 0; i < node->numSuccedents; i++)
504 if (node->succedents[i]->dagHdr != newptr)
505 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
506 }
507
508
509 void
510 rf_PrintDAGList(RF_DagHeader_t * dag_h)
511 {
512 int i = 0;
513
514 for (; dag_h; dag_h = dag_h->next) {
515 rf_AssignNodeNums(dag_h);
516 printf("\n\nDAG %d IN LIST:\n", i++);
517 rf_PrintDAG(dag_h);
518 }
519 }
520
521 static int
522 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
523 RF_DagNode_t *node;
524 int *scount;
525 int *acount;
526 RF_DagNode_t **nodes;
527 int unvisited;
528 {
529 int i, retcode = 0;
530
531 /* construct an array of node pointers indexed by node num */
532 node->visited = (unvisited) ? 0 : 1;
533 nodes[node->nodeNum] = node;
534
535 if (node->next != NULL) {
536 printf("INVALID DAG: next pointer in node is not NULL\n");
537 retcode = 1;
538 }
539 if (node->status != rf_wait) {
540 printf("INVALID DAG: Node status is not wait\n");
541 retcode = 1;
542 }
543 if (node->numAntDone != 0) {
544 printf("INVALID DAG: numAntDone is not zero\n");
545 retcode = 1;
546 }
547 if (node->doFunc == rf_TerminateFunc) {
548 if (node->numSuccedents != 0) {
549 printf("INVALID DAG: Terminator node has succedents\n");
550 retcode = 1;
551 }
552 } else {
553 if (node->numSuccedents == 0) {
554 printf("INVALID DAG: Non-terminator node has no succedents\n");
555 retcode = 1;
556 }
557 }
558 for (i = 0; i < node->numSuccedents; i++) {
559 if (!node->succedents[i]) {
560 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
561 retcode = 1;
562 }
563 scount[node->succedents[i]->nodeNum]++;
564 }
565 for (i = 0; i < node->numAntecedents; i++) {
566 if (!node->antecedents[i]) {
567 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
568 retcode = 1;
569 }
570 acount[node->antecedents[i]->nodeNum]++;
571 }
572 for (i = 0; i < node->numSuccedents; i++) {
573 if (node->succedents[i]->visited == unvisited) {
574 if (rf_ValidateBranch(node->succedents[i], scount,
575 acount, nodes, unvisited)) {
576 retcode = 1;
577 }
578 }
579 }
580 return (retcode);
581 }
582
583 static void
584 rf_ValidateBranchVisitedBits(node, unvisited, rl)
585 RF_DagNode_t *node;
586 int unvisited;
587 int rl;
588 {
589 int i;
590
591 RF_ASSERT(node->visited == unvisited);
592 for (i = 0; i < node->numSuccedents; i++) {
593 if (node->succedents[i] == NULL) {
594 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
595 RF_ASSERT(0);
596 }
597 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
598 }
599 }
600 /* NOTE: never call this on a big dag, because it is exponential
601 * in execution time
602 */
603 static void
604 rf_ValidateVisitedBits(dag)
605 RF_DagHeader_t *dag;
606 {
607 int i, unvisited;
608
609 unvisited = dag->succedents[0]->visited;
610
611 for (i = 0; i < dag->numSuccedents; i++) {
612 if (dag->succedents[i] == NULL) {
613 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
614 RF_ASSERT(0);
615 }
616 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
617 }
618 }
619 /* validate a DAG. _at entry_ verify that:
620 * -- numNodesCompleted is zero
621 * -- node queue is null
622 * -- dag status is rf_enable
623 * -- next pointer is null on every node
624 * -- all nodes have status wait
625 * -- numAntDone is zero in all nodes
626 * -- terminator node has zero successors
627 * -- no other node besides terminator has zero successors
628 * -- no successor or antecedent pointer in a node is NULL
629 * -- number of times that each node appears as a successor of another node
630 * is equal to the antecedent count on that node
631 * -- number of times that each node appears as an antecedent of another node
632 * is equal to the succedent count on that node
633 * -- what else?
634 */
635 int
636 rf_ValidateDAG(dag_h)
637 RF_DagHeader_t *dag_h;
638 {
639 int i, nodecount;
640 int *scount, *acount;/* per-node successor and antecedent counts */
641 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
642 int retcode = 0;
643 int unvisited;
644 int commitNodeCount = 0;
645
646 if (rf_validateVisitedDebug)
647 rf_ValidateVisitedBits(dag_h);
648
649 if (dag_h->numNodesCompleted != 0) {
650 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
651 retcode = 1;
652 goto validate_dag_bad;
653 }
654 if (dag_h->status != rf_enable) {
655 printf("INVALID DAG: not enabled\n");
656 retcode = 1;
657 goto validate_dag_bad;
658 }
659 if (dag_h->numCommits != 0) {
660 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
661 retcode = 1;
662 goto validate_dag_bad;
663 }
664 if (dag_h->numSuccedents != 1) {
665 /* currently, all dags must have only one succedent */
666 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
667 retcode = 1;
668 goto validate_dag_bad;
669 }
670 nodecount = rf_AssignNodeNums(dag_h);
671
672 unvisited = dag_h->succedents[0]->visited;
673
674 RF_Calloc(scount, nodecount, sizeof(int), (int *));
675 RF_Calloc(acount, nodecount, sizeof(int), (int *));
676 RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
677 for (i = 0; i < dag_h->numSuccedents; i++) {
678 if ((dag_h->succedents[i]->visited == unvisited)
679 && rf_ValidateBranch(dag_h->succedents[i], scount,
680 acount, nodes, unvisited)) {
681 retcode = 1;
682 }
683 }
684 /* start at 1 to skip the header node */
685 for (i = 1; i < nodecount; i++) {
686 if (nodes[i]->commitNode)
687 commitNodeCount++;
688 if (nodes[i]->doFunc == NULL) {
689 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
690 retcode = 1;
691 goto validate_dag_out;
692 }
693 if (nodes[i]->undoFunc == NULL) {
694 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
695 retcode = 1;
696 goto validate_dag_out;
697 }
698 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
699 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
700 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
701 retcode = 1;
702 goto validate_dag_out;
703 }
704 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
705 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
706 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
707 retcode = 1;
708 goto validate_dag_out;
709 }
710 }
711
712 if (dag_h->numCommitNodes != commitNodeCount) {
713 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
714 dag_h->numCommitNodes, commitNodeCount);
715 retcode = 1;
716 goto validate_dag_out;
717 }
718 validate_dag_out:
719 RF_Free(scount, nodecount * sizeof(int));
720 RF_Free(acount, nodecount * sizeof(int));
721 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
722 if (retcode)
723 rf_PrintDAGList(dag_h);
724
725 if (rf_validateVisitedDebug)
726 rf_ValidateVisitedBits(dag_h);
727
728 return (retcode);
729
730 validate_dag_bad:
731 rf_PrintDAGList(dag_h);
732 return (retcode);
733 }
734
735
736 /******************************************************************************
737 *
738 * misc construction routines
739 *
740 *****************************************************************************/
741
742 void
743 rf_redirect_asm(
744 RF_Raid_t * raidPtr,
745 RF_AccessStripeMap_t * asmap)
746 {
747 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
748 int row = asmap->physInfo->row;
749 int fcol = raidPtr->reconControl[row]->fcol;
750 int srow = raidPtr->reconControl[row]->spareRow;
751 int scol = raidPtr->reconControl[row]->spareCol;
752 RF_PhysDiskAddr_t *pda;
753
754 RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
755 for (pda = asmap->physInfo; pda; pda = pda->next) {
756 if (pda->col == fcol) {
757 if (rf_dagDebug) {
758 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
759 pda->startSector)) {
760 RF_PANIC();
761 }
762 }
763 /* printf("Remapped data for large write\n"); */
764 if (ds) {
765 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
766 &pda->row, &pda->col, &pda->startSector, RF_REMAP);
767 } else {
768 pda->row = srow;
769 pda->col = scol;
770 }
771 }
772 }
773 for (pda = asmap->parityInfo; pda; pda = pda->next) {
774 if (pda->col == fcol) {
775 if (rf_dagDebug) {
776 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
777 RF_PANIC();
778 }
779 }
780 }
781 if (ds) {
782 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
783 } else {
784 pda->row = srow;
785 pda->col = scol;
786 }
787 }
788 }
789
790
791 /* this routine allocates read buffers and generates stripe maps for the
792 * regions of the array from the start of the stripe to the start of the
793 * access, and from the end of the access to the end of the stripe. It also
794 * computes and returns the number of DAG nodes needed to read all this data.
795 * Note that this routine does the wrong thing if the access is fully
796 * contained within one stripe unit, so we RF_ASSERT against this case at the
797 * start.
798 */
799 void
800 rf_MapUnaccessedPortionOfStripe(
801 RF_Raid_t * raidPtr,
802 RF_RaidLayout_t * layoutPtr,/* in: layout information */
803 RF_AccessStripeMap_t * asmap, /* in: access stripe map */
804 RF_DagHeader_t * dag_h, /* in: header of the dag to create */
805 RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
806 * headers, to be filled in */
807 int *nRodNodes, /* out: num nodes to be generated to read
808 * unaccessed data */
809 char **sosBuffer, /* out: pointers to newly allocated buffer */
810 char **eosBuffer,
811 RF_AllocListElem_t * allocList)
812 {
813 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
814 RF_SectorNum_t sosNumSector, eosNumSector;
815
816 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
817 /* generate an access map for the region of the array from start of
818 * stripe to start of access */
819 new_asm_h[0] = new_asm_h[1] = NULL;
820 *nRodNodes = 0;
821 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
822 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
823 sosNumSector = asmap->raidAddress - sosRaidAddress;
824 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
825 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
826 new_asm_h[0]->next = dag_h->asmList;
827 dag_h->asmList = new_asm_h[0];
828 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
829
830 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
831 /* we're totally within one stripe here */
832 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
833 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
834 }
835 /* generate an access map for the region of the array from end of
836 * access to end of stripe */
837 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
838 eosRaidAddress = asmap->endRaidAddress;
839 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
840 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
841 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
842 new_asm_h[1]->next = dag_h->asmList;
843 dag_h->asmList = new_asm_h[1];
844 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
845
846 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
847 /* we're totally within one stripe here */
848 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
849 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
850 }
851 }
852
853
854
855 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
856 int
857 rf_PDAOverlap(
858 RF_RaidLayout_t * layoutPtr,
859 RF_PhysDiskAddr_t * src,
860 RF_PhysDiskAddr_t * dest)
861 {
862 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
863 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
864 /* use -1 to be sure we stay within SU */
865 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
866 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
867 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
868 }
869
870
871 /* GenerateFailedAccessASMs
872 *
873 * this routine figures out what portion of the stripe needs to be read
874 * to effect the degraded read or write operation. It's primary function
875 * is to identify everything required to recover the data, and then
876 * eliminate anything that is already being accessed by the user.
877 *
878 * The main result is two new ASMs, one for the region from the start of the
879 * stripe to the start of the access, and one for the region from the end of
880 * the access to the end of the stripe. These ASMs describe everything that
881 * needs to be read to effect the degraded access. Other results are:
882 * nXorBufs -- the total number of buffers that need to be XORed together to
883 * recover the lost data,
884 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
885 * at entry, not allocated.
886 * overlappingPDAs --
887 * describes which of the non-failed PDAs in the user access
888 * overlap data that needs to be read to effect recovery.
889 * overlappingPDAs[i]==1 if and only if, neglecting the failed
890 * PDA, the ith pda in the input asm overlaps data that needs
891 * to be read for recovery.
892 */
893 /* in: asm - ASM for the actual access, one stripe only */
894 /* in: faildPDA - which component of the access has failed */
895 /* in: dag_h - header of the DAG we're going to create */
896 /* out: new_asm_h - the two new ASMs */
897 /* out: nXorBufs - the total number of xor bufs required */
898 /* out: rpBufPtr - a buffer for the parity read */
899 void
900 rf_GenerateFailedAccessASMs(
901 RF_Raid_t * raidPtr,
902 RF_AccessStripeMap_t * asmap,
903 RF_PhysDiskAddr_t * failedPDA,
904 RF_DagHeader_t * dag_h,
905 RF_AccessStripeMapHeader_t ** new_asm_h,
906 int *nXorBufs,
907 char **rpBufPtr,
908 char *overlappingPDAs,
909 RF_AllocListElem_t * allocList)
910 {
911 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
912
913 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
914 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
915
916 RF_SectorCount_t numSect[2], numParitySect;
917 RF_PhysDiskAddr_t *pda;
918 char *rdBuf, *bufP;
919 int foundit, i;
920
921 bufP = NULL;
922 foundit = 0;
923 /* first compute the following raid addresses: start of stripe,
924 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
925 * MAX(end of access, end of failed SU), (eosStartAddr) end of
926 * stripe (i.e. start of next stripe) (eosAddr) */
927 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
928 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
929 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
930 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
931
932 /* now generate access stripe maps for each of the above regions of
933 * the stripe. Use a dummy (NULL) buf ptr for now */
934
935 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
936 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
937
938 /* walk through the PDAs and range-restrict each SU to the region of
939 * the SU touched on the failed PDA. also compute total data buffer
940 * space requirements in this step. Ignore the parity for now. */
941
942 numSect[0] = numSect[1] = 0;
943 if (new_asm_h[0]) {
944 new_asm_h[0]->next = dag_h->asmList;
945 dag_h->asmList = new_asm_h[0];
946 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
947 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
948 numSect[0] += pda->numSector;
949 }
950 }
951 if (new_asm_h[1]) {
952 new_asm_h[1]->next = dag_h->asmList;
953 dag_h->asmList = new_asm_h[1];
954 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
955 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
956 numSect[1] += pda->numSector;
957 }
958 }
959 numParitySect = failedPDA->numSector;
960
961 /* allocate buffer space for the data & parity we have to read to
962 * recover from the failure */
963
964 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
965 * buf if not needed */
966 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
967 bufP = rdBuf;
968 if (rf_degDagDebug)
969 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
970 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
971 }
972 /* now walk through the pdas one last time and assign buffer pointers
973 * (ugh!). Again, ignore the parity. also, count nodes to find out
974 * how many bufs need to be xored together */
975 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
976 * case, 1 is for failed data */
977 if (new_asm_h[0]) {
978 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
979 pda->bufPtr = bufP;
980 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
981 }
982 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
983 }
984 if (new_asm_h[1]) {
985 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
986 pda->bufPtr = bufP;
987 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
988 }
989 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
990 }
991 if (rpBufPtr)
992 *rpBufPtr = bufP; /* the rest of the buffer is for
993 * parity */
994
995 /* the last step is to figure out how many more distinct buffers need
996 * to get xor'd to produce the missing unit. there's one for each
997 * user-data read node that overlaps the portion of the failed unit
998 * being accessed */
999
1000 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1001 if (pda == failedPDA) {
1002 i--;
1003 foundit = 1;
1004 continue;
1005 }
1006 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1007 overlappingPDAs[i] = 1;
1008 (*nXorBufs)++;
1009 }
1010 }
1011 if (!foundit) {
1012 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1013 RF_ASSERT(0);
1014 }
1015 if (rf_degDagDebug) {
1016 if (new_asm_h[0]) {
1017 printf("First asm:\n");
1018 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1019 }
1020 if (new_asm_h[1]) {
1021 printf("Second asm:\n");
1022 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1023 }
1024 }
1025 }
1026
1027
1028 /* adjusts the offset and number of sectors in the destination pda so that
1029 * it covers at most the region of the SU covered by the source PDA. This
1030 * is exclusively a restriction: the number of sectors indicated by the
1031 * target PDA can only shrink.
1032 *
1033 * For example: s = sectors within SU indicated by source PDA
1034 * d = sectors within SU indicated by dest PDA
1035 * r = results, stored in dest PDA
1036 *
1037 * |--------------- one stripe unit ---------------------|
1038 * | sssssssssssssssssssssssssssssssss |
1039 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1040 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1041 *
1042 * Another example:
1043 *
1044 * |--------------- one stripe unit ---------------------|
1045 * | sssssssssssssssssssssssssssssssss |
1046 * | ddddddddddddddddddddddd |
1047 * | rrrrrrrrrrrrrrrr |
1048 *
1049 */
1050 void
1051 rf_RangeRestrictPDA(
1052 RF_Raid_t * raidPtr,
1053 RF_PhysDiskAddr_t * src,
1054 RF_PhysDiskAddr_t * dest,
1055 int dobuffer,
1056 int doraidaddr)
1057 {
1058 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1059 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1060 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1061 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1062 * stay within SU */
1063 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1064 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1065
1066 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1067 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1068
1069 if (dobuffer)
1070 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1071 if (doraidaddr) {
1072 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1073 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1074 }
1075 }
1076 /*
1077 * Want the highest of these primes to be the largest one
1078 * less than the max expected number of columns (won't hurt
1079 * to be too small or too large, but won't be optimal, either)
1080 * --jimz
1081 */
1082 #define NLOWPRIMES 8
1083 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1084 /*****************************************************************************
1085 * compute the workload shift factor. (chained declustering)
1086 *
1087 * return nonzero if access should shift to secondary, otherwise,
1088 * access is to primary
1089 *****************************************************************************/
1090 int
1091 rf_compute_workload_shift(
1092 RF_Raid_t * raidPtr,
1093 RF_PhysDiskAddr_t * pda)
1094 {
1095 /*
1096 * variables:
1097 * d = column of disk containing primary
1098 * f = column of failed disk
1099 * n = number of disks in array
1100 * sd = "shift distance" (number of columns that d is to the right of f)
1101 * row = row of array the access is in
1102 * v = numerator of redirection ratio
1103 * k = denominator of redirection ratio
1104 */
1105 RF_RowCol_t d, f, sd, row, n;
1106 int k, v, ret, i;
1107
1108 row = pda->row;
1109 n = raidPtr->numCol;
1110
1111 /* assign column of primary copy to d */
1112 d = pda->col;
1113
1114 /* assign column of dead disk to f */
1115 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1116
1117 RF_ASSERT(f < n);
1118 RF_ASSERT(f != d);
1119
1120 sd = (f > d) ? (n + d - f) : (d - f);
1121 RF_ASSERT(sd < n);
1122
1123 /*
1124 * v of every k accesses should be redirected
1125 *
1126 * v/k := (n-1-sd)/(n-1)
1127 */
1128 v = (n - 1 - sd);
1129 k = (n - 1);
1130
1131 #if 1
1132 /*
1133 * XXX
1134 * Is this worth it?
1135 *
1136 * Now reduce the fraction, by repeatedly factoring
1137 * out primes (just like they teach in elementary school!)
1138 */
1139 for (i = 0; i < NLOWPRIMES; i++) {
1140 if (lowprimes[i] > v)
1141 break;
1142 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1143 v /= lowprimes[i];
1144 k /= lowprimes[i];
1145 }
1146 }
1147 #endif
1148
1149 raidPtr->hist_diskreq[row][d]++;
1150 if (raidPtr->hist_diskreq[row][d] > v) {
1151 ret = 0; /* do not redirect */
1152 } else {
1153 ret = 1; /* redirect */
1154 }
1155
1156 #if 0
1157 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1158 raidPtr->hist_diskreq[row][d]);
1159 #endif
1160
1161 if (raidPtr->hist_diskreq[row][d] >= k) {
1162 /* reset counter */
1163 raidPtr->hist_diskreq[row][d] = 0;
1164 }
1165 return (ret);
1166 }
1167 /*
1168 * Disk selection routines
1169 */
1170
1171 /*
1172 * Selects the disk with the shortest queue from a mirror pair.
1173 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1174 * disk are counted as members of the "queue"
1175 */
1176 void
1177 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1178 {
1179 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1180 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1181 int dataQueueLength, mirrorQueueLength, usemirror;
1182 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1183 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1184 RF_PhysDiskAddr_t *tmp_pda;
1185 RF_RaidDisk_t **disks = raidPtr->Disks;
1186 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1187
1188 /* return the [row col] of the disk with the shortest queue */
1189 rowData = data_pda->row;
1190 colData = data_pda->col;
1191 rowMirror = mirror_pda->row;
1192 colMirror = mirror_pda->col;
1193 dataQueue = &(dqs[rowData][colData]);
1194 mirrorQueue = &(dqs[rowMirror][colMirror]);
1195
1196 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1197 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1198 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1199 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1200 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1201 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1202 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1203 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1204 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1205 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1206 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1207 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1208
1209 usemirror = 0;
1210 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1211 usemirror = 0;
1212 } else
1213 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1214 usemirror = 1;
1215 } else
1216 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1217 /* Trust only the main disk */
1218 usemirror = 0;
1219 } else
1220 if (dataQueueLength < mirrorQueueLength) {
1221 usemirror = 0;
1222 } else
1223 if (mirrorQueueLength < dataQueueLength) {
1224 usemirror = 1;
1225 } else {
1226 /* queues are equal length. attempt
1227 * cleverness. */
1228 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1229 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1230 usemirror = 0;
1231 } else {
1232 usemirror = 1;
1233 }
1234 }
1235
1236 if (usemirror) {
1237 /* use mirror (parity) disk, swap params 0 & 4 */
1238 tmp_pda = data_pda;
1239 node->params[0].p = mirror_pda;
1240 node->params[4].p = tmp_pda;
1241 } else {
1242 /* use data disk, leave param 0 unchanged */
1243 }
1244 /* printf("dataQueueLength %d, mirrorQueueLength
1245 * %d\n",dataQueueLength, mirrorQueueLength); */
1246 }
1247 /*
1248 * Do simple partitioning. This assumes that
1249 * the data and parity disks are laid out identically.
1250 */
1251 void
1252 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1253 {
1254 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1255 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1256 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1257 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1258 RF_PhysDiskAddr_t *tmp_pda;
1259 RF_RaidDisk_t **disks = raidPtr->Disks;
1260 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1261 int usemirror;
1262
1263 /* return the [row col] of the disk with the shortest queue */
1264 rowData = data_pda->row;
1265 colData = data_pda->col;
1266 rowMirror = mirror_pda->row;
1267 colMirror = mirror_pda->col;
1268 dataQueue = &(dqs[rowData][colData]);
1269 mirrorQueue = &(dqs[rowMirror][colMirror]);
1270
1271 usemirror = 0;
1272 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1273 usemirror = 0;
1274 } else
1275 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1276 usemirror = 1;
1277 } else
1278 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1279 /* Trust only the main disk */
1280 usemirror = 0;
1281 } else
1282 if (data_pda->startSector <
1283 (disks[rowData][colData].numBlocks / 2)) {
1284 usemirror = 0;
1285 } else {
1286 usemirror = 1;
1287 }
1288
1289 if (usemirror) {
1290 /* use mirror (parity) disk, swap params 0 & 4 */
1291 tmp_pda = data_pda;
1292 node->params[0].p = mirror_pda;
1293 node->params[4].p = tmp_pda;
1294 } else {
1295 /* use data disk, leave param 0 unchanged */
1296 }
1297 }
1298