Home | History | Annotate | Line # | Download | only in raidframe
rf_dagutils.c revision 1.8
      1 /*	$NetBSD: rf_dagutils.c,v 1.8 2001/10/04 15:58:52 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <dev/raidframe/raidframevar.h>
     36 
     37 #include "rf_archs.h"
     38 #include "rf_threadstuff.h"
     39 #include "rf_raid.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagutils.h"
     42 #include "rf_dagfuncs.h"
     43 #include "rf_general.h"
     44 #include "rf_freelist.h"
     45 #include "rf_map.h"
     46 #include "rf_shutdown.h"
     47 
     48 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     49 
     50 RF_RedFuncs_t rf_xorFuncs = {
     51 	rf_RegularXorFunc, "Reg Xr",
     52 rf_SimpleXorFunc, "Simple Xr"};
     53 
     54 RF_RedFuncs_t rf_xorRecoveryFuncs = {
     55 	rf_RecoveryXorFunc, "Recovery Xr",
     56 rf_RecoveryXorFunc, "Recovery Xr"};
     57 
     58 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     59 static void rf_PrintDAG(RF_DagHeader_t *);
     60 static int
     61 rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     62     RF_DagNode_t **, int);
     63 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     64 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     65 
     66 /******************************************************************************
     67  *
     68  * InitNode - initialize a dag node
     69  *
     70  * the size of the propList array is always the same as that of the
     71  * successors array.
     72  *
     73  *****************************************************************************/
     74 void
     75 rf_InitNode(
     76     RF_DagNode_t * node,
     77     RF_NodeStatus_t initstatus,
     78     int commit,
     79     int (*doFunc) (RF_DagNode_t * node),
     80     int (*undoFunc) (RF_DagNode_t * node),
     81     int (*wakeFunc) (RF_DagNode_t * node, int status),
     82     int nSucc,
     83     int nAnte,
     84     int nParam,
     85     int nResult,
     86     RF_DagHeader_t * hdr,
     87     char *name,
     88     RF_AllocListElem_t * alist)
     89 {
     90 	void  **ptrs;
     91 	int     nptrs;
     92 
     93 	if (nAnte > RF_MAX_ANTECEDENTS)
     94 		RF_PANIC();
     95 	node->status = initstatus;
     96 	node->commitNode = commit;
     97 	node->doFunc = doFunc;
     98 	node->undoFunc = undoFunc;
     99 	node->wakeFunc = wakeFunc;
    100 	node->numParams = nParam;
    101 	node->numResults = nResult;
    102 	node->numAntecedents = nAnte;
    103 	node->numAntDone = 0;
    104 	node->next = NULL;
    105 	node->numSuccedents = nSucc;
    106 	node->name = name;
    107 	node->dagHdr = hdr;
    108 	node->visited = 0;
    109 
    110 	/* allocate all the pointers with one call to malloc */
    111 	nptrs = nSucc + nAnte + nResult + nSucc;
    112 
    113 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    114 		/*
    115 	         * The dag_ptrs field of the node is basically some scribble
    116 	         * space to be used here. We could get rid of it, and always
    117 	         * allocate the range of pointers, but that's expensive. So,
    118 	         * we pick a "common case" size for the pointer cache. Hopefully,
    119 	         * we'll find that:
    120 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    121 	         *     only a little bit (least efficient case)
    122 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    123 	         *     (wasted memory)
    124 	         */
    125 		ptrs = (void **) node->dag_ptrs;
    126 	} else {
    127 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
    128 	}
    129 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    130 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    131 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    132 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    133 
    134 	if (nParam) {
    135 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    136 			node->params = (RF_DagParam_t *) node->dag_params;
    137 		} else {
    138 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
    139 		}
    140 	} else {
    141 		node->params = NULL;
    142 	}
    143 }
    144 
    145 
    146 
    147 /******************************************************************************
    148  *
    149  * allocation and deallocation routines
    150  *
    151  *****************************************************************************/
    152 
    153 void
    154 rf_FreeDAG(dag_h)
    155 	RF_DagHeader_t *dag_h;
    156 {
    157 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    158 	RF_DagHeader_t *nextDag;
    159 	int     i;
    160 
    161 	while (dag_h) {
    162 		nextDag = dag_h->next;
    163 		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
    164 			/* release mem chunks */
    165 			rf_ReleaseMemChunk(dag_h->memChunk[i]);
    166 			dag_h->memChunk[i] = NULL;
    167 		}
    168 
    169 		RF_ASSERT(i == dag_h->chunkIndex);
    170 		if (dag_h->xtraChunkCnt > 0) {
    171 			/* free xtraMemChunks */
    172 			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
    173 				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
    174 				dag_h->xtraMemChunk[i] = NULL;
    175 			}
    176 			RF_ASSERT(i == dag_h->xtraChunkIndex);
    177 			/* free ptrs to xtraMemChunks */
    178 			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
    179 		}
    180 		rf_FreeAllocList(dag_h->allocList);
    181 		for (asmap = dag_h->asmList; asmap;) {
    182 			t_asmap = asmap;
    183 			asmap = asmap->next;
    184 			rf_FreeAccessStripeMap(t_asmap);
    185 		}
    186 		rf_FreeDAGHeader(dag_h);
    187 		dag_h = nextDag;
    188 	}
    189 }
    190 
    191 RF_PropHeader_t *
    192 rf_MakePropListEntry(
    193     RF_DagHeader_t * dag_h,
    194     int resultNum,
    195     int paramNum,
    196     RF_PropHeader_t * next,
    197     RF_AllocListElem_t * allocList)
    198 {
    199 	RF_PropHeader_t *p;
    200 
    201 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
    202 	    (RF_PropHeader_t *), allocList);
    203 	p->resultNum = resultNum;
    204 	p->paramNum = paramNum;
    205 	p->next = next;
    206 	return (p);
    207 }
    208 
    209 static RF_FreeList_t *rf_dagh_freelist;
    210 
    211 #define RF_MAX_FREE_DAGH 128
    212 #define RF_DAGH_INC       16
    213 #define RF_DAGH_INITIAL   32
    214 
    215 static void rf_ShutdownDAGs(void *);
    216 static void
    217 rf_ShutdownDAGs(ignored)
    218 	void   *ignored;
    219 {
    220 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
    221 }
    222 
    223 int
    224 rf_ConfigureDAGs(listp)
    225 	RF_ShutdownList_t **listp;
    226 {
    227 	int     rc;
    228 
    229 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
    230 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
    231 	if (rf_dagh_freelist == NULL)
    232 		return (ENOMEM);
    233 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
    234 	if (rc) {
    235 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    236 		    __FILE__, __LINE__, rc);
    237 		rf_ShutdownDAGs(NULL);
    238 		return (rc);
    239 	}
    240 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
    241 	    (RF_DagHeader_t *));
    242 	return (0);
    243 }
    244 
    245 RF_DagHeader_t *
    246 rf_AllocDAGHeader()
    247 {
    248 	RF_DagHeader_t *dh;
    249 
    250 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
    251 	if (dh) {
    252 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
    253 	}
    254 	return (dh);
    255 }
    256 
    257 void
    258 rf_FreeDAGHeader(RF_DagHeader_t * dh)
    259 {
    260 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
    261 }
    262 /* allocates a buffer big enough to hold the data described by pda */
    263 void   *
    264 rf_AllocBuffer(
    265     RF_Raid_t * raidPtr,
    266     RF_DagHeader_t * dag_h,
    267     RF_PhysDiskAddr_t * pda,
    268     RF_AllocListElem_t * allocList)
    269 {
    270 	char   *p;
    271 
    272 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
    273 	    (char *), allocList);
    274 	return ((void *) p);
    275 }
    276 /******************************************************************************
    277  *
    278  * debug routines
    279  *
    280  *****************************************************************************/
    281 
    282 char   *
    283 rf_NodeStatusString(RF_DagNode_t * node)
    284 {
    285 	switch (node->status) {
    286 		case rf_wait:return ("wait");
    287 	case rf_fired:
    288 		return ("fired");
    289 	case rf_good:
    290 		return ("good");
    291 	case rf_bad:
    292 		return ("bad");
    293 	default:
    294 		return ("?");
    295 	}
    296 }
    297 
    298 void
    299 rf_PrintNodeInfoString(RF_DagNode_t * node)
    300 {
    301 	RF_PhysDiskAddr_t *pda;
    302 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    303 	int     i, lk, unlk;
    304 	void   *bufPtr;
    305 
    306 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    307 	    || (df == rf_DiskReadMirrorIdleFunc)
    308 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    309 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    310 		bufPtr = (void *) node->params[1].p;
    311 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    312 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    313 		RF_ASSERT(!(lk && unlk));
    314 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
    315 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    316 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    317 		return;
    318 	}
    319 	if (df == rf_DiskUnlockFunc) {
    320 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    321 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    322 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    323 		RF_ASSERT(!(lk && unlk));
    324 		printf("r %d c %d %s\n", pda->row, pda->col,
    325 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
    326 		return;
    327 	}
    328 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    329 	    || (df == rf_RecoveryXorFunc)) {
    330 		printf("result buf 0x%lx\n", (long) node->results[0]);
    331 		for (i = 0; i < node->numParams - 1; i += 2) {
    332 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    333 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    334 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
    335 			    (long) bufPtr, pda->row, pda->col,
    336 			    (long) pda->startSector, (int) pda->numSector);
    337 		}
    338 		return;
    339 	}
    340 #if RF_INCLUDE_PARITYLOGGING > 0
    341 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    342 		for (i = 0; i < node->numParams - 1; i += 2) {
    343 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    344 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    345 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
    346 			    pda->row, pda->col, (long) pda->startSector,
    347 			    (int) pda->numSector, (long) bufPtr);
    348 		}
    349 		return;
    350 	}
    351 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    352 
    353 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    354 		printf("\n");
    355 		return;
    356 	}
    357 	printf("?\n");
    358 }
    359 
    360 static void
    361 rf_RecurPrintDAG(node, depth, unvisited)
    362 	RF_DagNode_t *node;
    363 	int     depth;
    364 	int     unvisited;
    365 {
    366 	char   *anttype;
    367 	int     i;
    368 
    369 	node->visited = (unvisited) ? 0 : 1;
    370 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    371 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    372 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    373 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    374 	for (i = 0; i < node->numSuccedents; i++) {
    375 		printf("%d%s", node->succedents[i]->nodeNum,
    376 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    377 	}
    378 	printf("} A{");
    379 	for (i = 0; i < node->numAntecedents; i++) {
    380 		switch (node->antType[i]) {
    381 		case rf_trueData:
    382 			anttype = "T";
    383 			break;
    384 		case rf_antiData:
    385 			anttype = "A";
    386 			break;
    387 		case rf_outputData:
    388 			anttype = "O";
    389 			break;
    390 		case rf_control:
    391 			anttype = "C";
    392 			break;
    393 		default:
    394 			anttype = "?";
    395 			break;
    396 		}
    397 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    398 	}
    399 	printf("}; ");
    400 	rf_PrintNodeInfoString(node);
    401 	for (i = 0; i < node->numSuccedents; i++) {
    402 		if (node->succedents[i]->visited == unvisited)
    403 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    404 	}
    405 }
    406 
    407 static void
    408 rf_PrintDAG(dag_h)
    409 	RF_DagHeader_t *dag_h;
    410 {
    411 	int     unvisited, i;
    412 	char   *status;
    413 
    414 	/* set dag status */
    415 	switch (dag_h->status) {
    416 	case rf_enable:
    417 		status = "enable";
    418 		break;
    419 	case rf_rollForward:
    420 		status = "rollForward";
    421 		break;
    422 	case rf_rollBackward:
    423 		status = "rollBackward";
    424 		break;
    425 	default:
    426 		status = "illegal!";
    427 		break;
    428 	}
    429 	/* find out if visited bits are currently set or clear */
    430 	unvisited = dag_h->succedents[0]->visited;
    431 
    432 	printf("DAG type:  %s\n", dag_h->creator);
    433 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    434 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    435 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    436 	for (i = 0; i < dag_h->numSuccedents; i++) {
    437 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    438 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    439 	}
    440 	printf("};\n");
    441 	for (i = 0; i < dag_h->numSuccedents; i++) {
    442 		if (dag_h->succedents[i]->visited == unvisited)
    443 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    444 	}
    445 }
    446 /* assigns node numbers */
    447 int
    448 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    449 {
    450 	int     unvisited, i, nnum;
    451 	RF_DagNode_t *node;
    452 
    453 	nnum = 0;
    454 	unvisited = dag_h->succedents[0]->visited;
    455 
    456 	dag_h->nodeNum = nnum++;
    457 	for (i = 0; i < dag_h->numSuccedents; i++) {
    458 		node = dag_h->succedents[i];
    459 		if (node->visited == unvisited) {
    460 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    461 		}
    462 	}
    463 	return (nnum);
    464 }
    465 
    466 int
    467 rf_RecurAssignNodeNums(node, num, unvisited)
    468 	RF_DagNode_t *node;
    469 	int     num;
    470 	int     unvisited;
    471 {
    472 	int     i;
    473 
    474 	node->visited = (unvisited) ? 0 : 1;
    475 
    476 	node->nodeNum = num++;
    477 	for (i = 0; i < node->numSuccedents; i++) {
    478 		if (node->succedents[i]->visited == unvisited) {
    479 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    480 		}
    481 	}
    482 	return (num);
    483 }
    484 /* set the header pointers in each node to "newptr" */
    485 void
    486 rf_ResetDAGHeaderPointers(dag_h, newptr)
    487 	RF_DagHeader_t *dag_h;
    488 	RF_DagHeader_t *newptr;
    489 {
    490 	int     i;
    491 	for (i = 0; i < dag_h->numSuccedents; i++)
    492 		if (dag_h->succedents[i]->dagHdr != newptr)
    493 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    494 }
    495 
    496 void
    497 rf_RecurResetDAGHeaderPointers(node, newptr)
    498 	RF_DagNode_t *node;
    499 	RF_DagHeader_t *newptr;
    500 {
    501 	int     i;
    502 	node->dagHdr = newptr;
    503 	for (i = 0; i < node->numSuccedents; i++)
    504 		if (node->succedents[i]->dagHdr != newptr)
    505 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    506 }
    507 
    508 
    509 void
    510 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    511 {
    512 	int     i = 0;
    513 
    514 	for (; dag_h; dag_h = dag_h->next) {
    515 		rf_AssignNodeNums(dag_h);
    516 		printf("\n\nDAG %d IN LIST:\n", i++);
    517 		rf_PrintDAG(dag_h);
    518 	}
    519 }
    520 
    521 static int
    522 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
    523 	RF_DagNode_t *node;
    524 	int    *scount;
    525 	int    *acount;
    526 	RF_DagNode_t **nodes;
    527 	int     unvisited;
    528 {
    529 	int     i, retcode = 0;
    530 
    531 	/* construct an array of node pointers indexed by node num */
    532 	node->visited = (unvisited) ? 0 : 1;
    533 	nodes[node->nodeNum] = node;
    534 
    535 	if (node->next != NULL) {
    536 		printf("INVALID DAG: next pointer in node is not NULL\n");
    537 		retcode = 1;
    538 	}
    539 	if (node->status != rf_wait) {
    540 		printf("INVALID DAG: Node status is not wait\n");
    541 		retcode = 1;
    542 	}
    543 	if (node->numAntDone != 0) {
    544 		printf("INVALID DAG: numAntDone is not zero\n");
    545 		retcode = 1;
    546 	}
    547 	if (node->doFunc == rf_TerminateFunc) {
    548 		if (node->numSuccedents != 0) {
    549 			printf("INVALID DAG: Terminator node has succedents\n");
    550 			retcode = 1;
    551 		}
    552 	} else {
    553 		if (node->numSuccedents == 0) {
    554 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    555 			retcode = 1;
    556 		}
    557 	}
    558 	for (i = 0; i < node->numSuccedents; i++) {
    559 		if (!node->succedents[i]) {
    560 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    561 			retcode = 1;
    562 		}
    563 		scount[node->succedents[i]->nodeNum]++;
    564 	}
    565 	for (i = 0; i < node->numAntecedents; i++) {
    566 		if (!node->antecedents[i]) {
    567 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    568 			retcode = 1;
    569 		}
    570 		acount[node->antecedents[i]->nodeNum]++;
    571 	}
    572 	for (i = 0; i < node->numSuccedents; i++) {
    573 		if (node->succedents[i]->visited == unvisited) {
    574 			if (rf_ValidateBranch(node->succedents[i], scount,
    575 				acount, nodes, unvisited)) {
    576 				retcode = 1;
    577 			}
    578 		}
    579 	}
    580 	return (retcode);
    581 }
    582 
    583 static void
    584 rf_ValidateBranchVisitedBits(node, unvisited, rl)
    585 	RF_DagNode_t *node;
    586 	int     unvisited;
    587 	int     rl;
    588 {
    589 	int     i;
    590 
    591 	RF_ASSERT(node->visited == unvisited);
    592 	for (i = 0; i < node->numSuccedents; i++) {
    593 		if (node->succedents[i] == NULL) {
    594 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    595 			RF_ASSERT(0);
    596 		}
    597 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    598 	}
    599 }
    600 /* NOTE:  never call this on a big dag, because it is exponential
    601  * in execution time
    602  */
    603 static void
    604 rf_ValidateVisitedBits(dag)
    605 	RF_DagHeader_t *dag;
    606 {
    607 	int     i, unvisited;
    608 
    609 	unvisited = dag->succedents[0]->visited;
    610 
    611 	for (i = 0; i < dag->numSuccedents; i++) {
    612 		if (dag->succedents[i] == NULL) {
    613 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    614 			RF_ASSERT(0);
    615 		}
    616 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    617 	}
    618 }
    619 /* validate a DAG.  _at entry_ verify that:
    620  *   -- numNodesCompleted is zero
    621  *   -- node queue is null
    622  *   -- dag status is rf_enable
    623  *   -- next pointer is null on every node
    624  *   -- all nodes have status wait
    625  *   -- numAntDone is zero in all nodes
    626  *   -- terminator node has zero successors
    627  *   -- no other node besides terminator has zero successors
    628  *   -- no successor or antecedent pointer in a node is NULL
    629  *   -- number of times that each node appears as a successor of another node
    630  *      is equal to the antecedent count on that node
    631  *   -- number of times that each node appears as an antecedent of another node
    632  *      is equal to the succedent count on that node
    633  *   -- what else?
    634  */
    635 int
    636 rf_ValidateDAG(dag_h)
    637 	RF_DagHeader_t *dag_h;
    638 {
    639 	int     i, nodecount;
    640 	int    *scount, *acount;/* per-node successor and antecedent counts */
    641 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    642 	int     retcode = 0;
    643 	int     unvisited;
    644 	int     commitNodeCount = 0;
    645 
    646 	if (rf_validateVisitedDebug)
    647 		rf_ValidateVisitedBits(dag_h);
    648 
    649 	if (dag_h->numNodesCompleted != 0) {
    650 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    651 		retcode = 1;
    652 		goto validate_dag_bad;
    653 	}
    654 	if (dag_h->status != rf_enable) {
    655 		printf("INVALID DAG: not enabled\n");
    656 		retcode = 1;
    657 		goto validate_dag_bad;
    658 	}
    659 	if (dag_h->numCommits != 0) {
    660 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    661 		retcode = 1;
    662 		goto validate_dag_bad;
    663 	}
    664 	if (dag_h->numSuccedents != 1) {
    665 		/* currently, all dags must have only one succedent */
    666 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    667 		retcode = 1;
    668 		goto validate_dag_bad;
    669 	}
    670 	nodecount = rf_AssignNodeNums(dag_h);
    671 
    672 	unvisited = dag_h->succedents[0]->visited;
    673 
    674 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
    675 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
    676 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
    677 	for (i = 0; i < dag_h->numSuccedents; i++) {
    678 		if ((dag_h->succedents[i]->visited == unvisited)
    679 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    680 			acount, nodes, unvisited)) {
    681 			retcode = 1;
    682 		}
    683 	}
    684 	/* start at 1 to skip the header node */
    685 	for (i = 1; i < nodecount; i++) {
    686 		if (nodes[i]->commitNode)
    687 			commitNodeCount++;
    688 		if (nodes[i]->doFunc == NULL) {
    689 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    690 			retcode = 1;
    691 			goto validate_dag_out;
    692 		}
    693 		if (nodes[i]->undoFunc == NULL) {
    694 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    695 			retcode = 1;
    696 			goto validate_dag_out;
    697 		}
    698 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    699 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    700 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    701 			retcode = 1;
    702 			goto validate_dag_out;
    703 		}
    704 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    705 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    706 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    707 			retcode = 1;
    708 			goto validate_dag_out;
    709 		}
    710 	}
    711 
    712 	if (dag_h->numCommitNodes != commitNodeCount) {
    713 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    714 		    dag_h->numCommitNodes, commitNodeCount);
    715 		retcode = 1;
    716 		goto validate_dag_out;
    717 	}
    718 validate_dag_out:
    719 	RF_Free(scount, nodecount * sizeof(int));
    720 	RF_Free(acount, nodecount * sizeof(int));
    721 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    722 	if (retcode)
    723 		rf_PrintDAGList(dag_h);
    724 
    725 	if (rf_validateVisitedDebug)
    726 		rf_ValidateVisitedBits(dag_h);
    727 
    728 	return (retcode);
    729 
    730 validate_dag_bad:
    731 	rf_PrintDAGList(dag_h);
    732 	return (retcode);
    733 }
    734 
    735 
    736 /******************************************************************************
    737  *
    738  * misc construction routines
    739  *
    740  *****************************************************************************/
    741 
    742 void
    743 rf_redirect_asm(
    744     RF_Raid_t * raidPtr,
    745     RF_AccessStripeMap_t * asmap)
    746 {
    747 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    748 	int     row = asmap->physInfo->row;
    749 	int     fcol = raidPtr->reconControl[row]->fcol;
    750 	int     srow = raidPtr->reconControl[row]->spareRow;
    751 	int     scol = raidPtr->reconControl[row]->spareCol;
    752 	RF_PhysDiskAddr_t *pda;
    753 
    754 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
    755 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    756 		if (pda->col == fcol) {
    757 			if (rf_dagDebug) {
    758 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
    759 					pda->startSector)) {
    760 					RF_PANIC();
    761 				}
    762 			}
    763 			/* printf("Remapped data for large write\n"); */
    764 			if (ds) {
    765 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    766 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    767 			} else {
    768 				pda->row = srow;
    769 				pda->col = scol;
    770 			}
    771 		}
    772 	}
    773 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    774 		if (pda->col == fcol) {
    775 			if (rf_dagDebug) {
    776 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
    777 					RF_PANIC();
    778 				}
    779 			}
    780 		}
    781 		if (ds) {
    782 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
    783 		} else {
    784 			pda->row = srow;
    785 			pda->col = scol;
    786 		}
    787 	}
    788 }
    789 
    790 
    791 /* this routine allocates read buffers and generates stripe maps for the
    792  * regions of the array from the start of the stripe to the start of the
    793  * access, and from the end of the access to the end of the stripe.  It also
    794  * computes and returns the number of DAG nodes needed to read all this data.
    795  * Note that this routine does the wrong thing if the access is fully
    796  * contained within one stripe unit, so we RF_ASSERT against this case at the
    797  * start.
    798  */
    799 void
    800 rf_MapUnaccessedPortionOfStripe(
    801     RF_Raid_t * raidPtr,
    802     RF_RaidLayout_t * layoutPtr,/* in: layout information */
    803     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    804     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    805     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
    806 						 * headers, to be filled in */
    807     int *nRodNodes,		/* out: num nodes to be generated to read
    808 				 * unaccessed data */
    809     char **sosBuffer,		/* out: pointers to newly allocated buffer */
    810     char **eosBuffer,
    811     RF_AllocListElem_t * allocList)
    812 {
    813 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    814 	RF_SectorNum_t sosNumSector, eosNumSector;
    815 
    816 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    817 	/* generate an access map for the region of the array from start of
    818 	 * stripe to start of access */
    819 	new_asm_h[0] = new_asm_h[1] = NULL;
    820 	*nRodNodes = 0;
    821 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    822 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    823 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    824 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
    825 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    826 		new_asm_h[0]->next = dag_h->asmList;
    827 		dag_h->asmList = new_asm_h[0];
    828 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    829 
    830 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
    831 		/* we're totally within one stripe here */
    832 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    833 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
    834 	}
    835 	/* generate an access map for the region of the array from end of
    836 	 * access to end of stripe */
    837 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
    838 		eosRaidAddress = asmap->endRaidAddress;
    839 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
    840 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
    841 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
    842 		new_asm_h[1]->next = dag_h->asmList;
    843 		dag_h->asmList = new_asm_h[1];
    844 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    845 
    846 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
    847 		/* we're totally within one stripe here */
    848 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
    849 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
    850 	}
    851 }
    852 
    853 
    854 
    855 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
    856 int
    857 rf_PDAOverlap(
    858     RF_RaidLayout_t * layoutPtr,
    859     RF_PhysDiskAddr_t * src,
    860     RF_PhysDiskAddr_t * dest)
    861 {
    862 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
    863 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
    864 	/* use -1 to be sure we stay within SU */
    865 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
    866 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
    867 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
    868 }
    869 
    870 
    871 /* GenerateFailedAccessASMs
    872  *
    873  * this routine figures out what portion of the stripe needs to be read
    874  * to effect the degraded read or write operation.  It's primary function
    875  * is to identify everything required to recover the data, and then
    876  * eliminate anything that is already being accessed by the user.
    877  *
    878  * The main result is two new ASMs, one for the region from the start of the
    879  * stripe to the start of the access, and one for the region from the end of
    880  * the access to the end of the stripe.  These ASMs describe everything that
    881  * needs to be read to effect the degraded access.  Other results are:
    882  *    nXorBufs -- the total number of buffers that need to be XORed together to
    883  *                recover the lost data,
    884  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
    885  *                at entry, not allocated.
    886  *    overlappingPDAs --
    887  *                describes which of the non-failed PDAs in the user access
    888  *                overlap data that needs to be read to effect recovery.
    889  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
    890  *                PDA, the ith pda in the input asm overlaps data that needs
    891  *                to be read for recovery.
    892  */
    893  /* in: asm - ASM for the actual access, one stripe only */
    894  /* in: faildPDA - which component of the access has failed */
    895  /* in: dag_h - header of the DAG we're going to create */
    896  /* out: new_asm_h - the two new ASMs */
    897  /* out: nXorBufs - the total number of xor bufs required */
    898  /* out: rpBufPtr - a buffer for the parity read */
    899 void
    900 rf_GenerateFailedAccessASMs(
    901     RF_Raid_t * raidPtr,
    902     RF_AccessStripeMap_t * asmap,
    903     RF_PhysDiskAddr_t * failedPDA,
    904     RF_DagHeader_t * dag_h,
    905     RF_AccessStripeMapHeader_t ** new_asm_h,
    906     int *nXorBufs,
    907     char **rpBufPtr,
    908     char *overlappingPDAs,
    909     RF_AllocListElem_t * allocList)
    910 {
    911 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    912 
    913 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
    914 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
    915 
    916 	RF_SectorCount_t numSect[2], numParitySect;
    917 	RF_PhysDiskAddr_t *pda;
    918 	char   *rdBuf, *bufP;
    919 	int     foundit, i;
    920 
    921 	bufP = NULL;
    922 	foundit = 0;
    923 	/* first compute the following raid addresses: start of stripe,
    924 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
    925 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
    926 	 * stripe (i.e. start of next stripe)   (eosAddr) */
    927 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    928 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    929 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
    930 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
    931 
    932 	/* now generate access stripe maps for each of the above regions of
    933 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
    934 
    935 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
    936 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
    937 
    938 	/* walk through the PDAs and range-restrict each SU to the region of
    939 	 * the SU touched on the failed PDA.  also compute total data buffer
    940 	 * space requirements in this step.  Ignore the parity for now. */
    941 
    942 	numSect[0] = numSect[1] = 0;
    943 	if (new_asm_h[0]) {
    944 		new_asm_h[0]->next = dag_h->asmList;
    945 		dag_h->asmList = new_asm_h[0];
    946 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    947 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    948 			numSect[0] += pda->numSector;
    949 		}
    950 	}
    951 	if (new_asm_h[1]) {
    952 		new_asm_h[1]->next = dag_h->asmList;
    953 		dag_h->asmList = new_asm_h[1];
    954 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    955 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
    956 			numSect[1] += pda->numSector;
    957 		}
    958 	}
    959 	numParitySect = failedPDA->numSector;
    960 
    961 	/* allocate buffer space for the data & parity we have to read to
    962 	 * recover from the failure */
    963 
    964 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
    965 										 * buf if not needed */
    966 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
    967 		bufP = rdBuf;
    968 		if (rf_degDagDebug)
    969 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
    970 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
    971 	}
    972 	/* now walk through the pdas one last time and assign buffer pointers
    973 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
    974 	 * how many bufs need to be xored together */
    975 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
    976 				 * case, 1 is for failed data */
    977 	if (new_asm_h[0]) {
    978 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
    979 			pda->bufPtr = bufP;
    980 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    981 		}
    982 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    983 	}
    984 	if (new_asm_h[1]) {
    985 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
    986 			pda->bufPtr = bufP;
    987 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
    988 		}
    989 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    990 	}
    991 	if (rpBufPtr)
    992 		*rpBufPtr = bufP;	/* the rest of the buffer is for
    993 					 * parity */
    994 
    995 	/* the last step is to figure out how many more distinct buffers need
    996 	 * to get xor'd to produce the missing unit.  there's one for each
    997 	 * user-data read node that overlaps the portion of the failed unit
    998 	 * being accessed */
    999 
   1000 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1001 		if (pda == failedPDA) {
   1002 			i--;
   1003 			foundit = 1;
   1004 			continue;
   1005 		}
   1006 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1007 			overlappingPDAs[i] = 1;
   1008 			(*nXorBufs)++;
   1009 		}
   1010 	}
   1011 	if (!foundit) {
   1012 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1013 		RF_ASSERT(0);
   1014 	}
   1015 	if (rf_degDagDebug) {
   1016 		if (new_asm_h[0]) {
   1017 			printf("First asm:\n");
   1018 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1019 		}
   1020 		if (new_asm_h[1]) {
   1021 			printf("Second asm:\n");
   1022 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1023 		}
   1024 	}
   1025 }
   1026 
   1027 
   1028 /* adjusts the offset and number of sectors in the destination pda so that
   1029  * it covers at most the region of the SU covered by the source PDA.  This
   1030  * is exclusively a restriction:  the number of sectors indicated by the
   1031  * target PDA can only shrink.
   1032  *
   1033  * For example:  s = sectors within SU indicated by source PDA
   1034  *               d = sectors within SU indicated by dest PDA
   1035  *               r = results, stored in dest PDA
   1036  *
   1037  * |--------------- one stripe unit ---------------------|
   1038  * |           sssssssssssssssssssssssssssssssss         |
   1039  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1040  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1041  *
   1042  * Another example:
   1043  *
   1044  * |--------------- one stripe unit ---------------------|
   1045  * |           sssssssssssssssssssssssssssssssss         |
   1046  * |    ddddddddddddddddddddddd                          |
   1047  * |           rrrrrrrrrrrrrrrr                          |
   1048  *
   1049  */
   1050 void
   1051 rf_RangeRestrictPDA(
   1052     RF_Raid_t * raidPtr,
   1053     RF_PhysDiskAddr_t * src,
   1054     RF_PhysDiskAddr_t * dest,
   1055     int dobuffer,
   1056     int doraidaddr)
   1057 {
   1058 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1059 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1060 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1061 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1062 													 * stay within SU */
   1063 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1064 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1065 
   1066 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1067 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1068 
   1069 	if (dobuffer)
   1070 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
   1071 	if (doraidaddr) {
   1072 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1073 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1074 	}
   1075 }
   1076 /*
   1077  * Want the highest of these primes to be the largest one
   1078  * less than the max expected number of columns (won't hurt
   1079  * to be too small or too large, but won't be optimal, either)
   1080  * --jimz
   1081  */
   1082 #define NLOWPRIMES 8
   1083 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1084 /*****************************************************************************
   1085  * compute the workload shift factor.  (chained declustering)
   1086  *
   1087  * return nonzero if access should shift to secondary, otherwise,
   1088  * access is to primary
   1089  *****************************************************************************/
   1090 int
   1091 rf_compute_workload_shift(
   1092     RF_Raid_t * raidPtr,
   1093     RF_PhysDiskAddr_t * pda)
   1094 {
   1095 	/*
   1096          * variables:
   1097          *  d   = column of disk containing primary
   1098          *  f   = column of failed disk
   1099          *  n   = number of disks in array
   1100          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1101          *  row = row of array the access is in
   1102          *  v   = numerator of redirection ratio
   1103          *  k   = denominator of redirection ratio
   1104          */
   1105 	RF_RowCol_t d, f, sd, row, n;
   1106 	int     k, v, ret, i;
   1107 
   1108 	row = pda->row;
   1109 	n = raidPtr->numCol;
   1110 
   1111 	/* assign column of primary copy to d */
   1112 	d = pda->col;
   1113 
   1114 	/* assign column of dead disk to f */
   1115 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
   1116 
   1117 	RF_ASSERT(f < n);
   1118 	RF_ASSERT(f != d);
   1119 
   1120 	sd = (f > d) ? (n + d - f) : (d - f);
   1121 	RF_ASSERT(sd < n);
   1122 
   1123 	/*
   1124          * v of every k accesses should be redirected
   1125          *
   1126          * v/k := (n-1-sd)/(n-1)
   1127          */
   1128 	v = (n - 1 - sd);
   1129 	k = (n - 1);
   1130 
   1131 #if 1
   1132 	/*
   1133          * XXX
   1134          * Is this worth it?
   1135          *
   1136          * Now reduce the fraction, by repeatedly factoring
   1137          * out primes (just like they teach in elementary school!)
   1138          */
   1139 	for (i = 0; i < NLOWPRIMES; i++) {
   1140 		if (lowprimes[i] > v)
   1141 			break;
   1142 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1143 			v /= lowprimes[i];
   1144 			k /= lowprimes[i];
   1145 		}
   1146 	}
   1147 #endif
   1148 
   1149 	raidPtr->hist_diskreq[row][d]++;
   1150 	if (raidPtr->hist_diskreq[row][d] > v) {
   1151 		ret = 0;	/* do not redirect */
   1152 	} else {
   1153 		ret = 1;	/* redirect */
   1154 	}
   1155 
   1156 #if 0
   1157 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1158 	    raidPtr->hist_diskreq[row][d]);
   1159 #endif
   1160 
   1161 	if (raidPtr->hist_diskreq[row][d] >= k) {
   1162 		/* reset counter */
   1163 		raidPtr->hist_diskreq[row][d] = 0;
   1164 	}
   1165 	return (ret);
   1166 }
   1167 /*
   1168  * Disk selection routines
   1169  */
   1170 
   1171 /*
   1172  * Selects the disk with the shortest queue from a mirror pair.
   1173  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1174  * disk are counted as members of the "queue"
   1175  */
   1176 void
   1177 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1178 {
   1179 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1180 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1181 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1182 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1183 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1184 	RF_PhysDiskAddr_t *tmp_pda;
   1185 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1186 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1187 
   1188 	/* return the [row col] of the disk with the shortest queue */
   1189 	rowData = data_pda->row;
   1190 	colData = data_pda->col;
   1191 	rowMirror = mirror_pda->row;
   1192 	colMirror = mirror_pda->col;
   1193 	dataQueue = &(dqs[rowData][colData]);
   1194 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1195 
   1196 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1197 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1198 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1199 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1200 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1201 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1202 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1203 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1204 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1205 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1206 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1207 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1208 
   1209 	usemirror = 0;
   1210 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1211 		usemirror = 0;
   1212 	} else
   1213 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1214 			usemirror = 1;
   1215 		} else
   1216 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1217 				/* Trust only the main disk */
   1218 				usemirror = 0;
   1219 			} else
   1220 				if (dataQueueLength < mirrorQueueLength) {
   1221 					usemirror = 0;
   1222 				} else
   1223 					if (mirrorQueueLength < dataQueueLength) {
   1224 						usemirror = 1;
   1225 					} else {
   1226 						/* queues are equal length. attempt
   1227 						 * cleverness. */
   1228 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1229 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1230 							usemirror = 0;
   1231 						} else {
   1232 							usemirror = 1;
   1233 						}
   1234 					}
   1235 
   1236 	if (usemirror) {
   1237 		/* use mirror (parity) disk, swap params 0 & 4 */
   1238 		tmp_pda = data_pda;
   1239 		node->params[0].p = mirror_pda;
   1240 		node->params[4].p = tmp_pda;
   1241 	} else {
   1242 		/* use data disk, leave param 0 unchanged */
   1243 	}
   1244 	/* printf("dataQueueLength %d, mirrorQueueLength
   1245 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1246 }
   1247 /*
   1248  * Do simple partitioning. This assumes that
   1249  * the data and parity disks are laid out identically.
   1250  */
   1251 void
   1252 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1253 {
   1254 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1255 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
   1256 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1257 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1258 	RF_PhysDiskAddr_t *tmp_pda;
   1259 	RF_RaidDisk_t **disks = raidPtr->Disks;
   1260 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1261 	int     usemirror;
   1262 
   1263 	/* return the [row col] of the disk with the shortest queue */
   1264 	rowData = data_pda->row;
   1265 	colData = data_pda->col;
   1266 	rowMirror = mirror_pda->row;
   1267 	colMirror = mirror_pda->col;
   1268 	dataQueue = &(dqs[rowData][colData]);
   1269 	mirrorQueue = &(dqs[rowMirror][colMirror]);
   1270 
   1271 	usemirror = 0;
   1272 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
   1273 		usemirror = 0;
   1274 	} else
   1275 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
   1276 			usemirror = 1;
   1277 		} else
   1278 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1279 				/* Trust only the main disk */
   1280 				usemirror = 0;
   1281 			} else
   1282 				if (data_pda->startSector <
   1283 				    (disks[rowData][colData].numBlocks / 2)) {
   1284 					usemirror = 0;
   1285 				} else {
   1286 					usemirror = 1;
   1287 				}
   1288 
   1289 	if (usemirror) {
   1290 		/* use mirror (parity) disk, swap params 0 & 4 */
   1291 		tmp_pda = data_pda;
   1292 		node->params[0].p = mirror_pda;
   1293 		node->params[4].p = tmp_pda;
   1294 	} else {
   1295 		/* use data disk, leave param 0 unchanged */
   1296 	}
   1297 }
   1298