rf_dagutils.c revision 1.9 1 /* $NetBSD: rf_dagutils.c,v 1.9 2001/11/13 07:11:13 lukem Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /******************************************************************************
30 *
31 * rf_dagutils.c -- utility routines for manipulating dags
32 *
33 *****************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.9 2001/11/13 07:11:13 lukem Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_freelist.h"
48 #include "rf_map.h"
49 #include "rf_shutdown.h"
50
51 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
52
53 RF_RedFuncs_t rf_xorFuncs = {
54 rf_RegularXorFunc, "Reg Xr",
55 rf_SimpleXorFunc, "Simple Xr"};
56
57 RF_RedFuncs_t rf_xorRecoveryFuncs = {
58 rf_RecoveryXorFunc, "Recovery Xr",
59 rf_RecoveryXorFunc, "Recovery Xr"};
60
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int
64 rf_ValidateBranch(RF_DagNode_t *, int *, int *,
65 RF_DagNode_t **, int);
66 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
67 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
68
69 /******************************************************************************
70 *
71 * InitNode - initialize a dag node
72 *
73 * the size of the propList array is always the same as that of the
74 * successors array.
75 *
76 *****************************************************************************/
77 void
78 rf_InitNode(
79 RF_DagNode_t * node,
80 RF_NodeStatus_t initstatus,
81 int commit,
82 int (*doFunc) (RF_DagNode_t * node),
83 int (*undoFunc) (RF_DagNode_t * node),
84 int (*wakeFunc) (RF_DagNode_t * node, int status),
85 int nSucc,
86 int nAnte,
87 int nParam,
88 int nResult,
89 RF_DagHeader_t * hdr,
90 char *name,
91 RF_AllocListElem_t * alist)
92 {
93 void **ptrs;
94 int nptrs;
95
96 if (nAnte > RF_MAX_ANTECEDENTS)
97 RF_PANIC();
98 node->status = initstatus;
99 node->commitNode = commit;
100 node->doFunc = doFunc;
101 node->undoFunc = undoFunc;
102 node->wakeFunc = wakeFunc;
103 node->numParams = nParam;
104 node->numResults = nResult;
105 node->numAntecedents = nAnte;
106 node->numAntDone = 0;
107 node->next = NULL;
108 node->numSuccedents = nSucc;
109 node->name = name;
110 node->dagHdr = hdr;
111 node->visited = 0;
112
113 /* allocate all the pointers with one call to malloc */
114 nptrs = nSucc + nAnte + nResult + nSucc;
115
116 if (nptrs <= RF_DAG_PTRCACHESIZE) {
117 /*
118 * The dag_ptrs field of the node is basically some scribble
119 * space to be used here. We could get rid of it, and always
120 * allocate the range of pointers, but that's expensive. So,
121 * we pick a "common case" size for the pointer cache. Hopefully,
122 * we'll find that:
123 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
124 * only a little bit (least efficient case)
125 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
126 * (wasted memory)
127 */
128 ptrs = (void **) node->dag_ptrs;
129 } else {
130 RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
131 }
132 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
133 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
134 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
135 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
136
137 if (nParam) {
138 if (nParam <= RF_DAG_PARAMCACHESIZE) {
139 node->params = (RF_DagParam_t *) node->dag_params;
140 } else {
141 RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
142 }
143 } else {
144 node->params = NULL;
145 }
146 }
147
148
149
150 /******************************************************************************
151 *
152 * allocation and deallocation routines
153 *
154 *****************************************************************************/
155
156 void
157 rf_FreeDAG(dag_h)
158 RF_DagHeader_t *dag_h;
159 {
160 RF_AccessStripeMapHeader_t *asmap, *t_asmap;
161 RF_DagHeader_t *nextDag;
162 int i;
163
164 while (dag_h) {
165 nextDag = dag_h->next;
166 for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
167 /* release mem chunks */
168 rf_ReleaseMemChunk(dag_h->memChunk[i]);
169 dag_h->memChunk[i] = NULL;
170 }
171
172 RF_ASSERT(i == dag_h->chunkIndex);
173 if (dag_h->xtraChunkCnt > 0) {
174 /* free xtraMemChunks */
175 for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
176 rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
177 dag_h->xtraMemChunk[i] = NULL;
178 }
179 RF_ASSERT(i == dag_h->xtraChunkIndex);
180 /* free ptrs to xtraMemChunks */
181 RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
182 }
183 rf_FreeAllocList(dag_h->allocList);
184 for (asmap = dag_h->asmList; asmap;) {
185 t_asmap = asmap;
186 asmap = asmap->next;
187 rf_FreeAccessStripeMap(t_asmap);
188 }
189 rf_FreeDAGHeader(dag_h);
190 dag_h = nextDag;
191 }
192 }
193
194 RF_PropHeader_t *
195 rf_MakePropListEntry(
196 RF_DagHeader_t * dag_h,
197 int resultNum,
198 int paramNum,
199 RF_PropHeader_t * next,
200 RF_AllocListElem_t * allocList)
201 {
202 RF_PropHeader_t *p;
203
204 RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
205 (RF_PropHeader_t *), allocList);
206 p->resultNum = resultNum;
207 p->paramNum = paramNum;
208 p->next = next;
209 return (p);
210 }
211
212 static RF_FreeList_t *rf_dagh_freelist;
213
214 #define RF_MAX_FREE_DAGH 128
215 #define RF_DAGH_INC 16
216 #define RF_DAGH_INITIAL 32
217
218 static void rf_ShutdownDAGs(void *);
219 static void
220 rf_ShutdownDAGs(ignored)
221 void *ignored;
222 {
223 RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
224 }
225
226 int
227 rf_ConfigureDAGs(listp)
228 RF_ShutdownList_t **listp;
229 {
230 int rc;
231
232 RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
233 RF_DAGH_INC, sizeof(RF_DagHeader_t));
234 if (rf_dagh_freelist == NULL)
235 return (ENOMEM);
236 rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
237 if (rc) {
238 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
239 __FILE__, __LINE__, rc);
240 rf_ShutdownDAGs(NULL);
241 return (rc);
242 }
243 RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
244 (RF_DagHeader_t *));
245 return (0);
246 }
247
248 RF_DagHeader_t *
249 rf_AllocDAGHeader()
250 {
251 RF_DagHeader_t *dh;
252
253 RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
254 if (dh) {
255 memset((char *) dh, 0, sizeof(RF_DagHeader_t));
256 }
257 return (dh);
258 }
259
260 void
261 rf_FreeDAGHeader(RF_DagHeader_t * dh)
262 {
263 RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
264 }
265 /* allocates a buffer big enough to hold the data described by pda */
266 void *
267 rf_AllocBuffer(
268 RF_Raid_t * raidPtr,
269 RF_DagHeader_t * dag_h,
270 RF_PhysDiskAddr_t * pda,
271 RF_AllocListElem_t * allocList)
272 {
273 char *p;
274
275 RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
276 (char *), allocList);
277 return ((void *) p);
278 }
279 /******************************************************************************
280 *
281 * debug routines
282 *
283 *****************************************************************************/
284
285 char *
286 rf_NodeStatusString(RF_DagNode_t * node)
287 {
288 switch (node->status) {
289 case rf_wait:return ("wait");
290 case rf_fired:
291 return ("fired");
292 case rf_good:
293 return ("good");
294 case rf_bad:
295 return ("bad");
296 default:
297 return ("?");
298 }
299 }
300
301 void
302 rf_PrintNodeInfoString(RF_DagNode_t * node)
303 {
304 RF_PhysDiskAddr_t *pda;
305 int (*df) (RF_DagNode_t *) = node->doFunc;
306 int i, lk, unlk;
307 void *bufPtr;
308
309 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
310 || (df == rf_DiskReadMirrorIdleFunc)
311 || (df == rf_DiskReadMirrorPartitionFunc)) {
312 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
313 bufPtr = (void *) node->params[1].p;
314 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
315 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
316 RF_ASSERT(!(lk && unlk));
317 printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
318 (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
319 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
320 return;
321 }
322 if (df == rf_DiskUnlockFunc) {
323 pda = (RF_PhysDiskAddr_t *) node->params[0].p;
324 lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
325 unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
326 RF_ASSERT(!(lk && unlk));
327 printf("r %d c %d %s\n", pda->row, pda->col,
328 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
329 return;
330 }
331 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
332 || (df == rf_RecoveryXorFunc)) {
333 printf("result buf 0x%lx\n", (long) node->results[0]);
334 for (i = 0; i < node->numParams - 1; i += 2) {
335 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
336 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
337 printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
338 (long) bufPtr, pda->row, pda->col,
339 (long) pda->startSector, (int) pda->numSector);
340 }
341 return;
342 }
343 #if RF_INCLUDE_PARITYLOGGING > 0
344 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
345 for (i = 0; i < node->numParams - 1; i += 2) {
346 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
347 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
348 printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
349 pda->row, pda->col, (long) pda->startSector,
350 (int) pda->numSector, (long) bufPtr);
351 }
352 return;
353 }
354 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
355
356 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
357 printf("\n");
358 return;
359 }
360 printf("?\n");
361 }
362
363 static void
364 rf_RecurPrintDAG(node, depth, unvisited)
365 RF_DagNode_t *node;
366 int depth;
367 int unvisited;
368 {
369 char *anttype;
370 int i;
371
372 node->visited = (unvisited) ? 0 : 1;
373 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
374 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
375 node->numSuccedents, node->numSuccFired, node->numSuccDone,
376 node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
377 for (i = 0; i < node->numSuccedents; i++) {
378 printf("%d%s", node->succedents[i]->nodeNum,
379 ((i == node->numSuccedents - 1) ? "\0" : " "));
380 }
381 printf("} A{");
382 for (i = 0; i < node->numAntecedents; i++) {
383 switch (node->antType[i]) {
384 case rf_trueData:
385 anttype = "T";
386 break;
387 case rf_antiData:
388 anttype = "A";
389 break;
390 case rf_outputData:
391 anttype = "O";
392 break;
393 case rf_control:
394 anttype = "C";
395 break;
396 default:
397 anttype = "?";
398 break;
399 }
400 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
401 }
402 printf("}; ");
403 rf_PrintNodeInfoString(node);
404 for (i = 0; i < node->numSuccedents; i++) {
405 if (node->succedents[i]->visited == unvisited)
406 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
407 }
408 }
409
410 static void
411 rf_PrintDAG(dag_h)
412 RF_DagHeader_t *dag_h;
413 {
414 int unvisited, i;
415 char *status;
416
417 /* set dag status */
418 switch (dag_h->status) {
419 case rf_enable:
420 status = "enable";
421 break;
422 case rf_rollForward:
423 status = "rollForward";
424 break;
425 case rf_rollBackward:
426 status = "rollBackward";
427 break;
428 default:
429 status = "illegal!";
430 break;
431 }
432 /* find out if visited bits are currently set or clear */
433 unvisited = dag_h->succedents[0]->visited;
434
435 printf("DAG type: %s\n", dag_h->creator);
436 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
437 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
438 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
439 for (i = 0; i < dag_h->numSuccedents; i++) {
440 printf("%d%s", dag_h->succedents[i]->nodeNum,
441 ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
442 }
443 printf("};\n");
444 for (i = 0; i < dag_h->numSuccedents; i++) {
445 if (dag_h->succedents[i]->visited == unvisited)
446 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
447 }
448 }
449 /* assigns node numbers */
450 int
451 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
452 {
453 int unvisited, i, nnum;
454 RF_DagNode_t *node;
455
456 nnum = 0;
457 unvisited = dag_h->succedents[0]->visited;
458
459 dag_h->nodeNum = nnum++;
460 for (i = 0; i < dag_h->numSuccedents; i++) {
461 node = dag_h->succedents[i];
462 if (node->visited == unvisited) {
463 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
464 }
465 }
466 return (nnum);
467 }
468
469 int
470 rf_RecurAssignNodeNums(node, num, unvisited)
471 RF_DagNode_t *node;
472 int num;
473 int unvisited;
474 {
475 int i;
476
477 node->visited = (unvisited) ? 0 : 1;
478
479 node->nodeNum = num++;
480 for (i = 0; i < node->numSuccedents; i++) {
481 if (node->succedents[i]->visited == unvisited) {
482 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
483 }
484 }
485 return (num);
486 }
487 /* set the header pointers in each node to "newptr" */
488 void
489 rf_ResetDAGHeaderPointers(dag_h, newptr)
490 RF_DagHeader_t *dag_h;
491 RF_DagHeader_t *newptr;
492 {
493 int i;
494 for (i = 0; i < dag_h->numSuccedents; i++)
495 if (dag_h->succedents[i]->dagHdr != newptr)
496 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
497 }
498
499 void
500 rf_RecurResetDAGHeaderPointers(node, newptr)
501 RF_DagNode_t *node;
502 RF_DagHeader_t *newptr;
503 {
504 int i;
505 node->dagHdr = newptr;
506 for (i = 0; i < node->numSuccedents; i++)
507 if (node->succedents[i]->dagHdr != newptr)
508 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
509 }
510
511
512 void
513 rf_PrintDAGList(RF_DagHeader_t * dag_h)
514 {
515 int i = 0;
516
517 for (; dag_h; dag_h = dag_h->next) {
518 rf_AssignNodeNums(dag_h);
519 printf("\n\nDAG %d IN LIST:\n", i++);
520 rf_PrintDAG(dag_h);
521 }
522 }
523
524 static int
525 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
526 RF_DagNode_t *node;
527 int *scount;
528 int *acount;
529 RF_DagNode_t **nodes;
530 int unvisited;
531 {
532 int i, retcode = 0;
533
534 /* construct an array of node pointers indexed by node num */
535 node->visited = (unvisited) ? 0 : 1;
536 nodes[node->nodeNum] = node;
537
538 if (node->next != NULL) {
539 printf("INVALID DAG: next pointer in node is not NULL\n");
540 retcode = 1;
541 }
542 if (node->status != rf_wait) {
543 printf("INVALID DAG: Node status is not wait\n");
544 retcode = 1;
545 }
546 if (node->numAntDone != 0) {
547 printf("INVALID DAG: numAntDone is not zero\n");
548 retcode = 1;
549 }
550 if (node->doFunc == rf_TerminateFunc) {
551 if (node->numSuccedents != 0) {
552 printf("INVALID DAG: Terminator node has succedents\n");
553 retcode = 1;
554 }
555 } else {
556 if (node->numSuccedents == 0) {
557 printf("INVALID DAG: Non-terminator node has no succedents\n");
558 retcode = 1;
559 }
560 }
561 for (i = 0; i < node->numSuccedents; i++) {
562 if (!node->succedents[i]) {
563 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
564 retcode = 1;
565 }
566 scount[node->succedents[i]->nodeNum]++;
567 }
568 for (i = 0; i < node->numAntecedents; i++) {
569 if (!node->antecedents[i]) {
570 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
571 retcode = 1;
572 }
573 acount[node->antecedents[i]->nodeNum]++;
574 }
575 for (i = 0; i < node->numSuccedents; i++) {
576 if (node->succedents[i]->visited == unvisited) {
577 if (rf_ValidateBranch(node->succedents[i], scount,
578 acount, nodes, unvisited)) {
579 retcode = 1;
580 }
581 }
582 }
583 return (retcode);
584 }
585
586 static void
587 rf_ValidateBranchVisitedBits(node, unvisited, rl)
588 RF_DagNode_t *node;
589 int unvisited;
590 int rl;
591 {
592 int i;
593
594 RF_ASSERT(node->visited == unvisited);
595 for (i = 0; i < node->numSuccedents; i++) {
596 if (node->succedents[i] == NULL) {
597 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
598 RF_ASSERT(0);
599 }
600 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
601 }
602 }
603 /* NOTE: never call this on a big dag, because it is exponential
604 * in execution time
605 */
606 static void
607 rf_ValidateVisitedBits(dag)
608 RF_DagHeader_t *dag;
609 {
610 int i, unvisited;
611
612 unvisited = dag->succedents[0]->visited;
613
614 for (i = 0; i < dag->numSuccedents; i++) {
615 if (dag->succedents[i] == NULL) {
616 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
617 RF_ASSERT(0);
618 }
619 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
620 }
621 }
622 /* validate a DAG. _at entry_ verify that:
623 * -- numNodesCompleted is zero
624 * -- node queue is null
625 * -- dag status is rf_enable
626 * -- next pointer is null on every node
627 * -- all nodes have status wait
628 * -- numAntDone is zero in all nodes
629 * -- terminator node has zero successors
630 * -- no other node besides terminator has zero successors
631 * -- no successor or antecedent pointer in a node is NULL
632 * -- number of times that each node appears as a successor of another node
633 * is equal to the antecedent count on that node
634 * -- number of times that each node appears as an antecedent of another node
635 * is equal to the succedent count on that node
636 * -- what else?
637 */
638 int
639 rf_ValidateDAG(dag_h)
640 RF_DagHeader_t *dag_h;
641 {
642 int i, nodecount;
643 int *scount, *acount;/* per-node successor and antecedent counts */
644 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
645 int retcode = 0;
646 int unvisited;
647 int commitNodeCount = 0;
648
649 if (rf_validateVisitedDebug)
650 rf_ValidateVisitedBits(dag_h);
651
652 if (dag_h->numNodesCompleted != 0) {
653 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
654 retcode = 1;
655 goto validate_dag_bad;
656 }
657 if (dag_h->status != rf_enable) {
658 printf("INVALID DAG: not enabled\n");
659 retcode = 1;
660 goto validate_dag_bad;
661 }
662 if (dag_h->numCommits != 0) {
663 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
664 retcode = 1;
665 goto validate_dag_bad;
666 }
667 if (dag_h->numSuccedents != 1) {
668 /* currently, all dags must have only one succedent */
669 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
670 retcode = 1;
671 goto validate_dag_bad;
672 }
673 nodecount = rf_AssignNodeNums(dag_h);
674
675 unvisited = dag_h->succedents[0]->visited;
676
677 RF_Calloc(scount, nodecount, sizeof(int), (int *));
678 RF_Calloc(acount, nodecount, sizeof(int), (int *));
679 RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
680 for (i = 0; i < dag_h->numSuccedents; i++) {
681 if ((dag_h->succedents[i]->visited == unvisited)
682 && rf_ValidateBranch(dag_h->succedents[i], scount,
683 acount, nodes, unvisited)) {
684 retcode = 1;
685 }
686 }
687 /* start at 1 to skip the header node */
688 for (i = 1; i < nodecount; i++) {
689 if (nodes[i]->commitNode)
690 commitNodeCount++;
691 if (nodes[i]->doFunc == NULL) {
692 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
693 retcode = 1;
694 goto validate_dag_out;
695 }
696 if (nodes[i]->undoFunc == NULL) {
697 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
698 retcode = 1;
699 goto validate_dag_out;
700 }
701 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
702 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
703 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
704 retcode = 1;
705 goto validate_dag_out;
706 }
707 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
708 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
709 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
710 retcode = 1;
711 goto validate_dag_out;
712 }
713 }
714
715 if (dag_h->numCommitNodes != commitNodeCount) {
716 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
717 dag_h->numCommitNodes, commitNodeCount);
718 retcode = 1;
719 goto validate_dag_out;
720 }
721 validate_dag_out:
722 RF_Free(scount, nodecount * sizeof(int));
723 RF_Free(acount, nodecount * sizeof(int));
724 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
725 if (retcode)
726 rf_PrintDAGList(dag_h);
727
728 if (rf_validateVisitedDebug)
729 rf_ValidateVisitedBits(dag_h);
730
731 return (retcode);
732
733 validate_dag_bad:
734 rf_PrintDAGList(dag_h);
735 return (retcode);
736 }
737
738
739 /******************************************************************************
740 *
741 * misc construction routines
742 *
743 *****************************************************************************/
744
745 void
746 rf_redirect_asm(
747 RF_Raid_t * raidPtr,
748 RF_AccessStripeMap_t * asmap)
749 {
750 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
751 int row = asmap->physInfo->row;
752 int fcol = raidPtr->reconControl[row]->fcol;
753 int srow = raidPtr->reconControl[row]->spareRow;
754 int scol = raidPtr->reconControl[row]->spareCol;
755 RF_PhysDiskAddr_t *pda;
756
757 RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
758 for (pda = asmap->physInfo; pda; pda = pda->next) {
759 if (pda->col == fcol) {
760 if (rf_dagDebug) {
761 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
762 pda->startSector)) {
763 RF_PANIC();
764 }
765 }
766 /* printf("Remapped data for large write\n"); */
767 if (ds) {
768 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
769 &pda->row, &pda->col, &pda->startSector, RF_REMAP);
770 } else {
771 pda->row = srow;
772 pda->col = scol;
773 }
774 }
775 }
776 for (pda = asmap->parityInfo; pda; pda = pda->next) {
777 if (pda->col == fcol) {
778 if (rf_dagDebug) {
779 if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
780 RF_PANIC();
781 }
782 }
783 }
784 if (ds) {
785 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
786 } else {
787 pda->row = srow;
788 pda->col = scol;
789 }
790 }
791 }
792
793
794 /* this routine allocates read buffers and generates stripe maps for the
795 * regions of the array from the start of the stripe to the start of the
796 * access, and from the end of the access to the end of the stripe. It also
797 * computes and returns the number of DAG nodes needed to read all this data.
798 * Note that this routine does the wrong thing if the access is fully
799 * contained within one stripe unit, so we RF_ASSERT against this case at the
800 * start.
801 */
802 void
803 rf_MapUnaccessedPortionOfStripe(
804 RF_Raid_t * raidPtr,
805 RF_RaidLayout_t * layoutPtr,/* in: layout information */
806 RF_AccessStripeMap_t * asmap, /* in: access stripe map */
807 RF_DagHeader_t * dag_h, /* in: header of the dag to create */
808 RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
809 * headers, to be filled in */
810 int *nRodNodes, /* out: num nodes to be generated to read
811 * unaccessed data */
812 char **sosBuffer, /* out: pointers to newly allocated buffer */
813 char **eosBuffer,
814 RF_AllocListElem_t * allocList)
815 {
816 RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
817 RF_SectorNum_t sosNumSector, eosNumSector;
818
819 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
820 /* generate an access map for the region of the array from start of
821 * stripe to start of access */
822 new_asm_h[0] = new_asm_h[1] = NULL;
823 *nRodNodes = 0;
824 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
825 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
826 sosNumSector = asmap->raidAddress - sosRaidAddress;
827 RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
828 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
829 new_asm_h[0]->next = dag_h->asmList;
830 dag_h->asmList = new_asm_h[0];
831 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
832
833 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
834 /* we're totally within one stripe here */
835 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
836 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
837 }
838 /* generate an access map for the region of the array from end of
839 * access to end of stripe */
840 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
841 eosRaidAddress = asmap->endRaidAddress;
842 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
843 RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
844 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
845 new_asm_h[1]->next = dag_h->asmList;
846 dag_h->asmList = new_asm_h[1];
847 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
848
849 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
850 /* we're totally within one stripe here */
851 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
852 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
853 }
854 }
855
856
857
858 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
859 int
860 rf_PDAOverlap(
861 RF_RaidLayout_t * layoutPtr,
862 RF_PhysDiskAddr_t * src,
863 RF_PhysDiskAddr_t * dest)
864 {
865 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
866 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
867 /* use -1 to be sure we stay within SU */
868 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
869 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
870 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
871 }
872
873
874 /* GenerateFailedAccessASMs
875 *
876 * this routine figures out what portion of the stripe needs to be read
877 * to effect the degraded read or write operation. It's primary function
878 * is to identify everything required to recover the data, and then
879 * eliminate anything that is already being accessed by the user.
880 *
881 * The main result is two new ASMs, one for the region from the start of the
882 * stripe to the start of the access, and one for the region from the end of
883 * the access to the end of the stripe. These ASMs describe everything that
884 * needs to be read to effect the degraded access. Other results are:
885 * nXorBufs -- the total number of buffers that need to be XORed together to
886 * recover the lost data,
887 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
888 * at entry, not allocated.
889 * overlappingPDAs --
890 * describes which of the non-failed PDAs in the user access
891 * overlap data that needs to be read to effect recovery.
892 * overlappingPDAs[i]==1 if and only if, neglecting the failed
893 * PDA, the ith pda in the input asm overlaps data that needs
894 * to be read for recovery.
895 */
896 /* in: asm - ASM for the actual access, one stripe only */
897 /* in: faildPDA - which component of the access has failed */
898 /* in: dag_h - header of the DAG we're going to create */
899 /* out: new_asm_h - the two new ASMs */
900 /* out: nXorBufs - the total number of xor bufs required */
901 /* out: rpBufPtr - a buffer for the parity read */
902 void
903 rf_GenerateFailedAccessASMs(
904 RF_Raid_t * raidPtr,
905 RF_AccessStripeMap_t * asmap,
906 RF_PhysDiskAddr_t * failedPDA,
907 RF_DagHeader_t * dag_h,
908 RF_AccessStripeMapHeader_t ** new_asm_h,
909 int *nXorBufs,
910 char **rpBufPtr,
911 char *overlappingPDAs,
912 RF_AllocListElem_t * allocList)
913 {
914 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
915
916 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
917 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
918
919 RF_SectorCount_t numSect[2], numParitySect;
920 RF_PhysDiskAddr_t *pda;
921 char *rdBuf, *bufP;
922 int foundit, i;
923
924 bufP = NULL;
925 foundit = 0;
926 /* first compute the following raid addresses: start of stripe,
927 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
928 * MAX(end of access, end of failed SU), (eosStartAddr) end of
929 * stripe (i.e. start of next stripe) (eosAddr) */
930 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
931 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
932 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
933 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
934
935 /* now generate access stripe maps for each of the above regions of
936 * the stripe. Use a dummy (NULL) buf ptr for now */
937
938 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
939 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
940
941 /* walk through the PDAs and range-restrict each SU to the region of
942 * the SU touched on the failed PDA. also compute total data buffer
943 * space requirements in this step. Ignore the parity for now. */
944
945 numSect[0] = numSect[1] = 0;
946 if (new_asm_h[0]) {
947 new_asm_h[0]->next = dag_h->asmList;
948 dag_h->asmList = new_asm_h[0];
949 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
950 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
951 numSect[0] += pda->numSector;
952 }
953 }
954 if (new_asm_h[1]) {
955 new_asm_h[1]->next = dag_h->asmList;
956 dag_h->asmList = new_asm_h[1];
957 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
958 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
959 numSect[1] += pda->numSector;
960 }
961 }
962 numParitySect = failedPDA->numSector;
963
964 /* allocate buffer space for the data & parity we have to read to
965 * recover from the failure */
966
967 if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
968 * buf if not needed */
969 RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
970 bufP = rdBuf;
971 if (rf_degDagDebug)
972 printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
973 (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
974 }
975 /* now walk through the pdas one last time and assign buffer pointers
976 * (ugh!). Again, ignore the parity. also, count nodes to find out
977 * how many bufs need to be xored together */
978 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
979 * case, 1 is for failed data */
980 if (new_asm_h[0]) {
981 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
982 pda->bufPtr = bufP;
983 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
984 }
985 *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
986 }
987 if (new_asm_h[1]) {
988 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
989 pda->bufPtr = bufP;
990 bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
991 }
992 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
993 }
994 if (rpBufPtr)
995 *rpBufPtr = bufP; /* the rest of the buffer is for
996 * parity */
997
998 /* the last step is to figure out how many more distinct buffers need
999 * to get xor'd to produce the missing unit. there's one for each
1000 * user-data read node that overlaps the portion of the failed unit
1001 * being accessed */
1002
1003 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1004 if (pda == failedPDA) {
1005 i--;
1006 foundit = 1;
1007 continue;
1008 }
1009 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1010 overlappingPDAs[i] = 1;
1011 (*nXorBufs)++;
1012 }
1013 }
1014 if (!foundit) {
1015 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1016 RF_ASSERT(0);
1017 }
1018 if (rf_degDagDebug) {
1019 if (new_asm_h[0]) {
1020 printf("First asm:\n");
1021 rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1022 }
1023 if (new_asm_h[1]) {
1024 printf("Second asm:\n");
1025 rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1026 }
1027 }
1028 }
1029
1030
1031 /* adjusts the offset and number of sectors in the destination pda so that
1032 * it covers at most the region of the SU covered by the source PDA. This
1033 * is exclusively a restriction: the number of sectors indicated by the
1034 * target PDA can only shrink.
1035 *
1036 * For example: s = sectors within SU indicated by source PDA
1037 * d = sectors within SU indicated by dest PDA
1038 * r = results, stored in dest PDA
1039 *
1040 * |--------------- one stripe unit ---------------------|
1041 * | sssssssssssssssssssssssssssssssss |
1042 * | ddddddddddddddddddddddddddddddddddddddddddddd |
1043 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
1044 *
1045 * Another example:
1046 *
1047 * |--------------- one stripe unit ---------------------|
1048 * | sssssssssssssssssssssssssssssssss |
1049 * | ddddddddddddddddddddddd |
1050 * | rrrrrrrrrrrrrrrr |
1051 *
1052 */
1053 void
1054 rf_RangeRestrictPDA(
1055 RF_Raid_t * raidPtr,
1056 RF_PhysDiskAddr_t * src,
1057 RF_PhysDiskAddr_t * dest,
1058 int dobuffer,
1059 int doraidaddr)
1060 {
1061 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1062 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1063 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1064 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
1065 * stay within SU */
1066 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1067 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
1068
1069 dest->startSector = subAddr + RF_MAX(soffs, doffs);
1070 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1071
1072 if (dobuffer)
1073 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1074 if (doraidaddr) {
1075 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1076 rf_StripeUnitOffset(layoutPtr, dest->startSector);
1077 }
1078 }
1079 /*
1080 * Want the highest of these primes to be the largest one
1081 * less than the max expected number of columns (won't hurt
1082 * to be too small or too large, but won't be optimal, either)
1083 * --jimz
1084 */
1085 #define NLOWPRIMES 8
1086 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1087 /*****************************************************************************
1088 * compute the workload shift factor. (chained declustering)
1089 *
1090 * return nonzero if access should shift to secondary, otherwise,
1091 * access is to primary
1092 *****************************************************************************/
1093 int
1094 rf_compute_workload_shift(
1095 RF_Raid_t * raidPtr,
1096 RF_PhysDiskAddr_t * pda)
1097 {
1098 /*
1099 * variables:
1100 * d = column of disk containing primary
1101 * f = column of failed disk
1102 * n = number of disks in array
1103 * sd = "shift distance" (number of columns that d is to the right of f)
1104 * row = row of array the access is in
1105 * v = numerator of redirection ratio
1106 * k = denominator of redirection ratio
1107 */
1108 RF_RowCol_t d, f, sd, row, n;
1109 int k, v, ret, i;
1110
1111 row = pda->row;
1112 n = raidPtr->numCol;
1113
1114 /* assign column of primary copy to d */
1115 d = pda->col;
1116
1117 /* assign column of dead disk to f */
1118 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1119
1120 RF_ASSERT(f < n);
1121 RF_ASSERT(f != d);
1122
1123 sd = (f > d) ? (n + d - f) : (d - f);
1124 RF_ASSERT(sd < n);
1125
1126 /*
1127 * v of every k accesses should be redirected
1128 *
1129 * v/k := (n-1-sd)/(n-1)
1130 */
1131 v = (n - 1 - sd);
1132 k = (n - 1);
1133
1134 #if 1
1135 /*
1136 * XXX
1137 * Is this worth it?
1138 *
1139 * Now reduce the fraction, by repeatedly factoring
1140 * out primes (just like they teach in elementary school!)
1141 */
1142 for (i = 0; i < NLOWPRIMES; i++) {
1143 if (lowprimes[i] > v)
1144 break;
1145 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1146 v /= lowprimes[i];
1147 k /= lowprimes[i];
1148 }
1149 }
1150 #endif
1151
1152 raidPtr->hist_diskreq[row][d]++;
1153 if (raidPtr->hist_diskreq[row][d] > v) {
1154 ret = 0; /* do not redirect */
1155 } else {
1156 ret = 1; /* redirect */
1157 }
1158
1159 #if 0
1160 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1161 raidPtr->hist_diskreq[row][d]);
1162 #endif
1163
1164 if (raidPtr->hist_diskreq[row][d] >= k) {
1165 /* reset counter */
1166 raidPtr->hist_diskreq[row][d] = 0;
1167 }
1168 return (ret);
1169 }
1170 /*
1171 * Disk selection routines
1172 */
1173
1174 /*
1175 * Selects the disk with the shortest queue from a mirror pair.
1176 * Both the disk I/Os queued in RAIDframe as well as those at the physical
1177 * disk are counted as members of the "queue"
1178 */
1179 void
1180 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1181 {
1182 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1183 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1184 int dataQueueLength, mirrorQueueLength, usemirror;
1185 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1186 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1187 RF_PhysDiskAddr_t *tmp_pda;
1188 RF_RaidDisk_t **disks = raidPtr->Disks;
1189 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1190
1191 /* return the [row col] of the disk with the shortest queue */
1192 rowData = data_pda->row;
1193 colData = data_pda->col;
1194 rowMirror = mirror_pda->row;
1195 colMirror = mirror_pda->col;
1196 dataQueue = &(dqs[rowData][colData]);
1197 mirrorQueue = &(dqs[rowMirror][colMirror]);
1198
1199 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1200 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1201 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1202 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1203 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1204 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1205 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1206 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1207 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1208 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1209 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1210 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */
1211
1212 usemirror = 0;
1213 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1214 usemirror = 0;
1215 } else
1216 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1217 usemirror = 1;
1218 } else
1219 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1220 /* Trust only the main disk */
1221 usemirror = 0;
1222 } else
1223 if (dataQueueLength < mirrorQueueLength) {
1224 usemirror = 0;
1225 } else
1226 if (mirrorQueueLength < dataQueueLength) {
1227 usemirror = 1;
1228 } else {
1229 /* queues are equal length. attempt
1230 * cleverness. */
1231 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1232 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1233 usemirror = 0;
1234 } else {
1235 usemirror = 1;
1236 }
1237 }
1238
1239 if (usemirror) {
1240 /* use mirror (parity) disk, swap params 0 & 4 */
1241 tmp_pda = data_pda;
1242 node->params[0].p = mirror_pda;
1243 node->params[4].p = tmp_pda;
1244 } else {
1245 /* use data disk, leave param 0 unchanged */
1246 }
1247 /* printf("dataQueueLength %d, mirrorQueueLength
1248 * %d\n",dataQueueLength, mirrorQueueLength); */
1249 }
1250 /*
1251 * Do simple partitioning. This assumes that
1252 * the data and parity disks are laid out identically.
1253 */
1254 void
1255 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1256 {
1257 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1258 RF_RowCol_t rowData, colData, rowMirror, colMirror;
1259 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1260 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1261 RF_PhysDiskAddr_t *tmp_pda;
1262 RF_RaidDisk_t **disks = raidPtr->Disks;
1263 RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1264 int usemirror;
1265
1266 /* return the [row col] of the disk with the shortest queue */
1267 rowData = data_pda->row;
1268 colData = data_pda->col;
1269 rowMirror = mirror_pda->row;
1270 colMirror = mirror_pda->col;
1271 dataQueue = &(dqs[rowData][colData]);
1272 mirrorQueue = &(dqs[rowMirror][colMirror]);
1273
1274 usemirror = 0;
1275 if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1276 usemirror = 0;
1277 } else
1278 if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1279 usemirror = 1;
1280 } else
1281 if (raidPtr->parity_good == RF_RAID_DIRTY) {
1282 /* Trust only the main disk */
1283 usemirror = 0;
1284 } else
1285 if (data_pda->startSector <
1286 (disks[rowData][colData].numBlocks / 2)) {
1287 usemirror = 0;
1288 } else {
1289 usemirror = 1;
1290 }
1291
1292 if (usemirror) {
1293 /* use mirror (parity) disk, swap params 0 & 4 */
1294 tmp_pda = data_pda;
1295 node->params[0].p = mirror_pda;
1296 node->params[4].p = tmp_pda;
1297 } else {
1298 /* use data disk, leave param 0 unchanged */
1299 }
1300 }
1301