rf_diskqueue.c revision 1.28 1 1.28 oster /* $NetBSD: rf_diskqueue.c,v 1.28 2003/12/31 02:47:58 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.13 oster /****************************************************************************
30 1.1 oster *
31 1.1 oster * rf_diskqueue.c -- higher-level disk queue code
32 1.1 oster *
33 1.1 oster * the routines here are a generic wrapper around the actual queueing
34 1.6 oster * routines. The code here implements thread scheduling, synchronization,
35 1.1 oster * and locking ops (see below) on top of the lower-level queueing code.
36 1.1 oster *
37 1.13 oster * to support atomic RMW, we implement "locking operations". When a
38 1.13 oster * locking op is dispatched to the lower levels of the driver, the
39 1.13 oster * queue is locked, and no further I/Os are dispatched until the queue
40 1.13 oster * receives & completes a corresponding "unlocking operation". This
41 1.13 oster * code relies on the higher layers to guarantee that a locking op
42 1.13 oster * will always be eventually followed by an unlocking op. The model
43 1.13 oster * is that the higher layers are structured so locking and unlocking
44 1.13 oster * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 1.13 oster * after a locking op reports completion. There is no good way to
46 1.13 oster * check to see that an unlocking op "corresponds" to the op that
47 1.13 oster * currently has the queue locked, so we make no such attempt. Since
48 1.13 oster * by definition there can be only one locking op outstanding on a
49 1.13 oster * disk, this should not be a problem.
50 1.13 oster *
51 1.13 oster * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 1.13 oster * to the disk driver. In order to support locking ops in this
53 1.13 oster * environment, when we decide to do a locking op, we stop dispatching
54 1.13 oster * new I/Os and wait until all dispatched I/Os have completed before
55 1.13 oster * dispatching the locking op.
56 1.13 oster *
57 1.13 oster * Unfortunately, the code is different in the 3 different operating
58 1.13 oster * states (user level, kernel, simulator). In the kernel, I/O is
59 1.13 oster * non-blocking, and we have no disk threads to dispatch for us.
60 1.13 oster * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 1.13 oster * time of enqueue, and also at the time of completion. At user
62 1.13 oster * level, I/O is blocking, and so only the disk threads may dispatch
63 1.13 oster * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 1.13 oster * and wake up the disk thread to do the dispatch.
65 1.1 oster *
66 1.13 oster ****************************************************************************/
67 1.15 lukem
68 1.15 lukem #include <sys/cdefs.h>
69 1.28 oster __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.28 2003/12/31 02:47:58 oster Exp $");
70 1.1 oster
71 1.14 oster #include <dev/raidframe/raidframevar.h>
72 1.14 oster
73 1.1 oster #include "rf_threadstuff.h"
74 1.1 oster #include "rf_raid.h"
75 1.1 oster #include "rf_diskqueue.h"
76 1.1 oster #include "rf_alloclist.h"
77 1.1 oster #include "rf_acctrace.h"
78 1.1 oster #include "rf_etimer.h"
79 1.1 oster #include "rf_general.h"
80 1.1 oster #include "rf_debugprint.h"
81 1.1 oster #include "rf_shutdown.h"
82 1.1 oster #include "rf_cvscan.h"
83 1.1 oster #include "rf_sstf.h"
84 1.1 oster #include "rf_fifo.h"
85 1.11 oster #include "rf_kintf.h"
86 1.1 oster
87 1.1 oster static void rf_ShutdownDiskQueueSystem(void *);
88 1.1 oster
89 1.21 oster #ifndef RF_DEBUG_DISKQUEUE
90 1.21 oster #define RF_DEBUG_DISKQUEUE 0
91 1.21 oster #endif
92 1.21 oster
93 1.21 oster #if RF_DEBUG_DISKQUEUE
94 1.1 oster #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 1.1 oster #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 1.1 oster #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 1.21 oster #else
98 1.21 oster #define Dprintf1(s,a)
99 1.21 oster #define Dprintf2(s,a,b)
100 1.21 oster #define Dprintf3(s,a,b,c)
101 1.21 oster #endif
102 1.1 oster
103 1.13 oster /*****************************************************************************
104 1.1 oster *
105 1.13 oster * the disk queue switch defines all the functions used in the
106 1.13 oster * different queueing disciplines queue ID, init routine, enqueue
107 1.13 oster * routine, dequeue routine
108 1.1 oster *
109 1.13 oster ****************************************************************************/
110 1.1 oster
111 1.22 jdolecek static const RF_DiskQueueSW_t diskqueuesw[] = {
112 1.6 oster {"fifo", /* FIFO */
113 1.6 oster rf_FifoCreate,
114 1.6 oster rf_FifoEnqueue,
115 1.6 oster rf_FifoDequeue,
116 1.6 oster rf_FifoPeek,
117 1.1 oster rf_FifoPromote},
118 1.1 oster
119 1.6 oster {"cvscan", /* cvscan */
120 1.6 oster rf_CvscanCreate,
121 1.6 oster rf_CvscanEnqueue,
122 1.6 oster rf_CvscanDequeue,
123 1.6 oster rf_CvscanPeek,
124 1.6 oster rf_CvscanPromote},
125 1.6 oster
126 1.6 oster {"sstf", /* shortest seek time first */
127 1.6 oster rf_SstfCreate,
128 1.6 oster rf_SstfEnqueue,
129 1.6 oster rf_SstfDequeue,
130 1.6 oster rf_SstfPeek,
131 1.1 oster rf_SstfPromote},
132 1.1 oster
133 1.6 oster {"scan", /* SCAN (two-way elevator) */
134 1.6 oster rf_ScanCreate,
135 1.6 oster rf_SstfEnqueue,
136 1.6 oster rf_ScanDequeue,
137 1.6 oster rf_ScanPeek,
138 1.1 oster rf_SstfPromote},
139 1.1 oster
140 1.6 oster {"cscan", /* CSCAN (one-way elevator) */
141 1.6 oster rf_CscanCreate,
142 1.6 oster rf_SstfEnqueue,
143 1.6 oster rf_CscanDequeue,
144 1.6 oster rf_CscanPeek,
145 1.1 oster rf_SstfPromote},
146 1.1 oster
147 1.1 oster };
148 1.1 oster #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149 1.1 oster
150 1.24 oster static struct pool rf_dqd_pool;
151 1.1 oster #define RF_MAX_FREE_DQD 256
152 1.1 oster #define RF_DQD_INC 16
153 1.1 oster #define RF_DQD_INITIAL 64
154 1.1 oster
155 1.1 oster #include <sys/buf.h>
156 1.1 oster
157 1.6 oster /* configures a single disk queue */
158 1.9 oster
159 1.7 oster int
160 1.27 oster rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
161 1.27 oster RF_RowCol_t c, const RF_DiskQueueSW_t *p,
162 1.27 oster RF_SectorCount_t sectPerDisk, dev_t dev,
163 1.27 oster int maxOutstanding, RF_ShutdownList_t **listp,
164 1.27 oster RF_AllocListElem_t *clList)
165 1.6 oster {
166 1.6 oster diskqueue->col = c;
167 1.6 oster diskqueue->qPtr = p;
168 1.6 oster diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
169 1.6 oster diskqueue->dev = dev;
170 1.6 oster diskqueue->numOutstanding = 0;
171 1.6 oster diskqueue->queueLength = 0;
172 1.6 oster diskqueue->maxOutstanding = maxOutstanding;
173 1.6 oster diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
174 1.6 oster diskqueue->nextLockingOp = NULL;
175 1.6 oster diskqueue->numWaiting = 0;
176 1.6 oster diskqueue->flags = 0;
177 1.6 oster diskqueue->raidPtr = raidPtr;
178 1.23 oster diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
179 1.25 oster rf_mutex_init(&diskqueue->mutex);
180 1.26 oster diskqueue->cond = 0;
181 1.6 oster return (0);
182 1.1 oster }
183 1.1 oster
184 1.6 oster static void
185 1.27 oster rf_ShutdownDiskQueueSystem(void *ignored)
186 1.6 oster {
187 1.24 oster pool_destroy(&rf_dqd_pool);
188 1.1 oster }
189 1.1 oster
190 1.6 oster int
191 1.27 oster rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
192 1.6 oster {
193 1.6 oster int rc;
194 1.6 oster
195 1.24 oster pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
196 1.24 oster "rf_dqd_pl", NULL);
197 1.24 oster pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
198 1.24 oster pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
199 1.24 oster
200 1.6 oster rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
201 1.6 oster if (rc) {
202 1.18 oster rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
203 1.6 oster rf_ShutdownDiskQueueSystem(NULL);
204 1.6 oster return (rc);
205 1.6 oster }
206 1.24 oster
207 1.6 oster return (0);
208 1.6 oster }
209 1.6 oster
210 1.6 oster int
211 1.27 oster rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
212 1.27 oster RF_Config_t *cfgPtr)
213 1.6 oster {
214 1.23 oster RF_DiskQueue_t *diskQueues, *spareQueues;
215 1.22 jdolecek const RF_DiskQueueSW_t *p;
216 1.23 oster RF_RowCol_t r,c;
217 1.6 oster int rc, i;
218 1.6 oster
219 1.6 oster raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
220 1.6 oster
221 1.6 oster for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
222 1.6 oster if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
223 1.6 oster p = &diskqueuesw[i];
224 1.6 oster break;
225 1.6 oster }
226 1.6 oster }
227 1.6 oster if (p == NULL) {
228 1.6 oster RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
229 1.6 oster p = &diskqueuesw[0];
230 1.6 oster }
231 1.10 oster raidPtr->qType = p;
232 1.23 oster
233 1.24 oster RF_MallocAndAdd(diskQueues,
234 1.24 oster (raidPtr->numCol + RF_MAXSPARE) *
235 1.23 oster sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
236 1.23 oster raidPtr->cleanupList);
237 1.23 oster if (diskQueues == NULL)
238 1.6 oster return (ENOMEM);
239 1.6 oster raidPtr->Queues = diskQueues;
240 1.23 oster
241 1.23 oster for (c = 0; c < raidPtr->numCol; c++) {
242 1.23 oster rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
243 1.23 oster c, p,
244 1.23 oster raidPtr->sectorsPerDisk,
245 1.23 oster raidPtr->Disks[c].dev,
246 1.23 oster cfgPtr->maxOutstandingDiskReqs,
247 1.23 oster listp, raidPtr->cleanupList);
248 1.23 oster if (rc)
249 1.23 oster return (rc);
250 1.6 oster }
251 1.6 oster
252 1.23 oster spareQueues = &raidPtr->Queues[raidPtr->numCol];
253 1.6 oster for (r = 0; r < raidPtr->numSpare; r++) {
254 1.9 oster rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
255 1.23 oster raidPtr->numCol + r, p,
256 1.23 oster raidPtr->sectorsPerDisk,
257 1.23 oster raidPtr->Disks[raidPtr->numCol + r].dev,
258 1.23 oster cfgPtr->maxOutstandingDiskReqs, listp,
259 1.23 oster raidPtr->cleanupList);
260 1.6 oster if (rc)
261 1.6 oster return (rc);
262 1.6 oster }
263 1.6 oster return (0);
264 1.6 oster }
265 1.1 oster /* Enqueue a disk I/O
266 1.1 oster *
267 1.1 oster * Unfortunately, we have to do things differently in the different
268 1.1 oster * environments (simulator, user-level, kernel).
269 1.1 oster * At user level, all I/O is blocking, so we have 1 or more threads/disk
270 1.1 oster * and the thread that enqueues is different from the thread that dequeues.
271 1.1 oster * In the kernel, I/O is non-blocking and so we'd like to have multiple
272 1.1 oster * I/Os outstanding on the physical disks when possible.
273 1.1 oster *
274 1.1 oster * when any request arrives at a queue, we have two choices:
275 1.1 oster * dispatch it to the lower levels
276 1.1 oster * queue it up
277 1.1 oster *
278 1.1 oster * kernel rules for when to do what:
279 1.1 oster * locking request: queue empty => dispatch and lock queue,
280 1.1 oster * else queue it
281 1.1 oster * unlocking req : always dispatch it
282 1.1 oster * normal req : queue empty => dispatch it & set priority
283 1.1 oster * queue not full & priority is ok => dispatch it
284 1.1 oster * else queue it
285 1.1 oster *
286 1.1 oster * user-level rules:
287 1.1 oster * always enqueue. In the special case of an unlocking op, enqueue
288 1.1 oster * in a special way that will cause the unlocking op to be the next
289 1.1 oster * thing dequeued.
290 1.1 oster *
291 1.1 oster * simulator rules:
292 1.1 oster * Do the same as at user level, with the sleeps and wakeups suppressed.
293 1.1 oster */
294 1.6 oster void
295 1.27 oster rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
296 1.6 oster {
297 1.6 oster RF_ETIMER_START(req->qtime);
298 1.6 oster RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
299 1.6 oster req->priority = pri;
300 1.6 oster
301 1.21 oster #if RF_DEBUG_DISKQUEUE
302 1.6 oster if (rf_queueDebug && (req->numSector == 0)) {
303 1.6 oster printf("Warning: Enqueueing zero-sector access\n");
304 1.6 oster }
305 1.21 oster #endif
306 1.6 oster /*
307 1.6 oster * kernel
308 1.6 oster */
309 1.6 oster RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
310 1.6 oster /* locking request */
311 1.6 oster if (RF_LOCKING_REQ(req)) {
312 1.6 oster if (RF_QUEUE_EMPTY(queue)) {
313 1.23 oster Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
314 1.6 oster RF_LOCK_QUEUE(queue);
315 1.6 oster rf_DispatchKernelIO(queue, req);
316 1.6 oster } else {
317 1.6 oster queue->queueLength++; /* increment count of number
318 1.6 oster * of requests waiting in this
319 1.6 oster * queue */
320 1.23 oster Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
321 1.6 oster req->queue = (void *) queue;
322 1.6 oster (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
323 1.6 oster }
324 1.6 oster }
325 1.6 oster /* unlocking request */
326 1.6 oster else
327 1.6 oster if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
328 1.6 oster * when this I/O completes */
329 1.23 oster Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
330 1.6 oster RF_ASSERT(RF_QUEUE_LOCKED(queue));
331 1.6 oster rf_DispatchKernelIO(queue, req);
332 1.6 oster }
333 1.6 oster /* normal request */
334 1.6 oster else
335 1.6 oster if (RF_OK_TO_DISPATCH(queue, req)) {
336 1.23 oster Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
337 1.6 oster rf_DispatchKernelIO(queue, req);
338 1.6 oster } else {
339 1.6 oster queue->queueLength++; /* increment count of
340 1.6 oster * number of requests
341 1.6 oster * waiting in this queue */
342 1.23 oster Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
343 1.6 oster req->queue = (void *) queue;
344 1.6 oster (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
345 1.6 oster }
346 1.6 oster RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
347 1.1 oster }
348 1.6 oster
349 1.1 oster
350 1.1 oster /* get the next set of I/Os started, kernel version only */
351 1.6 oster void
352 1.27 oster rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
353 1.6 oster {
354 1.6 oster int done = 0;
355 1.6 oster
356 1.6 oster RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
357 1.6 oster
358 1.6 oster /* unlock the queue: (1) after an unlocking req completes (2) after a
359 1.6 oster * locking req fails */
360 1.6 oster if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
361 1.23 oster Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
362 1.20 oster RF_ASSERT(RF_QUEUE_LOCKED(queue));
363 1.6 oster RF_UNLOCK_QUEUE(queue);
364 1.6 oster }
365 1.6 oster queue->numOutstanding--;
366 1.6 oster RF_ASSERT(queue->numOutstanding >= 0);
367 1.6 oster
368 1.6 oster /* dispatch requests to the disk until we find one that we can't. */
369 1.6 oster /* no reason to continue once we've filled up the queue */
370 1.6 oster /* no reason to even start if the queue is locked */
371 1.6 oster
372 1.6 oster while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
373 1.6 oster if (queue->nextLockingOp) {
374 1.6 oster req = queue->nextLockingOp;
375 1.6 oster queue->nextLockingOp = NULL;
376 1.23 oster Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
377 1.6 oster } else {
378 1.6 oster req = (queue->qPtr->Dequeue) (queue->qHdr);
379 1.6 oster if (req != NULL) {
380 1.23 oster Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
381 1.6 oster } else {
382 1.6 oster Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
383 1.6 oster }
384 1.6 oster }
385 1.6 oster if (req) {
386 1.6 oster queue->queueLength--; /* decrement count of number
387 1.6 oster * of requests waiting in this
388 1.6 oster * queue */
389 1.6 oster RF_ASSERT(queue->queueLength >= 0);
390 1.6 oster }
391 1.6 oster if (!req)
392 1.6 oster done = 1;
393 1.6 oster else
394 1.6 oster if (RF_LOCKING_REQ(req)) {
395 1.6 oster if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
396 1.23 oster Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
397 1.6 oster RF_LOCK_QUEUE(queue);
398 1.6 oster rf_DispatchKernelIO(queue, req);
399 1.6 oster done = 1;
400 1.6 oster } else { /* put it aside to wait for
401 1.6 oster * the queue to drain */
402 1.23 oster Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
403 1.6 oster RF_ASSERT(queue->nextLockingOp == NULL);
404 1.6 oster queue->nextLockingOp = req;
405 1.6 oster done = 1;
406 1.6 oster }
407 1.6 oster } else
408 1.6 oster if (RF_UNLOCKING_REQ(req)) { /* should not happen:
409 1.6 oster * unlocking ops should
410 1.6 oster * not get queued */
411 1.6 oster RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
412 1.6 oster * the future */
413 1.23 oster Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
414 1.6 oster rf_DispatchKernelIO(queue, req);
415 1.6 oster done = 1;
416 1.6 oster } else
417 1.6 oster if (RF_OK_TO_DISPATCH(queue, req)) {
418 1.23 oster Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
419 1.6 oster rf_DispatchKernelIO(queue, req);
420 1.6 oster } else { /* we can't dispatch it,
421 1.6 oster * so just re-enqueue
422 1.6 oster * it. */
423 1.6 oster /* potential trouble here if
424 1.6 oster * disk queues batch reqs */
425 1.23 oster Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
426 1.6 oster queue->queueLength++;
427 1.6 oster (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
428 1.6 oster done = 1;
429 1.6 oster }
430 1.6 oster }
431 1.6 oster
432 1.6 oster RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
433 1.1 oster }
434 1.1 oster /* promotes accesses tagged with the given parityStripeID from low priority
435 1.1 oster * to normal priority. This promotion is optional, meaning that a queue
436 1.1 oster * need not implement it. If there is no promotion routine associated with
437 1.1 oster * a queue, this routine does nothing and returns -1.
438 1.1 oster */
439 1.6 oster int
440 1.27 oster rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
441 1.27 oster RF_ReconUnitNum_t which_ru)
442 1.6 oster {
443 1.6 oster int retval;
444 1.6 oster
445 1.6 oster if (!queue->qPtr->Promote)
446 1.6 oster return (-1);
447 1.6 oster RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
448 1.6 oster retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
449 1.6 oster RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
450 1.6 oster return (retval);
451 1.6 oster }
452 1.6 oster
453 1.6 oster RF_DiskQueueData_t *
454 1.27 oster rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
455 1.27 oster RF_SectorCount_t nsect, caddr_t buf,
456 1.27 oster RF_StripeNum_t parityStripeID,
457 1.27 oster RF_ReconUnitNum_t which_ru,
458 1.27 oster int (*wakeF) (void *, int), void *arg,
459 1.27 oster RF_DiskQueueData_t *next,
460 1.27 oster RF_AccTraceEntry_t *tracerec, void *raidPtr,
461 1.27 oster RF_DiskQueueDataFlags_t flags, void *kb_proc)
462 1.6 oster {
463 1.6 oster RF_DiskQueueData_t *p;
464 1.6 oster
465 1.24 oster p = pool_get(&rf_dqd_pool, PR_WAITOK);
466 1.28 oster p->bp = pool_get(&bufpool, PR_NOWAIT); /* XXX: make up our minds here.
467 1.28 oster WAITOK, or NOWAIT?? */
468 1.28 oster
469 1.28 oster if (p->bp == NULL) {
470 1.24 oster /* no memory for the buffer!?!? */
471 1.24 oster pool_put(&rf_dqd_pool, p);
472 1.24 oster return(NULL);
473 1.24 oster }
474 1.6 oster
475 1.28 oster memset(p->bp, 0, sizeof(struct buf));
476 1.6 oster p->sectorOffset = ssect + rf_protectedSectors;
477 1.6 oster p->numSector = nsect;
478 1.6 oster p->type = typ;
479 1.6 oster p->buf = buf;
480 1.6 oster p->parityStripeID = parityStripeID;
481 1.6 oster p->which_ru = which_ru;
482 1.6 oster p->CompleteFunc = wakeF;
483 1.6 oster p->argument = arg;
484 1.6 oster p->next = next;
485 1.6 oster p->tracerec = tracerec;
486 1.6 oster p->priority = RF_IO_NORMAL_PRIORITY;
487 1.6 oster p->raidPtr = raidPtr;
488 1.6 oster p->flags = flags;
489 1.6 oster p->b_proc = kb_proc;
490 1.6 oster return (p);
491 1.6 oster }
492 1.6 oster
493 1.6 oster void
494 1.27 oster rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
495 1.1 oster {
496 1.28 oster pool_put(&bufpool, p->bp);
497 1.24 oster pool_put(&rf_dqd_pool, p);
498 1.1 oster }
499