rf_diskqueue.c revision 1.10 1 /* $NetBSD: rf_diskqueue.c,v 1.10 2000/02/24 03:48:41 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation". This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op. The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt. Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver. In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us. Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion. At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os. Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64 #include "rf_types.h"
65 #include "rf_threadstuff.h"
66 #include "rf_raid.h"
67 #include "rf_diskqueue.h"
68 #include "rf_alloclist.h"
69 #include "rf_acctrace.h"
70 #include "rf_etimer.h"
71 #include "rf_configure.h"
72 #include "rf_general.h"
73 #include "rf_freelist.h"
74 #include "rf_debugprint.h"
75 #include "rf_shutdown.h"
76 #include "rf_cvscan.h"
77 #include "rf_sstf.h"
78 #include "rf_fifo.h"
79
80 static int init_dqd(RF_DiskQueueData_t *);
81 static void clean_dqd(RF_DiskQueueData_t *);
82 static void rf_ShutdownDiskQueueSystem(void *);
83 /* From rf_kintf.c */
84 int rf_DispatchKernelIO(RF_DiskQueue_t *, RF_DiskQueueData_t *);
85
86
87 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
88 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
89 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf4(s,a,b,c,d) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
91 #define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
92
93
94 #define SIGNAL_DISK_QUEUE(_q_,_wh_)
95 #define WAIT_DISK_QUEUE(_q_,_wh_)
96
97 /*****************************************************************************************
98 *
99 * the disk queue switch defines all the functions used in the different queueing
100 * disciplines
101 * queue ID, init routine, enqueue routine, dequeue routine
102 *
103 ****************************************************************************************/
104
105 static RF_DiskQueueSW_t diskqueuesw[] = {
106 {"fifo", /* FIFO */
107 rf_FifoCreate,
108 rf_FifoEnqueue,
109 rf_FifoDequeue,
110 rf_FifoPeek,
111 rf_FifoPromote},
112
113 {"cvscan", /* cvscan */
114 rf_CvscanCreate,
115 rf_CvscanEnqueue,
116 rf_CvscanDequeue,
117 rf_CvscanPeek,
118 rf_CvscanPromote},
119
120 {"sstf", /* shortest seek time first */
121 rf_SstfCreate,
122 rf_SstfEnqueue,
123 rf_SstfDequeue,
124 rf_SstfPeek,
125 rf_SstfPromote},
126
127 {"scan", /* SCAN (two-way elevator) */
128 rf_ScanCreate,
129 rf_SstfEnqueue,
130 rf_ScanDequeue,
131 rf_ScanPeek,
132 rf_SstfPromote},
133
134 {"cscan", /* CSCAN (one-way elevator) */
135 rf_CscanCreate,
136 rf_SstfEnqueue,
137 rf_CscanDequeue,
138 rf_CscanPeek,
139 rf_SstfPromote},
140
141 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
142 /* to make a point to Chris :-> */
143 {"random", /* random */
144 rf_FifoCreate,
145 rf_FifoEnqueue,
146 rf_RandomDequeue,
147 rf_RandomPeek,
148 rf_FifoPromote},
149 #endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
150 };
151 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
152
153 static RF_FreeList_t *rf_dqd_freelist;
154
155 #define RF_MAX_FREE_DQD 256
156 #define RF_DQD_INC 16
157 #define RF_DQD_INITIAL 64
158
159 #include <sys/buf.h>
160
161 static int
162 init_dqd(dqd)
163 RF_DiskQueueData_t *dqd;
164 {
165 /* XXX not sure if the following malloc is appropriate... probably not
166 * quite... */
167 dqd->bp = (struct buf *) malloc(sizeof(struct buf),
168 M_RAIDFRAME, M_NOWAIT);
169 if (dqd->bp == NULL) {
170 return (ENOMEM);
171 }
172 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
173 * else will.. */
174 return (0);
175 }
176
177 static void
178 clean_dqd(dqd)
179 RF_DiskQueueData_t *dqd;
180 {
181 free(dqd->bp, M_RAIDFRAME);
182 }
183 /* configures a single disk queue */
184
185 int
186 rf_ConfigureDiskQueue(
187 RF_Raid_t * raidPtr,
188 RF_DiskQueue_t * diskqueue,
189 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
190 * more... */
191 RF_RowCol_t c,
192 RF_DiskQueueSW_t * p,
193 RF_SectorCount_t sectPerDisk,
194 dev_t dev,
195 int maxOutstanding,
196 RF_ShutdownList_t ** listp,
197 RF_AllocListElem_t * clList)
198 {
199 int rc;
200
201 diskqueue->row = r;
202 diskqueue->col = c;
203 diskqueue->qPtr = p;
204 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
205 diskqueue->dev = dev;
206 diskqueue->numOutstanding = 0;
207 diskqueue->queueLength = 0;
208 diskqueue->maxOutstanding = maxOutstanding;
209 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
210 diskqueue->nextLockingOp = NULL;
211 diskqueue->unlockingOp = NULL;
212 diskqueue->numWaiting = 0;
213 diskqueue->flags = 0;
214 diskqueue->raidPtr = raidPtr;
215 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
216 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
217 if (rc) {
218 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
219 __LINE__, rc);
220 return (rc);
221 }
222 rc = rf_create_managed_cond(listp, &diskqueue->cond);
223 if (rc) {
224 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
225 __LINE__, rc);
226 return (rc);
227 }
228 return (0);
229 }
230
231 static void
232 rf_ShutdownDiskQueueSystem(ignored)
233 void *ignored;
234 {
235 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
236 }
237
238 int
239 rf_ConfigureDiskQueueSystem(listp)
240 RF_ShutdownList_t **listp;
241 {
242 int rc;
243
244 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
245 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
246 if (rf_dqd_freelist == NULL)
247 return (ENOMEM);
248 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
249 if (rc) {
250 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
251 __FILE__, __LINE__, rc);
252 rf_ShutdownDiskQueueSystem(NULL);
253 return (rc);
254 }
255 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
256 (RF_DiskQueueData_t *), init_dqd);
257 return (0);
258 }
259
260 int
261 rf_ConfigureDiskQueues(
262 RF_ShutdownList_t ** listp,
263 RF_Raid_t * raidPtr,
264 RF_Config_t * cfgPtr)
265 {
266 RF_DiskQueue_t **diskQueues, *spareQueues;
267 RF_DiskQueueSW_t *p;
268 RF_RowCol_t r, c;
269 int rc, i;
270
271 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
272
273 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
274 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
275 p = &diskqueuesw[i];
276 break;
277 }
278 }
279 if (p == NULL) {
280 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
281 p = &diskqueuesw[0];
282 }
283 raidPtr->qType = p;
284 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
285 if (diskQueues == NULL) {
286 return (ENOMEM);
287 }
288 raidPtr->Queues = diskQueues;
289 for (r = 0; r < raidPtr->numRow; r++) {
290 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
291 ((r == 0) ? RF_MAXSPARE : 0),
292 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
293 raidPtr->cleanupList);
294 if (diskQueues[r] == NULL)
295 return (ENOMEM);
296 for (c = 0; c < raidPtr->numCol; c++) {
297 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
298 r, c, p,
299 raidPtr->sectorsPerDisk,
300 raidPtr->Disks[r][c].dev,
301 cfgPtr->maxOutstandingDiskReqs,
302 listp, raidPtr->cleanupList);
303 if (rc)
304 return (rc);
305 }
306 }
307
308 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
309 for (r = 0; r < raidPtr->numSpare; r++) {
310 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
311 0, raidPtr->numCol + r, p,
312 raidPtr->sectorsPerDisk,
313 raidPtr->Disks[0][raidPtr->numCol + r].dev,
314 cfgPtr->maxOutstandingDiskReqs, listp,
315 raidPtr->cleanupList);
316 if (rc)
317 return (rc);
318 }
319 return (0);
320 }
321 /* Enqueue a disk I/O
322 *
323 * Unfortunately, we have to do things differently in the different
324 * environments (simulator, user-level, kernel).
325 * At user level, all I/O is blocking, so we have 1 or more threads/disk
326 * and the thread that enqueues is different from the thread that dequeues.
327 * In the kernel, I/O is non-blocking and so we'd like to have multiple
328 * I/Os outstanding on the physical disks when possible.
329 *
330 * when any request arrives at a queue, we have two choices:
331 * dispatch it to the lower levels
332 * queue it up
333 *
334 * kernel rules for when to do what:
335 * locking request: queue empty => dispatch and lock queue,
336 * else queue it
337 * unlocking req : always dispatch it
338 * normal req : queue empty => dispatch it & set priority
339 * queue not full & priority is ok => dispatch it
340 * else queue it
341 *
342 * user-level rules:
343 * always enqueue. In the special case of an unlocking op, enqueue
344 * in a special way that will cause the unlocking op to be the next
345 * thing dequeued.
346 *
347 * simulator rules:
348 * Do the same as at user level, with the sleeps and wakeups suppressed.
349 */
350 void
351 rf_DiskIOEnqueue(queue, req, pri)
352 RF_DiskQueue_t *queue;
353 RF_DiskQueueData_t *req;
354 int pri;
355 {
356 RF_ETIMER_START(req->qtime);
357 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
358 req->priority = pri;
359
360 if (rf_queueDebug && (req->numSector == 0)) {
361 printf("Warning: Enqueueing zero-sector access\n");
362 }
363 /*
364 * kernel
365 */
366 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
367 /* locking request */
368 if (RF_LOCKING_REQ(req)) {
369 if (RF_QUEUE_EMPTY(queue)) {
370 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
371 RF_LOCK_QUEUE(queue);
372 rf_DispatchKernelIO(queue, req);
373 } else {
374 queue->queueLength++; /* increment count of number
375 * of requests waiting in this
376 * queue */
377 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
378 req->queue = (void *) queue;
379 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
380 }
381 }
382 /* unlocking request */
383 else
384 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
385 * when this I/O completes */
386 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
387 RF_ASSERT(RF_QUEUE_LOCKED(queue));
388 rf_DispatchKernelIO(queue, req);
389 }
390 /* normal request */
391 else
392 if (RF_OK_TO_DISPATCH(queue, req)) {
393 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
394 rf_DispatchKernelIO(queue, req);
395 } else {
396 queue->queueLength++; /* increment count of
397 * number of requests
398 * waiting in this queue */
399 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
400 req->queue = (void *) queue;
401 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
402 }
403 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
404 }
405
406
407 /* get the next set of I/Os started, kernel version only */
408 void
409 rf_DiskIOComplete(queue, req, status)
410 RF_DiskQueue_t *queue;
411 RF_DiskQueueData_t *req;
412 int status;
413 {
414 int done = 0;
415
416 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
417
418 /* unlock the queue: (1) after an unlocking req completes (2) after a
419 * locking req fails */
420 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
421 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
422 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
423 RF_UNLOCK_QUEUE(queue);
424 }
425 queue->numOutstanding--;
426 RF_ASSERT(queue->numOutstanding >= 0);
427
428 /* dispatch requests to the disk until we find one that we can't. */
429 /* no reason to continue once we've filled up the queue */
430 /* no reason to even start if the queue is locked */
431
432 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
433 if (queue->nextLockingOp) {
434 req = queue->nextLockingOp;
435 queue->nextLockingOp = NULL;
436 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
437 } else {
438 req = (queue->qPtr->Dequeue) (queue->qHdr);
439 if (req != NULL) {
440 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
441 } else {
442 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
443 }
444 }
445 if (req) {
446 queue->queueLength--; /* decrement count of number
447 * of requests waiting in this
448 * queue */
449 RF_ASSERT(queue->queueLength >= 0);
450 }
451 if (!req)
452 done = 1;
453 else
454 if (RF_LOCKING_REQ(req)) {
455 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
456 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
457 RF_LOCK_QUEUE(queue);
458 rf_DispatchKernelIO(queue, req);
459 done = 1;
460 } else { /* put it aside to wait for
461 * the queue to drain */
462 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
463 RF_ASSERT(queue->nextLockingOp == NULL);
464 queue->nextLockingOp = req;
465 done = 1;
466 }
467 } else
468 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
469 * unlocking ops should
470 * not get queued */
471 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
472 * the future */
473 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
474 rf_DispatchKernelIO(queue, req);
475 done = 1;
476 } else
477 if (RF_OK_TO_DISPATCH(queue, req)) {
478 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
479 rf_DispatchKernelIO(queue, req);
480 } else { /* we can't dispatch it,
481 * so just re-enqueue
482 * it. */
483 /* potential trouble here if
484 * disk queues batch reqs */
485 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
486 queue->queueLength++;
487 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
488 done = 1;
489 }
490 }
491
492 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
493 }
494 /* promotes accesses tagged with the given parityStripeID from low priority
495 * to normal priority. This promotion is optional, meaning that a queue
496 * need not implement it. If there is no promotion routine associated with
497 * a queue, this routine does nothing and returns -1.
498 */
499 int
500 rf_DiskIOPromote(queue, parityStripeID, which_ru)
501 RF_DiskQueue_t *queue;
502 RF_StripeNum_t parityStripeID;
503 RF_ReconUnitNum_t which_ru;
504 {
505 int retval;
506
507 if (!queue->qPtr->Promote)
508 return (-1);
509 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
510 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
511 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
512 return (retval);
513 }
514
515 RF_DiskQueueData_t *
516 rf_CreateDiskQueueData(
517 RF_IoType_t typ,
518 RF_SectorNum_t ssect,
519 RF_SectorCount_t nsect,
520 caddr_t buf,
521 RF_StripeNum_t parityStripeID,
522 RF_ReconUnitNum_t which_ru,
523 int (*wakeF) (void *, int),
524 void *arg,
525 RF_DiskQueueData_t * next,
526 RF_AccTraceEntry_t * tracerec,
527 void *raidPtr,
528 RF_DiskQueueDataFlags_t flags,
529 void *kb_proc)
530 {
531 RF_DiskQueueData_t *p;
532
533 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
534
535 p->sectorOffset = ssect + rf_protectedSectors;
536 p->numSector = nsect;
537 p->type = typ;
538 p->buf = buf;
539 p->parityStripeID = parityStripeID;
540 p->which_ru = which_ru;
541 p->CompleteFunc = wakeF;
542 p->argument = arg;
543 p->next = next;
544 p->tracerec = tracerec;
545 p->priority = RF_IO_NORMAL_PRIORITY;
546 p->AuxFunc = NULL;
547 p->buf2 = NULL;
548 p->raidPtr = raidPtr;
549 p->flags = flags;
550 p->b_proc = kb_proc;
551 return (p);
552 }
553
554 RF_DiskQueueData_t *
555 rf_CreateDiskQueueDataFull(
556 RF_IoType_t typ,
557 RF_SectorNum_t ssect,
558 RF_SectorCount_t nsect,
559 caddr_t buf,
560 RF_StripeNum_t parityStripeID,
561 RF_ReconUnitNum_t which_ru,
562 int (*wakeF) (void *, int),
563 void *arg,
564 RF_DiskQueueData_t * next,
565 RF_AccTraceEntry_t * tracerec,
566 int priority,
567 int (*AuxFunc) (void *,...),
568 caddr_t buf2,
569 void *raidPtr,
570 RF_DiskQueueDataFlags_t flags,
571 void *kb_proc)
572 {
573 RF_DiskQueueData_t *p;
574
575 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
576
577 p->sectorOffset = ssect + rf_protectedSectors;
578 p->numSector = nsect;
579 p->type = typ;
580 p->buf = buf;
581 p->parityStripeID = parityStripeID;
582 p->which_ru = which_ru;
583 p->CompleteFunc = wakeF;
584 p->argument = arg;
585 p->next = next;
586 p->tracerec = tracerec;
587 p->priority = priority;
588 p->AuxFunc = AuxFunc;
589 p->buf2 = buf2;
590 p->raidPtr = raidPtr;
591 p->flags = flags;
592 p->b_proc = kb_proc;
593 return (p);
594 }
595
596 void
597 rf_FreeDiskQueueData(p)
598 RF_DiskQueueData_t *p;
599 {
600 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
601 }
602