rf_diskqueue.c revision 1.11 1 /* $NetBSD: rf_diskqueue.c,v 1.11 2000/02/24 03:52:15 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation". This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op. The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt. Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver. In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us. Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion. At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os. Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64 #include "rf_types.h"
65 #include "rf_threadstuff.h"
66 #include "rf_raid.h"
67 #include "rf_diskqueue.h"
68 #include "rf_alloclist.h"
69 #include "rf_acctrace.h"
70 #include "rf_etimer.h"
71 #include "rf_configure.h"
72 #include "rf_general.h"
73 #include "rf_freelist.h"
74 #include "rf_debugprint.h"
75 #include "rf_shutdown.h"
76 #include "rf_cvscan.h"
77 #include "rf_sstf.h"
78 #include "rf_fifo.h"
79 #include "rf_kintf.h"
80
81 static int init_dqd(RF_DiskQueueData_t *);
82 static void clean_dqd(RF_DiskQueueData_t *);
83 static void rf_ShutdownDiskQueueSystem(void *);
84
85 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
86 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
87 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
88
89 /*****************************************************************************************
90 *
91 * the disk queue switch defines all the functions used in the different queueing
92 * disciplines
93 * queue ID, init routine, enqueue routine, dequeue routine
94 *
95 ****************************************************************************************/
96
97 static RF_DiskQueueSW_t diskqueuesw[] = {
98 {"fifo", /* FIFO */
99 rf_FifoCreate,
100 rf_FifoEnqueue,
101 rf_FifoDequeue,
102 rf_FifoPeek,
103 rf_FifoPromote},
104
105 {"cvscan", /* cvscan */
106 rf_CvscanCreate,
107 rf_CvscanEnqueue,
108 rf_CvscanDequeue,
109 rf_CvscanPeek,
110 rf_CvscanPromote},
111
112 {"sstf", /* shortest seek time first */
113 rf_SstfCreate,
114 rf_SstfEnqueue,
115 rf_SstfDequeue,
116 rf_SstfPeek,
117 rf_SstfPromote},
118
119 {"scan", /* SCAN (two-way elevator) */
120 rf_ScanCreate,
121 rf_SstfEnqueue,
122 rf_ScanDequeue,
123 rf_ScanPeek,
124 rf_SstfPromote},
125
126 {"cscan", /* CSCAN (one-way elevator) */
127 rf_CscanCreate,
128 rf_SstfEnqueue,
129 rf_CscanDequeue,
130 rf_CscanPeek,
131 rf_SstfPromote},
132
133 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
134 /* to make a point to Chris :-> */
135 {"random", /* random */
136 rf_FifoCreate,
137 rf_FifoEnqueue,
138 rf_RandomDequeue,
139 rf_RandomPeek,
140 rf_FifoPromote},
141 #endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
142 };
143 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
144
145 static RF_FreeList_t *rf_dqd_freelist;
146
147 #define RF_MAX_FREE_DQD 256
148 #define RF_DQD_INC 16
149 #define RF_DQD_INITIAL 64
150
151 #include <sys/buf.h>
152
153 static int
154 init_dqd(dqd)
155 RF_DiskQueueData_t *dqd;
156 {
157 /* XXX not sure if the following malloc is appropriate... probably not
158 * quite... */
159 dqd->bp = (struct buf *) malloc(sizeof(struct buf),
160 M_RAIDFRAME, M_NOWAIT);
161 if (dqd->bp == NULL) {
162 return (ENOMEM);
163 }
164 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
165 * else will.. */
166 return (0);
167 }
168
169 static void
170 clean_dqd(dqd)
171 RF_DiskQueueData_t *dqd;
172 {
173 free(dqd->bp, M_RAIDFRAME);
174 }
175 /* configures a single disk queue */
176
177 int
178 rf_ConfigureDiskQueue(
179 RF_Raid_t * raidPtr,
180 RF_DiskQueue_t * diskqueue,
181 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
182 * more... */
183 RF_RowCol_t c,
184 RF_DiskQueueSW_t * p,
185 RF_SectorCount_t sectPerDisk,
186 dev_t dev,
187 int maxOutstanding,
188 RF_ShutdownList_t ** listp,
189 RF_AllocListElem_t * clList)
190 {
191 int rc;
192
193 diskqueue->row = r;
194 diskqueue->col = c;
195 diskqueue->qPtr = p;
196 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
197 diskqueue->dev = dev;
198 diskqueue->numOutstanding = 0;
199 diskqueue->queueLength = 0;
200 diskqueue->maxOutstanding = maxOutstanding;
201 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
202 diskqueue->nextLockingOp = NULL;
203 diskqueue->unlockingOp = NULL;
204 diskqueue->numWaiting = 0;
205 diskqueue->flags = 0;
206 diskqueue->raidPtr = raidPtr;
207 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
208 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
209 if (rc) {
210 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
211 __LINE__, rc);
212 return (rc);
213 }
214 rc = rf_create_managed_cond(listp, &diskqueue->cond);
215 if (rc) {
216 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
217 __LINE__, rc);
218 return (rc);
219 }
220 return (0);
221 }
222
223 static void
224 rf_ShutdownDiskQueueSystem(ignored)
225 void *ignored;
226 {
227 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
228 }
229
230 int
231 rf_ConfigureDiskQueueSystem(listp)
232 RF_ShutdownList_t **listp;
233 {
234 int rc;
235
236 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
237 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
238 if (rf_dqd_freelist == NULL)
239 return (ENOMEM);
240 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
241 if (rc) {
242 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
243 __FILE__, __LINE__, rc);
244 rf_ShutdownDiskQueueSystem(NULL);
245 return (rc);
246 }
247 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
248 (RF_DiskQueueData_t *), init_dqd);
249 return (0);
250 }
251
252 int
253 rf_ConfigureDiskQueues(
254 RF_ShutdownList_t ** listp,
255 RF_Raid_t * raidPtr,
256 RF_Config_t * cfgPtr)
257 {
258 RF_DiskQueue_t **diskQueues, *spareQueues;
259 RF_DiskQueueSW_t *p;
260 RF_RowCol_t r, c;
261 int rc, i;
262
263 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
264
265 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
266 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
267 p = &diskqueuesw[i];
268 break;
269 }
270 }
271 if (p == NULL) {
272 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
273 p = &diskqueuesw[0];
274 }
275 raidPtr->qType = p;
276 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
277 if (diskQueues == NULL) {
278 return (ENOMEM);
279 }
280 raidPtr->Queues = diskQueues;
281 for (r = 0; r < raidPtr->numRow; r++) {
282 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
283 ((r == 0) ? RF_MAXSPARE : 0),
284 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
285 raidPtr->cleanupList);
286 if (diskQueues[r] == NULL)
287 return (ENOMEM);
288 for (c = 0; c < raidPtr->numCol; c++) {
289 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
290 r, c, p,
291 raidPtr->sectorsPerDisk,
292 raidPtr->Disks[r][c].dev,
293 cfgPtr->maxOutstandingDiskReqs,
294 listp, raidPtr->cleanupList);
295 if (rc)
296 return (rc);
297 }
298 }
299
300 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
301 for (r = 0; r < raidPtr->numSpare; r++) {
302 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
303 0, raidPtr->numCol + r, p,
304 raidPtr->sectorsPerDisk,
305 raidPtr->Disks[0][raidPtr->numCol + r].dev,
306 cfgPtr->maxOutstandingDiskReqs, listp,
307 raidPtr->cleanupList);
308 if (rc)
309 return (rc);
310 }
311 return (0);
312 }
313 /* Enqueue a disk I/O
314 *
315 * Unfortunately, we have to do things differently in the different
316 * environments (simulator, user-level, kernel).
317 * At user level, all I/O is blocking, so we have 1 or more threads/disk
318 * and the thread that enqueues is different from the thread that dequeues.
319 * In the kernel, I/O is non-blocking and so we'd like to have multiple
320 * I/Os outstanding on the physical disks when possible.
321 *
322 * when any request arrives at a queue, we have two choices:
323 * dispatch it to the lower levels
324 * queue it up
325 *
326 * kernel rules for when to do what:
327 * locking request: queue empty => dispatch and lock queue,
328 * else queue it
329 * unlocking req : always dispatch it
330 * normal req : queue empty => dispatch it & set priority
331 * queue not full & priority is ok => dispatch it
332 * else queue it
333 *
334 * user-level rules:
335 * always enqueue. In the special case of an unlocking op, enqueue
336 * in a special way that will cause the unlocking op to be the next
337 * thing dequeued.
338 *
339 * simulator rules:
340 * Do the same as at user level, with the sleeps and wakeups suppressed.
341 */
342 void
343 rf_DiskIOEnqueue(queue, req, pri)
344 RF_DiskQueue_t *queue;
345 RF_DiskQueueData_t *req;
346 int pri;
347 {
348 RF_ETIMER_START(req->qtime);
349 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
350 req->priority = pri;
351
352 if (rf_queueDebug && (req->numSector == 0)) {
353 printf("Warning: Enqueueing zero-sector access\n");
354 }
355 /*
356 * kernel
357 */
358 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
359 /* locking request */
360 if (RF_LOCKING_REQ(req)) {
361 if (RF_QUEUE_EMPTY(queue)) {
362 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
363 RF_LOCK_QUEUE(queue);
364 rf_DispatchKernelIO(queue, req);
365 } else {
366 queue->queueLength++; /* increment count of number
367 * of requests waiting in this
368 * queue */
369 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
370 req->queue = (void *) queue;
371 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
372 }
373 }
374 /* unlocking request */
375 else
376 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
377 * when this I/O completes */
378 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
379 RF_ASSERT(RF_QUEUE_LOCKED(queue));
380 rf_DispatchKernelIO(queue, req);
381 }
382 /* normal request */
383 else
384 if (RF_OK_TO_DISPATCH(queue, req)) {
385 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
386 rf_DispatchKernelIO(queue, req);
387 } else {
388 queue->queueLength++; /* increment count of
389 * number of requests
390 * waiting in this queue */
391 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
392 req->queue = (void *) queue;
393 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
394 }
395 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
396 }
397
398
399 /* get the next set of I/Os started, kernel version only */
400 void
401 rf_DiskIOComplete(queue, req, status)
402 RF_DiskQueue_t *queue;
403 RF_DiskQueueData_t *req;
404 int status;
405 {
406 int done = 0;
407
408 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
409
410 /* unlock the queue: (1) after an unlocking req completes (2) after a
411 * locking req fails */
412 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
413 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
414 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
415 RF_UNLOCK_QUEUE(queue);
416 }
417 queue->numOutstanding--;
418 RF_ASSERT(queue->numOutstanding >= 0);
419
420 /* dispatch requests to the disk until we find one that we can't. */
421 /* no reason to continue once we've filled up the queue */
422 /* no reason to even start if the queue is locked */
423
424 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
425 if (queue->nextLockingOp) {
426 req = queue->nextLockingOp;
427 queue->nextLockingOp = NULL;
428 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
429 } else {
430 req = (queue->qPtr->Dequeue) (queue->qHdr);
431 if (req != NULL) {
432 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
433 } else {
434 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
435 }
436 }
437 if (req) {
438 queue->queueLength--; /* decrement count of number
439 * of requests waiting in this
440 * queue */
441 RF_ASSERT(queue->queueLength >= 0);
442 }
443 if (!req)
444 done = 1;
445 else
446 if (RF_LOCKING_REQ(req)) {
447 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
448 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
449 RF_LOCK_QUEUE(queue);
450 rf_DispatchKernelIO(queue, req);
451 done = 1;
452 } else { /* put it aside to wait for
453 * the queue to drain */
454 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
455 RF_ASSERT(queue->nextLockingOp == NULL);
456 queue->nextLockingOp = req;
457 done = 1;
458 }
459 } else
460 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
461 * unlocking ops should
462 * not get queued */
463 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
464 * the future */
465 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
466 rf_DispatchKernelIO(queue, req);
467 done = 1;
468 } else
469 if (RF_OK_TO_DISPATCH(queue, req)) {
470 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
471 rf_DispatchKernelIO(queue, req);
472 } else { /* we can't dispatch it,
473 * so just re-enqueue
474 * it. */
475 /* potential trouble here if
476 * disk queues batch reqs */
477 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
478 queue->queueLength++;
479 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
480 done = 1;
481 }
482 }
483
484 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
485 }
486 /* promotes accesses tagged with the given parityStripeID from low priority
487 * to normal priority. This promotion is optional, meaning that a queue
488 * need not implement it. If there is no promotion routine associated with
489 * a queue, this routine does nothing and returns -1.
490 */
491 int
492 rf_DiskIOPromote(queue, parityStripeID, which_ru)
493 RF_DiskQueue_t *queue;
494 RF_StripeNum_t parityStripeID;
495 RF_ReconUnitNum_t which_ru;
496 {
497 int retval;
498
499 if (!queue->qPtr->Promote)
500 return (-1);
501 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
502 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
503 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
504 return (retval);
505 }
506
507 RF_DiskQueueData_t *
508 rf_CreateDiskQueueData(
509 RF_IoType_t typ,
510 RF_SectorNum_t ssect,
511 RF_SectorCount_t nsect,
512 caddr_t buf,
513 RF_StripeNum_t parityStripeID,
514 RF_ReconUnitNum_t which_ru,
515 int (*wakeF) (void *, int),
516 void *arg,
517 RF_DiskQueueData_t * next,
518 RF_AccTraceEntry_t * tracerec,
519 void *raidPtr,
520 RF_DiskQueueDataFlags_t flags,
521 void *kb_proc)
522 {
523 RF_DiskQueueData_t *p;
524
525 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
526
527 p->sectorOffset = ssect + rf_protectedSectors;
528 p->numSector = nsect;
529 p->type = typ;
530 p->buf = buf;
531 p->parityStripeID = parityStripeID;
532 p->which_ru = which_ru;
533 p->CompleteFunc = wakeF;
534 p->argument = arg;
535 p->next = next;
536 p->tracerec = tracerec;
537 p->priority = RF_IO_NORMAL_PRIORITY;
538 p->AuxFunc = NULL;
539 p->buf2 = NULL;
540 p->raidPtr = raidPtr;
541 p->flags = flags;
542 p->b_proc = kb_proc;
543 return (p);
544 }
545
546 RF_DiskQueueData_t *
547 rf_CreateDiskQueueDataFull(
548 RF_IoType_t typ,
549 RF_SectorNum_t ssect,
550 RF_SectorCount_t nsect,
551 caddr_t buf,
552 RF_StripeNum_t parityStripeID,
553 RF_ReconUnitNum_t which_ru,
554 int (*wakeF) (void *, int),
555 void *arg,
556 RF_DiskQueueData_t * next,
557 RF_AccTraceEntry_t * tracerec,
558 int priority,
559 int (*AuxFunc) (void *,...),
560 caddr_t buf2,
561 void *raidPtr,
562 RF_DiskQueueDataFlags_t flags,
563 void *kb_proc)
564 {
565 RF_DiskQueueData_t *p;
566
567 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
568
569 p->sectorOffset = ssect + rf_protectedSectors;
570 p->numSector = nsect;
571 p->type = typ;
572 p->buf = buf;
573 p->parityStripeID = parityStripeID;
574 p->which_ru = which_ru;
575 p->CompleteFunc = wakeF;
576 p->argument = arg;
577 p->next = next;
578 p->tracerec = tracerec;
579 p->priority = priority;
580 p->AuxFunc = AuxFunc;
581 p->buf2 = buf2;
582 p->raidPtr = raidPtr;
583 p->flags = flags;
584 p->b_proc = kb_proc;
585 return (p);
586 }
587
588 void
589 rf_FreeDiskQueueData(p)
590 RF_DiskQueueData_t *p;
591 {
592 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
593 }
594