Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.11
      1 /*	$NetBSD: rf_diskqueue.c,v 1.11 2000/02/24 03:52:15 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a locking op
     38  * is dispatched to the lower levels of the driver, the queue is locked, and no further
     39  * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
     40  * operation".  This code relies on the higher layers to guarantee that a locking
     41  * op will always be eventually followed by an unlocking op.  The model is that
     42  * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
     43  * an unlocking op cannot be generated until after a locking op reports completion.
     44  * There is no good way to check to see that an unlocking op "corresponds" to the
     45  * op that currently has the queue locked, so we make no such attempt.  Since by
     46  * definition there can be only one locking op outstanding on a disk, this should
     47  * not be a problem.
     48  *
     49  * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
     50  * driver.  In order to support locking ops in this environment, when we decide to
     51  * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
     52  * have completed before dispatching the locking op.
     53  *
     54  * Unfortunately, the code is different in the 3 different operating states
     55  * (user level, kernel, simulator).  In the kernel, I/O is non-blocking, and
     56  * we have no disk threads to dispatch for us.  Therefore, we have to dispatch
     57  * new I/Os to the scsi driver at the time of enqueue, and also at the time
     58  * of completion.  At user level, I/O is blocking, and so only the disk threads
     59  * may dispatch I/Os.  Thus at user level, all we can do at enqueue time is
     60  * enqueue and wake up the disk thread to do the dispatch.
     61  *
     62  ***************************************************************************************/
     63 
     64 #include "rf_types.h"
     65 #include "rf_threadstuff.h"
     66 #include "rf_raid.h"
     67 #include "rf_diskqueue.h"
     68 #include "rf_alloclist.h"
     69 #include "rf_acctrace.h"
     70 #include "rf_etimer.h"
     71 #include "rf_configure.h"
     72 #include "rf_general.h"
     73 #include "rf_freelist.h"
     74 #include "rf_debugprint.h"
     75 #include "rf_shutdown.h"
     76 #include "rf_cvscan.h"
     77 #include "rf_sstf.h"
     78 #include "rf_fifo.h"
     79 #include "rf_kintf.h"
     80 
     81 static int init_dqd(RF_DiskQueueData_t *);
     82 static void clean_dqd(RF_DiskQueueData_t *);
     83 static void rf_ShutdownDiskQueueSystem(void *);
     84 
     85 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     86 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     87 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     88 
     89 /*****************************************************************************************
     90  *
     91  * the disk queue switch defines all the functions used in the different queueing
     92  * disciplines
     93  *    queue ID, init routine, enqueue routine, dequeue routine
     94  *
     95  ****************************************************************************************/
     96 
     97 static RF_DiskQueueSW_t diskqueuesw[] = {
     98 	{"fifo",		/* FIFO */
     99 		rf_FifoCreate,
    100 		rf_FifoEnqueue,
    101 		rf_FifoDequeue,
    102 		rf_FifoPeek,
    103 	rf_FifoPromote},
    104 
    105 	{"cvscan",		/* cvscan */
    106 		rf_CvscanCreate,
    107 		rf_CvscanEnqueue,
    108 		rf_CvscanDequeue,
    109 		rf_CvscanPeek,
    110 	rf_CvscanPromote},
    111 
    112 	{"sstf",		/* shortest seek time first */
    113 		rf_SstfCreate,
    114 		rf_SstfEnqueue,
    115 		rf_SstfDequeue,
    116 		rf_SstfPeek,
    117 	rf_SstfPromote},
    118 
    119 	{"scan",		/* SCAN (two-way elevator) */
    120 		rf_ScanCreate,
    121 		rf_SstfEnqueue,
    122 		rf_ScanDequeue,
    123 		rf_ScanPeek,
    124 	rf_SstfPromote},
    125 
    126 	{"cscan",		/* CSCAN (one-way elevator) */
    127 		rf_CscanCreate,
    128 		rf_SstfEnqueue,
    129 		rf_CscanDequeue,
    130 		rf_CscanPeek,
    131 	rf_SstfPromote},
    132 
    133 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
    134 	/* to make a point to Chris :-> */
    135 	{"random",		/* random */
    136 		rf_FifoCreate,
    137 		rf_FifoEnqueue,
    138 		rf_RandomDequeue,
    139 		rf_RandomPeek,
    140 	rf_FifoPromote},
    141 #endif				/* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
    142 };
    143 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    144 
    145 static RF_FreeList_t *rf_dqd_freelist;
    146 
    147 #define RF_MAX_FREE_DQD 256
    148 #define RF_DQD_INC       16
    149 #define RF_DQD_INITIAL   64
    150 
    151 #include <sys/buf.h>
    152 
    153 static int
    154 init_dqd(dqd)
    155 	RF_DiskQueueData_t *dqd;
    156 {
    157 	/* XXX not sure if the following malloc is appropriate... probably not
    158 	 * quite... */
    159 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    160 					M_RAIDFRAME, M_NOWAIT);
    161 	if (dqd->bp == NULL) {
    162 		return (ENOMEM);
    163 	}
    164 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    165 						 * else will.. */
    166 	return (0);
    167 }
    168 
    169 static void
    170 clean_dqd(dqd)
    171 	RF_DiskQueueData_t *dqd;
    172 {
    173 	free(dqd->bp, M_RAIDFRAME);
    174 }
    175 /* configures a single disk queue */
    176 
    177 int
    178 rf_ConfigureDiskQueue(
    179       RF_Raid_t * raidPtr,
    180       RF_DiskQueue_t * diskqueue,
    181       RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
    182 				 * more... */
    183       RF_RowCol_t c,
    184       RF_DiskQueueSW_t * p,
    185       RF_SectorCount_t sectPerDisk,
    186       dev_t dev,
    187       int maxOutstanding,
    188       RF_ShutdownList_t ** listp,
    189       RF_AllocListElem_t * clList)
    190 {
    191 	int     rc;
    192 
    193 	diskqueue->row = r;
    194 	diskqueue->col = c;
    195 	diskqueue->qPtr = p;
    196 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    197 	diskqueue->dev = dev;
    198 	diskqueue->numOutstanding = 0;
    199 	diskqueue->queueLength = 0;
    200 	diskqueue->maxOutstanding = maxOutstanding;
    201 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    202 	diskqueue->nextLockingOp = NULL;
    203 	diskqueue->unlockingOp = NULL;
    204 	diskqueue->numWaiting = 0;
    205 	diskqueue->flags = 0;
    206 	diskqueue->raidPtr = raidPtr;
    207 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
    208 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
    209 	if (rc) {
    210 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
    211 		    __LINE__, rc);
    212 		return (rc);
    213 	}
    214 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
    215 	if (rc) {
    216 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
    217 		    __LINE__, rc);
    218 		return (rc);
    219 	}
    220 	return (0);
    221 }
    222 
    223 static void
    224 rf_ShutdownDiskQueueSystem(ignored)
    225 	void   *ignored;
    226 {
    227 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
    228 }
    229 
    230 int
    231 rf_ConfigureDiskQueueSystem(listp)
    232 	RF_ShutdownList_t **listp;
    233 {
    234 	int     rc;
    235 
    236 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
    237 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
    238 	if (rf_dqd_freelist == NULL)
    239 		return (ENOMEM);
    240 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    241 	if (rc) {
    242 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    243 		    __FILE__, __LINE__, rc);
    244 		rf_ShutdownDiskQueueSystem(NULL);
    245 		return (rc);
    246 	}
    247 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
    248 	    (RF_DiskQueueData_t *), init_dqd);
    249 	return (0);
    250 }
    251 
    252 int
    253 rf_ConfigureDiskQueues(
    254     RF_ShutdownList_t ** listp,
    255     RF_Raid_t * raidPtr,
    256     RF_Config_t * cfgPtr)
    257 {
    258 	RF_DiskQueue_t **diskQueues, *spareQueues;
    259 	RF_DiskQueueSW_t *p;
    260 	RF_RowCol_t r, c;
    261 	int     rc, i;
    262 
    263 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    264 
    265 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    266 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    267 			p = &diskqueuesw[i];
    268 			break;
    269 		}
    270 	}
    271 	if (p == NULL) {
    272 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    273 		p = &diskqueuesw[0];
    274 	}
    275 	raidPtr->qType = p;
    276 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
    277 	if (diskQueues == NULL) {
    278 		return (ENOMEM);
    279 	}
    280 	raidPtr->Queues = diskQueues;
    281 	for (r = 0; r < raidPtr->numRow; r++) {
    282 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
    283 				 ((r == 0) ? RF_MAXSPARE : 0),
    284 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    285 				raidPtr->cleanupList);
    286 		if (diskQueues[r] == NULL)
    287 			return (ENOMEM);
    288 		for (c = 0; c < raidPtr->numCol; c++) {
    289 			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
    290 						   r, c, p,
    291 						   raidPtr->sectorsPerDisk,
    292 						   raidPtr->Disks[r][c].dev,
    293 						   cfgPtr->maxOutstandingDiskReqs,
    294 						   listp, raidPtr->cleanupList);
    295 			if (rc)
    296 				return (rc);
    297 		}
    298 	}
    299 
    300 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
    301 	for (r = 0; r < raidPtr->numSpare; r++) {
    302 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    303 		    0, raidPtr->numCol + r, p,
    304 		    raidPtr->sectorsPerDisk,
    305 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
    306 		    cfgPtr->maxOutstandingDiskReqs, listp,
    307 		    raidPtr->cleanupList);
    308 		if (rc)
    309 			return (rc);
    310 	}
    311 	return (0);
    312 }
    313 /* Enqueue a disk I/O
    314  *
    315  * Unfortunately, we have to do things differently in the different
    316  * environments (simulator, user-level, kernel).
    317  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    318  * and the thread that enqueues is different from the thread that dequeues.
    319  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    320  * I/Os outstanding on the physical disks when possible.
    321  *
    322  * when any request arrives at a queue, we have two choices:
    323  *    dispatch it to the lower levels
    324  *    queue it up
    325  *
    326  * kernel rules for when to do what:
    327  *    locking request:  queue empty => dispatch and lock queue,
    328  *                      else queue it
    329  *    unlocking req  :  always dispatch it
    330  *    normal req     :  queue empty => dispatch it & set priority
    331  *                      queue not full & priority is ok => dispatch it
    332  *                      else queue it
    333  *
    334  * user-level rules:
    335  *    always enqueue.  In the special case of an unlocking op, enqueue
    336  *    in a special way that will cause the unlocking op to be the next
    337  *    thing dequeued.
    338  *
    339  * simulator rules:
    340  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    341  */
    342 void
    343 rf_DiskIOEnqueue(queue, req, pri)
    344 	RF_DiskQueue_t *queue;
    345 	RF_DiskQueueData_t *req;
    346 	int     pri;
    347 {
    348 	RF_ETIMER_START(req->qtime);
    349 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    350 	req->priority = pri;
    351 
    352 	if (rf_queueDebug && (req->numSector == 0)) {
    353 		printf("Warning: Enqueueing zero-sector access\n");
    354 	}
    355 	/*
    356          * kernel
    357          */
    358 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    359 	/* locking request */
    360 	if (RF_LOCKING_REQ(req)) {
    361 		if (RF_QUEUE_EMPTY(queue)) {
    362 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
    363 			RF_LOCK_QUEUE(queue);
    364 			rf_DispatchKernelIO(queue, req);
    365 		} else {
    366 			queue->queueLength++;	/* increment count of number
    367 						 * of requests waiting in this
    368 						 * queue */
    369 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
    370 			req->queue = (void *) queue;
    371 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    372 		}
    373 	}
    374 	/* unlocking request */
    375 	else
    376 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    377 						 * when this I/O completes */
    378 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
    379 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    380 			rf_DispatchKernelIO(queue, req);
    381 		}
    382 	/* normal request */
    383 		else
    384 			if (RF_OK_TO_DISPATCH(queue, req)) {
    385 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
    386 				rf_DispatchKernelIO(queue, req);
    387 			} else {
    388 				queue->queueLength++;	/* increment count of
    389 							 * number of requests
    390 							 * waiting in this queue */
    391 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
    392 				req->queue = (void *) queue;
    393 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    394 			}
    395 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    396 }
    397 
    398 
    399 /* get the next set of I/Os started, kernel version only */
    400 void
    401 rf_DiskIOComplete(queue, req, status)
    402 	RF_DiskQueue_t *queue;
    403 	RF_DiskQueueData_t *req;
    404 	int     status;
    405 {
    406 	int     done = 0;
    407 
    408 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    409 
    410 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    411 	 * locking req fails */
    412 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    413 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
    414 		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
    415 		RF_UNLOCK_QUEUE(queue);
    416 	}
    417 	queue->numOutstanding--;
    418 	RF_ASSERT(queue->numOutstanding >= 0);
    419 
    420 	/* dispatch requests to the disk until we find one that we can't. */
    421 	/* no reason to continue once we've filled up the queue */
    422 	/* no reason to even start if the queue is locked */
    423 
    424 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    425 		if (queue->nextLockingOp) {
    426 			req = queue->nextLockingOp;
    427 			queue->nextLockingOp = NULL;
    428 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
    429 		} else {
    430 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    431 			if (req != NULL) {
    432 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
    433 			} else {
    434 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    435 			}
    436 		}
    437 		if (req) {
    438 			queue->queueLength--;	/* decrement count of number
    439 						 * of requests waiting in this
    440 						 * queue */
    441 			RF_ASSERT(queue->queueLength >= 0);
    442 		}
    443 		if (!req)
    444 			done = 1;
    445 		else
    446 			if (RF_LOCKING_REQ(req)) {
    447 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    448 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
    449 					RF_LOCK_QUEUE(queue);
    450 					rf_DispatchKernelIO(queue, req);
    451 					done = 1;
    452 				} else {	/* put it aside to wait for
    453 						 * the queue to drain */
    454 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
    455 					RF_ASSERT(queue->nextLockingOp == NULL);
    456 					queue->nextLockingOp = req;
    457 					done = 1;
    458 				}
    459 			} else
    460 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    461 								 * unlocking ops should
    462 								 * not get queued */
    463 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    464 										 * the future */
    465 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
    466 					rf_DispatchKernelIO(queue, req);
    467 					done = 1;
    468 				} else
    469 					if (RF_OK_TO_DISPATCH(queue, req)) {
    470 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
    471 						rf_DispatchKernelIO(queue, req);
    472 					} else {	/* we can't dispatch it,
    473 							 * so just re-enqueue
    474 							 * it.  */
    475 						/* potential trouble here if
    476 						 * disk queues batch reqs */
    477 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
    478 						queue->queueLength++;
    479 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    480 						done = 1;
    481 					}
    482 	}
    483 
    484 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    485 }
    486 /* promotes accesses tagged with the given parityStripeID from low priority
    487  * to normal priority.  This promotion is optional, meaning that a queue
    488  * need not implement it.  If there is no promotion routine associated with
    489  * a queue, this routine does nothing and returns -1.
    490  */
    491 int
    492 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    493 	RF_DiskQueue_t *queue;
    494 	RF_StripeNum_t parityStripeID;
    495 	RF_ReconUnitNum_t which_ru;
    496 {
    497 	int     retval;
    498 
    499 	if (!queue->qPtr->Promote)
    500 		return (-1);
    501 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    502 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    503 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    504 	return (retval);
    505 }
    506 
    507 RF_DiskQueueData_t *
    508 rf_CreateDiskQueueData(
    509     RF_IoType_t typ,
    510     RF_SectorNum_t ssect,
    511     RF_SectorCount_t nsect,
    512     caddr_t buf,
    513     RF_StripeNum_t parityStripeID,
    514     RF_ReconUnitNum_t which_ru,
    515     int (*wakeF) (void *, int),
    516     void *arg,
    517     RF_DiskQueueData_t * next,
    518     RF_AccTraceEntry_t * tracerec,
    519     void *raidPtr,
    520     RF_DiskQueueDataFlags_t flags,
    521     void *kb_proc)
    522 {
    523 	RF_DiskQueueData_t *p;
    524 
    525 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    526 
    527 	p->sectorOffset = ssect + rf_protectedSectors;
    528 	p->numSector = nsect;
    529 	p->type = typ;
    530 	p->buf = buf;
    531 	p->parityStripeID = parityStripeID;
    532 	p->which_ru = which_ru;
    533 	p->CompleteFunc = wakeF;
    534 	p->argument = arg;
    535 	p->next = next;
    536 	p->tracerec = tracerec;
    537 	p->priority = RF_IO_NORMAL_PRIORITY;
    538 	p->AuxFunc = NULL;
    539 	p->buf2 = NULL;
    540 	p->raidPtr = raidPtr;
    541 	p->flags = flags;
    542 	p->b_proc = kb_proc;
    543 	return (p);
    544 }
    545 
    546 RF_DiskQueueData_t *
    547 rf_CreateDiskQueueDataFull(
    548     RF_IoType_t typ,
    549     RF_SectorNum_t ssect,
    550     RF_SectorCount_t nsect,
    551     caddr_t buf,
    552     RF_StripeNum_t parityStripeID,
    553     RF_ReconUnitNum_t which_ru,
    554     int (*wakeF) (void *, int),
    555     void *arg,
    556     RF_DiskQueueData_t * next,
    557     RF_AccTraceEntry_t * tracerec,
    558     int priority,
    559     int (*AuxFunc) (void *,...),
    560     caddr_t buf2,
    561     void *raidPtr,
    562     RF_DiskQueueDataFlags_t flags,
    563     void *kb_proc)
    564 {
    565 	RF_DiskQueueData_t *p;
    566 
    567 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    568 
    569 	p->sectorOffset = ssect + rf_protectedSectors;
    570 	p->numSector = nsect;
    571 	p->type = typ;
    572 	p->buf = buf;
    573 	p->parityStripeID = parityStripeID;
    574 	p->which_ru = which_ru;
    575 	p->CompleteFunc = wakeF;
    576 	p->argument = arg;
    577 	p->next = next;
    578 	p->tracerec = tracerec;
    579 	p->priority = priority;
    580 	p->AuxFunc = AuxFunc;
    581 	p->buf2 = buf2;
    582 	p->raidPtr = raidPtr;
    583 	p->flags = flags;
    584 	p->b_proc = kb_proc;
    585 	return (p);
    586 }
    587 
    588 void
    589 rf_FreeDiskQueueData(p)
    590 	RF_DiskQueueData_t *p;
    591 {
    592 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
    593 }
    594