Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.12
      1 /*	$NetBSD: rf_diskqueue.c,v 1.12 2000/03/04 03:27:13 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a locking op
     38  * is dispatched to the lower levels of the driver, the queue is locked, and no further
     39  * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
     40  * operation".  This code relies on the higher layers to guarantee that a locking
     41  * op will always be eventually followed by an unlocking op.  The model is that
     42  * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
     43  * an unlocking op cannot be generated until after a locking op reports completion.
     44  * There is no good way to check to see that an unlocking op "corresponds" to the
     45  * op that currently has the queue locked, so we make no such attempt.  Since by
     46  * definition there can be only one locking op outstanding on a disk, this should
     47  * not be a problem.
     48  *
     49  * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
     50  * driver.  In order to support locking ops in this environment, when we decide to
     51  * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
     52  * have completed before dispatching the locking op.
     53  *
     54  * Unfortunately, the code is different in the 3 different operating states
     55  * (user level, kernel, simulator).  In the kernel, I/O is non-blocking, and
     56  * we have no disk threads to dispatch for us.  Therefore, we have to dispatch
     57  * new I/Os to the scsi driver at the time of enqueue, and also at the time
     58  * of completion.  At user level, I/O is blocking, and so only the disk threads
     59  * may dispatch I/Os.  Thus at user level, all we can do at enqueue time is
     60  * enqueue and wake up the disk thread to do the dispatch.
     61  *
     62  ***************************************************************************************/
     63 
     64 #include "rf_types.h"
     65 #include "rf_threadstuff.h"
     66 #include "rf_raid.h"
     67 #include "rf_diskqueue.h"
     68 #include "rf_alloclist.h"
     69 #include "rf_acctrace.h"
     70 #include "rf_etimer.h"
     71 #include "rf_configure.h"
     72 #include "rf_general.h"
     73 #include "rf_freelist.h"
     74 #include "rf_debugprint.h"
     75 #include "rf_shutdown.h"
     76 #include "rf_cvscan.h"
     77 #include "rf_sstf.h"
     78 #include "rf_fifo.h"
     79 #include "rf_kintf.h"
     80 
     81 static int init_dqd(RF_DiskQueueData_t *);
     82 static void clean_dqd(RF_DiskQueueData_t *);
     83 static void rf_ShutdownDiskQueueSystem(void *);
     84 
     85 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     86 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     87 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     88 
     89 /*****************************************************************************************
     90  *
     91  * the disk queue switch defines all the functions used in the different queueing
     92  * disciplines
     93  *    queue ID, init routine, enqueue routine, dequeue routine
     94  *
     95  ****************************************************************************************/
     96 
     97 static RF_DiskQueueSW_t diskqueuesw[] = {
     98 	{"fifo",		/* FIFO */
     99 		rf_FifoCreate,
    100 		rf_FifoEnqueue,
    101 		rf_FifoDequeue,
    102 		rf_FifoPeek,
    103 	rf_FifoPromote},
    104 
    105 	{"cvscan",		/* cvscan */
    106 		rf_CvscanCreate,
    107 		rf_CvscanEnqueue,
    108 		rf_CvscanDequeue,
    109 		rf_CvscanPeek,
    110 	rf_CvscanPromote},
    111 
    112 	{"sstf",		/* shortest seek time first */
    113 		rf_SstfCreate,
    114 		rf_SstfEnqueue,
    115 		rf_SstfDequeue,
    116 		rf_SstfPeek,
    117 	rf_SstfPromote},
    118 
    119 	{"scan",		/* SCAN (two-way elevator) */
    120 		rf_ScanCreate,
    121 		rf_SstfEnqueue,
    122 		rf_ScanDequeue,
    123 		rf_ScanPeek,
    124 	rf_SstfPromote},
    125 
    126 	{"cscan",		/* CSCAN (one-way elevator) */
    127 		rf_CscanCreate,
    128 		rf_SstfEnqueue,
    129 		rf_CscanDequeue,
    130 		rf_CscanPeek,
    131 	rf_SstfPromote},
    132 
    133 };
    134 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    135 
    136 static RF_FreeList_t *rf_dqd_freelist;
    137 
    138 #define RF_MAX_FREE_DQD 256
    139 #define RF_DQD_INC       16
    140 #define RF_DQD_INITIAL   64
    141 
    142 #include <sys/buf.h>
    143 
    144 static int
    145 init_dqd(dqd)
    146 	RF_DiskQueueData_t *dqd;
    147 {
    148 	/* XXX not sure if the following malloc is appropriate... probably not
    149 	 * quite... */
    150 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    151 					M_RAIDFRAME, M_NOWAIT);
    152 	if (dqd->bp == NULL) {
    153 		return (ENOMEM);
    154 	}
    155 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    156 						 * else will.. */
    157 	return (0);
    158 }
    159 
    160 static void
    161 clean_dqd(dqd)
    162 	RF_DiskQueueData_t *dqd;
    163 {
    164 	free(dqd->bp, M_RAIDFRAME);
    165 }
    166 /* configures a single disk queue */
    167 
    168 int
    169 rf_ConfigureDiskQueue(
    170       RF_Raid_t * raidPtr,
    171       RF_DiskQueue_t * diskqueue,
    172       RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
    173 				 * more... */
    174       RF_RowCol_t c,
    175       RF_DiskQueueSW_t * p,
    176       RF_SectorCount_t sectPerDisk,
    177       dev_t dev,
    178       int maxOutstanding,
    179       RF_ShutdownList_t ** listp,
    180       RF_AllocListElem_t * clList)
    181 {
    182 	int     rc;
    183 
    184 	diskqueue->row = r;
    185 	diskqueue->col = c;
    186 	diskqueue->qPtr = p;
    187 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    188 	diskqueue->dev = dev;
    189 	diskqueue->numOutstanding = 0;
    190 	diskqueue->queueLength = 0;
    191 	diskqueue->maxOutstanding = maxOutstanding;
    192 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    193 	diskqueue->nextLockingOp = NULL;
    194 	diskqueue->unlockingOp = NULL;
    195 	diskqueue->numWaiting = 0;
    196 	diskqueue->flags = 0;
    197 	diskqueue->raidPtr = raidPtr;
    198 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
    199 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
    200 	if (rc) {
    201 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
    202 		    __LINE__, rc);
    203 		return (rc);
    204 	}
    205 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
    206 	if (rc) {
    207 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
    208 		    __LINE__, rc);
    209 		return (rc);
    210 	}
    211 	return (0);
    212 }
    213 
    214 static void
    215 rf_ShutdownDiskQueueSystem(ignored)
    216 	void   *ignored;
    217 {
    218 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
    219 }
    220 
    221 int
    222 rf_ConfigureDiskQueueSystem(listp)
    223 	RF_ShutdownList_t **listp;
    224 {
    225 	int     rc;
    226 
    227 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
    228 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
    229 	if (rf_dqd_freelist == NULL)
    230 		return (ENOMEM);
    231 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    232 	if (rc) {
    233 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    234 		    __FILE__, __LINE__, rc);
    235 		rf_ShutdownDiskQueueSystem(NULL);
    236 		return (rc);
    237 	}
    238 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
    239 	    (RF_DiskQueueData_t *), init_dqd);
    240 	return (0);
    241 }
    242 
    243 int
    244 rf_ConfigureDiskQueues(
    245     RF_ShutdownList_t ** listp,
    246     RF_Raid_t * raidPtr,
    247     RF_Config_t * cfgPtr)
    248 {
    249 	RF_DiskQueue_t **diskQueues, *spareQueues;
    250 	RF_DiskQueueSW_t *p;
    251 	RF_RowCol_t r, c;
    252 	int     rc, i;
    253 
    254 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    255 
    256 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    257 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    258 			p = &diskqueuesw[i];
    259 			break;
    260 		}
    261 	}
    262 	if (p == NULL) {
    263 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    264 		p = &diskqueuesw[0];
    265 	}
    266 	raidPtr->qType = p;
    267 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
    268 	if (diskQueues == NULL) {
    269 		return (ENOMEM);
    270 	}
    271 	raidPtr->Queues = diskQueues;
    272 	for (r = 0; r < raidPtr->numRow; r++) {
    273 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
    274 				 ((r == 0) ? RF_MAXSPARE : 0),
    275 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    276 				raidPtr->cleanupList);
    277 		if (diskQueues[r] == NULL)
    278 			return (ENOMEM);
    279 		for (c = 0; c < raidPtr->numCol; c++) {
    280 			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
    281 						   r, c, p,
    282 						   raidPtr->sectorsPerDisk,
    283 						   raidPtr->Disks[r][c].dev,
    284 						   cfgPtr->maxOutstandingDiskReqs,
    285 						   listp, raidPtr->cleanupList);
    286 			if (rc)
    287 				return (rc);
    288 		}
    289 	}
    290 
    291 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
    292 	for (r = 0; r < raidPtr->numSpare; r++) {
    293 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    294 		    0, raidPtr->numCol + r, p,
    295 		    raidPtr->sectorsPerDisk,
    296 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
    297 		    cfgPtr->maxOutstandingDiskReqs, listp,
    298 		    raidPtr->cleanupList);
    299 		if (rc)
    300 			return (rc);
    301 	}
    302 	return (0);
    303 }
    304 /* Enqueue a disk I/O
    305  *
    306  * Unfortunately, we have to do things differently in the different
    307  * environments (simulator, user-level, kernel).
    308  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    309  * and the thread that enqueues is different from the thread that dequeues.
    310  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    311  * I/Os outstanding on the physical disks when possible.
    312  *
    313  * when any request arrives at a queue, we have two choices:
    314  *    dispatch it to the lower levels
    315  *    queue it up
    316  *
    317  * kernel rules for when to do what:
    318  *    locking request:  queue empty => dispatch and lock queue,
    319  *                      else queue it
    320  *    unlocking req  :  always dispatch it
    321  *    normal req     :  queue empty => dispatch it & set priority
    322  *                      queue not full & priority is ok => dispatch it
    323  *                      else queue it
    324  *
    325  * user-level rules:
    326  *    always enqueue.  In the special case of an unlocking op, enqueue
    327  *    in a special way that will cause the unlocking op to be the next
    328  *    thing dequeued.
    329  *
    330  * simulator rules:
    331  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    332  */
    333 void
    334 rf_DiskIOEnqueue(queue, req, pri)
    335 	RF_DiskQueue_t *queue;
    336 	RF_DiskQueueData_t *req;
    337 	int     pri;
    338 {
    339 	RF_ETIMER_START(req->qtime);
    340 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    341 	req->priority = pri;
    342 
    343 	if (rf_queueDebug && (req->numSector == 0)) {
    344 		printf("Warning: Enqueueing zero-sector access\n");
    345 	}
    346 	/*
    347          * kernel
    348          */
    349 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    350 	/* locking request */
    351 	if (RF_LOCKING_REQ(req)) {
    352 		if (RF_QUEUE_EMPTY(queue)) {
    353 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
    354 			RF_LOCK_QUEUE(queue);
    355 			rf_DispatchKernelIO(queue, req);
    356 		} else {
    357 			queue->queueLength++;	/* increment count of number
    358 						 * of requests waiting in this
    359 						 * queue */
    360 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
    361 			req->queue = (void *) queue;
    362 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    363 		}
    364 	}
    365 	/* unlocking request */
    366 	else
    367 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    368 						 * when this I/O completes */
    369 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
    370 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    371 			rf_DispatchKernelIO(queue, req);
    372 		}
    373 	/* normal request */
    374 		else
    375 			if (RF_OK_TO_DISPATCH(queue, req)) {
    376 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
    377 				rf_DispatchKernelIO(queue, req);
    378 			} else {
    379 				queue->queueLength++;	/* increment count of
    380 							 * number of requests
    381 							 * waiting in this queue */
    382 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
    383 				req->queue = (void *) queue;
    384 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    385 			}
    386 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    387 }
    388 
    389 
    390 /* get the next set of I/Os started, kernel version only */
    391 void
    392 rf_DiskIOComplete(queue, req, status)
    393 	RF_DiskQueue_t *queue;
    394 	RF_DiskQueueData_t *req;
    395 	int     status;
    396 {
    397 	int     done = 0;
    398 
    399 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    400 
    401 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    402 	 * locking req fails */
    403 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    404 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
    405 		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
    406 		RF_UNLOCK_QUEUE(queue);
    407 	}
    408 	queue->numOutstanding--;
    409 	RF_ASSERT(queue->numOutstanding >= 0);
    410 
    411 	/* dispatch requests to the disk until we find one that we can't. */
    412 	/* no reason to continue once we've filled up the queue */
    413 	/* no reason to even start if the queue is locked */
    414 
    415 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    416 		if (queue->nextLockingOp) {
    417 			req = queue->nextLockingOp;
    418 			queue->nextLockingOp = NULL;
    419 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
    420 		} else {
    421 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    422 			if (req != NULL) {
    423 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
    424 			} else {
    425 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    426 			}
    427 		}
    428 		if (req) {
    429 			queue->queueLength--;	/* decrement count of number
    430 						 * of requests waiting in this
    431 						 * queue */
    432 			RF_ASSERT(queue->queueLength >= 0);
    433 		}
    434 		if (!req)
    435 			done = 1;
    436 		else
    437 			if (RF_LOCKING_REQ(req)) {
    438 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    439 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
    440 					RF_LOCK_QUEUE(queue);
    441 					rf_DispatchKernelIO(queue, req);
    442 					done = 1;
    443 				} else {	/* put it aside to wait for
    444 						 * the queue to drain */
    445 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
    446 					RF_ASSERT(queue->nextLockingOp == NULL);
    447 					queue->nextLockingOp = req;
    448 					done = 1;
    449 				}
    450 			} else
    451 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    452 								 * unlocking ops should
    453 								 * not get queued */
    454 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    455 										 * the future */
    456 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
    457 					rf_DispatchKernelIO(queue, req);
    458 					done = 1;
    459 				} else
    460 					if (RF_OK_TO_DISPATCH(queue, req)) {
    461 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
    462 						rf_DispatchKernelIO(queue, req);
    463 					} else {	/* we can't dispatch it,
    464 							 * so just re-enqueue
    465 							 * it.  */
    466 						/* potential trouble here if
    467 						 * disk queues batch reqs */
    468 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
    469 						queue->queueLength++;
    470 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    471 						done = 1;
    472 					}
    473 	}
    474 
    475 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    476 }
    477 /* promotes accesses tagged with the given parityStripeID from low priority
    478  * to normal priority.  This promotion is optional, meaning that a queue
    479  * need not implement it.  If there is no promotion routine associated with
    480  * a queue, this routine does nothing and returns -1.
    481  */
    482 int
    483 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    484 	RF_DiskQueue_t *queue;
    485 	RF_StripeNum_t parityStripeID;
    486 	RF_ReconUnitNum_t which_ru;
    487 {
    488 	int     retval;
    489 
    490 	if (!queue->qPtr->Promote)
    491 		return (-1);
    492 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    493 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    494 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    495 	return (retval);
    496 }
    497 
    498 RF_DiskQueueData_t *
    499 rf_CreateDiskQueueData(
    500     RF_IoType_t typ,
    501     RF_SectorNum_t ssect,
    502     RF_SectorCount_t nsect,
    503     caddr_t buf,
    504     RF_StripeNum_t parityStripeID,
    505     RF_ReconUnitNum_t which_ru,
    506     int (*wakeF) (void *, int),
    507     void *arg,
    508     RF_DiskQueueData_t * next,
    509     RF_AccTraceEntry_t * tracerec,
    510     void *raidPtr,
    511     RF_DiskQueueDataFlags_t flags,
    512     void *kb_proc)
    513 {
    514 	RF_DiskQueueData_t *p;
    515 
    516 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    517 
    518 	p->sectorOffset = ssect + rf_protectedSectors;
    519 	p->numSector = nsect;
    520 	p->type = typ;
    521 	p->buf = buf;
    522 	p->parityStripeID = parityStripeID;
    523 	p->which_ru = which_ru;
    524 	p->CompleteFunc = wakeF;
    525 	p->argument = arg;
    526 	p->next = next;
    527 	p->tracerec = tracerec;
    528 	p->priority = RF_IO_NORMAL_PRIORITY;
    529 	p->AuxFunc = NULL;
    530 	p->buf2 = NULL;
    531 	p->raidPtr = raidPtr;
    532 	p->flags = flags;
    533 	p->b_proc = kb_proc;
    534 	return (p);
    535 }
    536 
    537 RF_DiskQueueData_t *
    538 rf_CreateDiskQueueDataFull(
    539     RF_IoType_t typ,
    540     RF_SectorNum_t ssect,
    541     RF_SectorCount_t nsect,
    542     caddr_t buf,
    543     RF_StripeNum_t parityStripeID,
    544     RF_ReconUnitNum_t which_ru,
    545     int (*wakeF) (void *, int),
    546     void *arg,
    547     RF_DiskQueueData_t * next,
    548     RF_AccTraceEntry_t * tracerec,
    549     int priority,
    550     int (*AuxFunc) (void *,...),
    551     caddr_t buf2,
    552     void *raidPtr,
    553     RF_DiskQueueDataFlags_t flags,
    554     void *kb_proc)
    555 {
    556 	RF_DiskQueueData_t *p;
    557 
    558 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    559 
    560 	p->sectorOffset = ssect + rf_protectedSectors;
    561 	p->numSector = nsect;
    562 	p->type = typ;
    563 	p->buf = buf;
    564 	p->parityStripeID = parityStripeID;
    565 	p->which_ru = which_ru;
    566 	p->CompleteFunc = wakeF;
    567 	p->argument = arg;
    568 	p->next = next;
    569 	p->tracerec = tracerec;
    570 	p->priority = priority;
    571 	p->AuxFunc = AuxFunc;
    572 	p->buf2 = buf2;
    573 	p->raidPtr = raidPtr;
    574 	p->flags = flags;
    575 	p->b_proc = kb_proc;
    576 	return (p);
    577 }
    578 
    579 void
    580 rf_FreeDiskQueueData(p)
    581 	RF_DiskQueueData_t *p;
    582 {
    583 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
    584 }
    585